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Summary

The merits of the modelling philosophy of Box & Jenkins

(1970) are illustrated with a summary of our recent work on sea-

sonal river flow forecasting. Specifically, this work demonstrates

that the principle of parsimony, which has been questioned by

several authors recently, is helpful in selecting the best model

for forecasting seasonal river flow. Our work also demonstrates

the importance of model adequacy. An adequate model for sea-

sonal river flow must incorporate seasonal periodic correlation.

The usual autoregressive-moving average (ARMA) and seasonal

ARMA models are not adequate in this respect for seasonal river

flow time series. A new diagnostic check, for detecting periodic

correlation in fitted ARMA models is developed in this paper.

This diagnostic check is recommended for routine use when fitting

seasonal ARMA models. It is shown that this diagnostic check

indicates that many seasonal economic time series also exhibit pe-

riodic correlation. Since the standard forecasting methods are in-

adequate on this account, it can be concluded that in many cases,

the forecasts produced are sub-optimal. Finally, a limitation of

the arbitrary combination of forecasts is also illustrated. Combin-

ing forecasts from an adequate parsimonious model with an inad-

equate model did not improve the forecasts whereas combining

the two forecasts of two inadequate models did yield an improve-

ment in forecasting performance. These findings also support the

model building philosophy of Box & Jenkins. The non-intuitive

findings of Newbold & Granger (1974) and Winkler & Makridakis

(1983) that the apparent arbitrary combination of forecasts from

similar models will lead to forecasting performance is not sup-

ported by our case study with river flow forecasting.
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1 Introduction

The main purpose of this paper is to discuss some general statistical

principles which are elucidated by our recent work in river flow forecasting

(McLeod et al., 1987; Noakes et al., 1985; Thompstone et al., 1985a). Also

based on these case studies, a new diagnostic check for periodic correla-

tion in the residuals of fitted ARMA models is developed. This diagnostic

check is suitable for routine use when fitting seasonal ARMA models.

Briefly our experience with river flow time series suggests that the best

forecasting results are obtained by following the general model building

philosophy implicit in Box & Jenkins (1970) with suitable modifications

and improvements. In general terms, this approach is iterative and advo-

cates choosing the most parsimonious adequate statistical model. Two ba-

sic principles of special relevance are:

Principle 1: Model Adequacy.

The model is considered adequate if it incorporates all relevant in-

formation and if when calibrated to the data, no important signifi-

cant departures from the statistical assumptions made can be found.

Principle 2: Model Parsimony.

The principle of parsimony means that the simplest possible model

should be chosen.

One can view the problem of statistical modelling as choosing an ad-

equate statistical model which is the most parsimonious. In mathemati-

cal programming terminology we could say that the problem of statistical

modelling has an objective function which is to minimize the model com-

plexity (Model Parsimony) subject to the constraint of Model Adequacy.
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In §2 the results of a case study of forecasting monthly river flow time

series is summarized. Here the importance of incorporating periodic corre-

lation in the forecasting model is demonstrated. For a seasonal time series

denoted by zr,p where r denotes the year and p denotes the seasonal pe-

riod, the periodic correlation coefficient is defined by

ρm(�) =
γm(�)√

(γm(0)γm−�(0))
,

where

γm(�) = Cov(zr,m, zr,m−�).

The concept of periodically correlated processes was introduced by

Gladyshev (1961). The first application of periodic time series models

seems to have been by hydrologists Thomas & Fiering (1962). Since that

time there have been very extensive developments in the theory and ap-

plications of periodically correlated time series. For a review of the prob-

abilistic literature on periodically correlated processes, see Yaglom (1986,

§26.5; 1987). Miamee (1990) and Sakai (1991) have derived new theoreti-

cal results and conditions on the spectral density function of periodically

correlated time series. On the statistical methodology side, contributions

to periodically correlated time series modelling have been made by Jones &

Brelsford (1967), Moss & Bryson (1974), Pagano (1978), Cleveland & Tiao

(1979), Troutman (1979), Tiao & Grupe (1980), Sakai (1982), Dunsmuir,

W. (1983), Thompstone et al. (1985b), Vecchia (1985a, 1985b), Vecchia et

al. (1985), Li & Hui (1988), Jiménez et al. (1989), Hurd & Gerr (1991),

Osborn, D.R. (1991) and Vecchia, A.V. & Ballerini, R. (1991). Periodic

time series models are often used for modelling seasonal time series – espe-

cially environmetric series. However, several other interesting applications

include multiple spectral estimation (Newton, 1982) and multichannel sig-

nal processing (Sakai, 1990).

In some situations, as in the case study in §3, a comprehensive mod-

elling approach which satisfies both adequacy and parsimony principles
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may not be practical either for reasons of expediency or because a suitable

model cannot be found with available methodology. In this case, we have

found combined forecasts to be useful. On the other hand, if a good model

can be found, our experience suggests that the forecast cannot be signifi-

cantly improved by combining it with forecasts from models which are less

parsimonious or less adequate. This latter result is at variance with the re-

sults reported by Winkler & Makridakis (1983) and Newbold & Granger

(1974). Perhaps this is due to the fact that the river flow time series used

in our studies are generally longer and more homogeneous than the eco-

nomic series used by the aforementioned authors. The skill of the modeller

in developing an adequate model could also be a factor.

In order to make the hydrological data sets used in the case studies

referred to in this paper readily accessible to other researchers, all data is

available in the statlib computer archive. One may obtain an electronic

copy of this data by sending an e-mail message to statlib@lib.stat.cmu.edu.

The message should be: send riverflows from datasets.
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2 Monthly River Flow Case Study

The data in this case study (Noakes et al., 1985) consisted of thirty

mean monthly river flows for periods of from 37 to 64 years. Various mod-

els and model selection procedures were used to calibrate a model to each

data set omitting the last three years of data. The one-step ahead fore-

casts were then compared for the last three years (36 values). The best

forecasts as judged by the root mean-square error and other criteria were

obtained with the family of periodic autoregressive models.

The periodic autoregression model equation may be written

φm(B)(Zr,m − µm) = ar,m (1)

where Zr,m denotes the logarithmic flow for the rth year and mth month,

µm denotes the corresponding monthly mean, ar,m, r = 1, 2, . . . , m =

1, 2, . . . , 12 are a sequence independent normal random numbers with mean

zero and variance, σ2
m, and

φm(B) = 1 − φm,1B − . . . − φm,pmBpm (2)

where B is the backshift operator on t, where t = 12(r − 1) + m. Several

model selection techniques were used to select pm (m = 1, 2, . . . , 12). It

was found that a periodic autoregression which was determined by choos-

ing pm as small as possible to achieve an adequate fit gave the best fore-

casts. This was accomplished by initially determining pm based on a plot

of the periodic partial autocorrelation function and then checking the ad-

equacy of the fitted model. Our approach is thus a natural extension of

that of Box & Jenkins (1970).

On the other hand, a subset periodic autoregression approach was

found to produce comparatively very poor forecasts. In this approach, for

each period all possible autoregressions with some parameters constrained

to zero and with pm = 12 were examined (212 possibilities) and the best

model was selected with the Akaike Information Criterion (Akaike, 1974)
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as well as the Bayes Information Criterion (Schwarz, 1978). It was also no-

ticed that the resulting models were always less parsimonious than that

selected by the first approach.

The seasonal ARMA model developed by Box & Jenkins (1970, Ch. 9)

did not perform very well either. In this case, the diagnostic check, devel-

oped in the next §4, indicates that this is due to model inadequacy.

The periodic autoregression and seasonal ARMA represent quite dif-

ferent families of time series models. Not only do the models differ in the

correlation structure but the specification of seasonality is purely stochas-

tic in the seasonal ARMA model and purely deterministic in the case of

the periodic autoregression. Moreover neither specification is likely to be

absolutely correct. Thus although the periodic autoregression model fore-

casted best and was considered to represent a more valid statistical model,

it might be thought from the experience reported by Newbold & Granger

(1974) and Winkler & Makridakis (1983) that combining the periodic au-

toregression and seasonal ARMA forecasts would be helpful. As shown in

McLeod et al. (1987) this is not the case. In particular with method 1 of

Winkler & Makridakis (1983, p. 152) the periodic autoregression forecast

had a smaller mean square error at least 17 times out of 30. Thus com-

bined forecasts cannot be recommended in this situation.
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3 Quarter-Monthly River Flow Case Study

The object of this study (Thompstone et al., 1985a) was to obtain one-

step-ahead forecasts of the quarter-monthly, i.e. almost weekly, inflows to

the Lac St. Jean reservoir system operated by Alcan Limited. Complete

time series on past quarter-month inflows, precipitation and snowmelt

in the river basin were available for 30 years. A Box-Jenkins multiple

transfer-function noise model with precipitation and snowmelt as inputs

was found to provide an adequate fit to the deseasonalized data in many

respects except that it did not account for the periodic correlation effect.

A periodic autoregression model was also fit but this model did not take

into account the covariates precipitation and snowmelt. It could be sug-

gested that at this stage a periodic-transfer-function noise model should be

developed to take into account both factors. However such a model could

easily involve too many parameters and, in any case, it was not possible

to calibrate it with our existing computer software. Perhaps future work

will result in a suitable model. Finally, a third model which was a semi-

theoretical hydrological model which incorporates various hydrological and

meteorological information in a conceptual model of river flow. The con-

ceptual modelling approach has been strongly advocated by certain hydrol-

ogists who feel that time series methods are too empirical.

All three models were calibrated on data for 27 years and then used

to produce one-step-ahead forecasts over the next three years (144 peri-

ods). The root mean square error for transfer-function noise, periodic au-

toregression and conceptual model for forecasting logarithmic flows were

respectively 0.2790, 0.3009 and 0.3894. When the forecasts were combined

by simple averaging the root mean square error dropped to 0.1355. More

sophisticated combination techniques were found to lead to even further

improvements.

It is interesting to note that the empirical time series approach outper-

formed the more theoretical conceptual approach which has been strongly
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advocated by some hydrologists. A similar phenomenon with macro-

economic time series forecasting as previously been found (Naylor et al.,

1972).
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4 A New Diagnostic Check For Periodic Autocorrelation

The seasonal ARMA model of order (p, d, q)(ps, ds, qs)s may be written

Φ(Bs)φ(B)∇ds
s ∇dZt = Θ(Bs)θ(B)at, (3)

where Zt is the observation at time t and at is a sequence of independent

normal random variables with mean zero and variance σ2. For monthly

time series s = 12 and t = 12(r − 1) + m, where r and m represent the year

and month respectively. The polynomials Φ(Bs), φ(B), Θ(Bs) and θ(B) of

degrees ps, p, qs and q specify the autoregressive and moving average com-

ponents of the model. The terms ∇s = 1−Bs and ∇ = 1−B represent the

seasonal and non-seasonal differencing operators. Using standard model

selection techniques (Box & Jenkins, 1970; Hipel et al., 1977) it was found

that most monthly river flow time series could be tentatively modelled as

a seasonal ARMA model of order (p, 0, 1)(0, 1, 1)12, where p = 0, 1 or 2.

The diagnostic check described below can be used to check for model inad-

equacy due to periodic correlation in the residuals of such fitted models.

The residual periodic autocorrelation at lag k ≥ 1 may be written

r̂m(k) =
∑

r âr,mâr,m−k√∑
r â2

r,m

∑
r â2

r,m−k

, (4)

where âr,m denotes the seasonal ARMA model residual for period t =

12(r − 1) + m (r = 1, . . . , N ;m = 1, . . . , 12). If the seasonal ARMA

model is adequate then using the methodology in McLeod (1978) it can be

shown for any fixed M ≥ 1,
√

N r̂(m) =
√

N(r̂m(1), . . . , r̂m(M)) is asymp-

totically normal with mean zero and covariance matrix (1M − Q/12)/N ,

where 1M is the identity matrix of order M and Q = XI−1XT , where

X and I are given in eq. (44) of McLeod (1978). Moreover,
√

Nr(m) and
√

Nr(m′) are asymptotically independent when m �= m′. Since the diag-

onal elements of Q are all less than one, it follows that to a good approx-

imation, r̂m(1),m = 1, . . . , 12 are jointly normally distributed with mean
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vector zero, diagonal covariance matrix and Var(r̂m(1)) = N−1. A diagnos-

tic check for detecting periodic autocorrelation in seasonal ARMA model

residuals is given by

S = N

12∑
m=1

r̂2
m(1) (5)

which should be approximately χ2-distributed on 12 df.

As a check on the asymptotic approximation involved, a brief simu-

lation experiment was performed. A (1, 0, 0)(0, 0, 0)12 model with φ1 =

−0.9,−0.6,−0.3, 0.3, 0.6 and 0.9 was simulated. Table 1 summarizes the

results on S for one thousand simulations with N = 17. The empirical sig-

nificance level of a nominal 5% test was estimated by counting the number

of times that S exceeded 21.0261. From Table 1, the approximation is seen

to be adequate for practical purposes. In further experiments with N = 34

and 68, the approximation was seen to improve although the empirical sig-

nificance level was still slightly less than 0.05 in all cases. This suggests

that in general the significance will be slightly overestimated. For example,

if the observed value of S indicates significant periodic correlation at the

5% level, the true significance level will be slightly less than 5%.

[Table 1 here]

The data on the Saugeen River (1915–1976) is illustrative of the useful-

ness of this new diagnostic check. A (1, 0, 1) (0,1,1)12 model was fit to the

logarithmic flows and passed all diagnostic checks given in Box & Jenkins

(1970). However, it was found that S = 59.6 indicating very significant

residual periodic correlation. As indicated in the next section, it appears

that many seasonal economic time series also exhibit such periodic residual

correlations.
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Table 1

Empirical mean, variance and significance level of S

with N = 17 in 1000 simulations using a nominal 5% test.

φ1 Mean Variance Significance

level

–0.9 11.9 19.3 0.032

–0.6 11.5 18.6 0.025

–0.3 11.3 19.0 0.023

0.0 10.9 16.6 0.016

0.3 11.1 19.7 0.027

0.6 11.5 18.6 0.026

0.9 11.7 19.7 0.030
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5 Application to Forecasting Economic Time Series

Many seasonal economic time series may exhibit periodic correlation

which most of the standard approaches do not take into account. The di-

agnostic check of §4 may be applied routinely when fitting seasonal ARMA

models. Table 2 shows the results of testing the seasonal ARMA models

fitted by Miller & Wichern (1977, p.432) to four Wisconsin series. It is

seen that in two out of the four series there is very significant periodic cor-

relation. In these cases, models which take this correlation into account

may be expected to produce improved forecasts. A comprehensive new ap-

proach to the modelling and forecasting of such series is given by McLeod

(1992).

[Table 2 here]

Acknowledgements

This research was supported by NSERC.



A.I. McLeod 15

Table 2

Diagnostic Test For Residual Periodic Correlation

For Four Wisconsin Series From Miller & Wichern

Category S d.f. Significance

level

Food Products 25.36 12 0.013

Fabricated Metals 36.8 12 0.0002

Transportation Equipment 11.6 12 0.478

Trade 6.98 12 0.859
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Gladyšev, E.G. (1961). Periodically correlated random sequences. Soviet

Math. Dokl. 2, 385–388.
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Résumé

Les mérites de la philosophie de la modélisation de Box et Jenkins

(1970) sont illustrées par un résumé de nos recherches récentes sur la

prévision de saisonniers débits en rivière. En particulier, nos résultats

démontrent que le principe de la parcimonie, que plusieurs auteurs ont

mis en question, est utile à la sélection du meilleur modèle pour prévoir

les saisonniers débits en rivière. Nos recherches démontrent l’importance

de la compétence d’un modèle. Un modèle adéquat de saisonniers débits

en rivière doit incorporer la corrélation périodique et saisonnière. Les

modèles autorégressifs à moyenne mobile (ARMA) habituels et les modèles

ARMA saisonniers ne sont pas adéquats à cet égard pour les séries de

saisonniers débits en rivière. Dans cet article, on développe une nouvelle

méthode pour déceler la corrélation périodique dans les modèles ARMA

ajustés. Cette méthode est à utiliser habituellement dans l’ajustement

des modèles ARMA saisonniers. Cette méthode indique que beaucoup de

séries chronologiques économiques font preuve de la corrélation périodique

aussi. Puisque les méthodes ordinaires de prévision ne sont pas adéquats,

on peut conclure que dans beaucoup de cas les prévisions produites sont

moins qu’optimales. En dernier lieu, une limitation à la combinaison ar-

bitraire des prévisions est illustrée aussi. La combinaison des prévisions

d’un modèle parcimonieux et adéquat avec celles d’un modèle inadéquat

n’améliora pas les prévisions. Cependant, le fait de combiner les deux

prévisions de deux modèles inadéquats produisit une amélioration de la

performance de la prévision. Ces résultats appuient aussi la philosophie

de la modélisation de Box et Jenkins. Les résultats non-intuitifs de New-

bold et Granger (1974) et de Winkler et Makridakis (1983) indiquent

que la combinaison apparente et arbitraire de prévisions de modèles sem-

blables menèra à la performance des prévisions. Cette conclusion n’est

pas soutenue par notre étude de cas portant sur la prévision des débits en

rivière.


