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2 PERIODIC AUTOREGRESSION MODELS

Abstract. An overview of model building with periodic autoregression (PAR) mod-

els is given emphasizing the three stages of model development: identification, estima-

tion and diagnostic checking. New results on the distribution of residual autocorrela-

tions and suitable diagnostic checks are derived. The validity of these checks is demon-

strated by simulation. The methodology discussed is illustrated with an application. It

is pointed out that the PAR approach to model development offers some important ad-

vantages over the more general approach using periodic autoregressive moving-average

(PARMA) models.

I have written S functions for the periodic autoregressive modelling methods dis-

cussed in my paper. Complete S style documentation for each function is provided. To

obtain, e-mail the following message: send pear from S to statlib@temper.stat.cmu.edu

or use anonymous ftp to connect to fisher.stats.uwo.ca and download the shar archive

file, pear.sh, located in the directory pub/pear.

Key words. Periodically correlated time series; periodic autoregressive moving-

average models; portmanteau test; residual autocorrelation.
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1. INTRODUCTION

Let zt, t = 1, . . . , N be N consecutive observations of a seasonal time series with

seasonal period s. For simplicity, assume that N/s = n is an integer. In other words,

there are n full years of data available. The extension of the results in this paper to the

more general case will be seen to be immediate.

The time index parameter, t, may be written t = t(r,m) = (r − 1)s + m, where

r = 1, . . . , n and m = 1, . . . , s. In the case of monthly data s = 12 and r and m denote

the year and month.

If

µm = E{zt(r,m)} (1.1)

and

γ�,m = Cov(zt(r,m), zt(r,m)−�) (1.2)

exist and depend only on � and m, zt is said to be periodically correlated or periodic sta-

tionary (Gladyšev, E.G., 1961). Note that case where µm and γ�,m do not depend on m

reduces to an ordinary covariance stationary time series. Several recent researchers have

given methods for testing for periodically correlated time series (Hurd, H.L. and Gerr,

N.L., 1991; Vecchia, A.V. and Ballerini, R., 1991). McLeod (1992, to appear) derives a

test for detecting periodic correlation in the residuals of fitted seasonal ARIMA models.

The PAR model of order (p1, . . . , ps) may be written,

zt(r,m) = µm +
pm∑

i=1

φi,m(zt(r,m)−i − µm−i) + at(r,m), (1.3)

where at(r,m) ∼ NID(0, σ2
m). Also, it is understood that m obeys modular arithmetic, for

example, µ0 = µs. The PAR family of models was originally introduced by Thomas and

Fiering (1962) for monthly river flow modelling and simulation.
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As shown by Troutman (1979), the PAR model may be written in moving-average

form

zt(r,m) = µm +
∞∑

i=0

ψi,mat(r,m)−i, (1.4)

where the ψ’s may be calculated recursively using

ψi,m =
pm∑

j=1

φj,mψi−j,m−j , i ≥ 1, (1.5)

ψ0,m = 1 and ψi,m = 0 if i < 0. Then a necessary and sufficient condition for periodic

stationarity is (Troutman, 1979)

∞∑

i=0

ψ2
i,m < ∞, m = 1, . . . , s. (1.6)

The PARMA model is a possible extension of the PAR model which includes a

moving-average component. Such models have been advocated by Vecchia, A.V. (1985a,

1985b) and others but some drawbacks to their use in actual applications are discussed

in §2–5.

2. PAR IDENTIFICATION

An illustrative time series, discussed by Vecchia and Ballerini (1991), is the time

series of mean monthly flows of the Fraser River at Hope, B.C. from March 1912 to De-

cember 1990. This data is available by e-mail by sending the following message, send

fraser-river from datasets, to statlib@temper.stat.cmu.edu.

The strong seasonal component as well as high seasonal variability of this data are

evident in the time series trace plot shown in Figure 1. In practice, logarithms of the

mean monthly flows are used to stablize the variance.

[Figure 1 about here]

The presence of periodic correlation in a time series can often be indicated by exam-

ination of appropriate scatter plots. Figure 2 compares scatter plots for May vs. June
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and July vs. August. Notice the very weak correlation present in the May vs. June scat-

ter plot as compared with the strong correlation present in the July vs. August plot.

These scatter plots clearly indicate periodic correlation. In less extreme cases, it may be

helpful to use the statistical tests described by Hurd and Gerr (1991) and Vecchia and

Ballerini (1991).

[Figure 2 about here]

The sample periodic autocorrelation function (PeACF) is given by

r�,m =
c�,m√{c0,mc0,m−�} , (2.1)

where

c�,m =
1
n

∑

r

(zt(r,m) − µ̂m)(zt(r,m)−� − µ̂m−�), (2.2)

where µ̂m =
∑

r zt(r,m)/n n is the ceiling of N/s and the summation is over all data

values in the sample.

Periodic correlation is evident in the schematic plot of the sample PeACF of the

Fraser River time series shown in Figure 3. This schematic plot shows the values r�,m for

� = 1, . . . , 6 and m = 1, . . . , 12. The lags values, �, are along the vertical axis. Along

the horizontal axis the months, m, are represented. Each vertical pair of parallel lines at

±1.96/
√

n provide benchmark 5% significance limits valid for white noise.

After the presence of periodic correlation has been detected, a suitable PAR model

can be selected either by examining plots of the sample periodic partial autocorrelation

(PePACF) or by using an information criterion such as that of Akaike (1974, 1977) or

Schwarz (1978). Both the PePACF or information criterion methods can be efficiently

implemented using the methods developed by Sakai (1982).

Sakai (1982) extended the celebrated Durbin-Levinson recursion for autoregressive

models to PAR models and derived the distribution of the sample PePACF. Let ρ̂•�,m
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denote the sample PePACF for lag � and period m. Sakai showed that if the correct or-

der is pm for period m, Est.Sd.(ρ̂•�,m) = 1/
√

n, � > pm. The order pm can be identified

by finding the lowest lag for which the sample PePACF cuts off.

The BIC criterion (Akaike, 1977; Schwarz, 1978) may be factored to obtained a sep-

arate criterion for each period. Thus

BIC =
s∑

m=1

BICm, (2.3)

where

BICm = n ln σ̂2
m + ln(n)pm. (2.4)

For the Fraser River data, the BIC method selects a PAR model of order

(1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1). Table I gives the sample PePACF and Figure 3 shows a

schematic plot of the sample PePACF. It is seen that the BIC selects a method which

is in agreement with that which would be selected by examining the sample PePACF

plot. In general, our experience with modelling other monthly river flow time series has

been that the BIC and sample PePACF select the same or nearly the same model (see,

Noakes, McLeod and Hipel, 1985).

[Table I about here]

[Figure 3 about here]

It should be pointed out that for the more general PARMA model, no satisfactory

general method is available for selecting the model orders. The information criterion

method is not feasible, particularly when s ≥ 12, due to the extremely length compu-

tations involved.
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3. PAR ESTIMATION

Let βm = (φ1,m, . . . , φpm,m) denote the vector of autoregressive parameters for

period m. Then an asymptotically efficient estimate, β̂m, may be obtained by solving

Yule-Walker type equations (Pagano, 1978),

pm∑

i=1

φ̂i,mck−i,m−i = ck,m, k = 1, . . . , pm. (3.1)

The residual variances may be estimated by

σ̂2
m = c0,m − φ̂1,mc1,m − . . . − φ̂pm,mcpm,m, m = 1, . . . , s. (3.2)

Pagano (1978) showed that
√

n(β̂ − β) is asymptotically normally with mean zero

and covariance matrix 1
nI−1

m , where

Im =
1

σ2
m

(γi−j,m−j). (3.3)

In practice, an estimate, Îm of Im is simply obtained by replacing the γ’s with c’s.

Pagano (1978) also showed that the estimates for different periods are asymptoti-

cally uncorrelated or in other words the joint information matrix of β1, . . . ,βs is block

diagonal. Pagano (1978) stressed since the PAR model had the property that each pe-

riod or component could be estimated independently that this could provide a useful

approach to certain problems in multivariate autoregression modelling. This theme was

taken up and developed further by Newton (1982).

In the PARMA case, in order to obtain efficient estimates, all parameters must be

estimated simultaneously including the innovation variances and moreover it is neces-

sary to use a nonlinear optimization technique since the likelihood function is nonlin-

ear. Each evaluation of the likelihood function involves very lengthy computations when

s ≥ 12 (Vecchia, 1985a; Li and Hui, 1988; Jiménez, McLeod and Hipel, 1989).
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4. PAR DIAGNOSTIC CHECKING

Let ât(r,m) denote the residuals from a fitted PAR model and let r̂�,m denote the

residual autocorrelation for lag � and period m. Then using the technique of McLeod

(1978) or as a specialization of the general multivariate result of Li and McLeod (1981)

it can be shown that for any fixed L ≥ 1 and r̂m = (r̂1,m, . . . , r̂L,m) that
√

nr̂m is

asymptotically normal with mean zero and covariance matrix

Var(rm) = 1L − XmI−1
m X ′

m, (4.1)

where 1L denotes the L-by-L identity matrix and Xm is the L-by-pm matrix with (i, j)

entry −ψi−j,m−jσm−i/σm. Furthermore,
√

nrm and
√

nrm′ are asymptotically uncor-

related when m �= m′. This result means that diagnostic checking can be carried out

independently for each month. On the other hand, in the general PARMA case the dis-

tribution of the residual autocorrelations is much more complicated and the normalized

residual autocorrelations are correlated between periods. Thus, in the PARMA case, the

only available diagnostic check would be the global multivariate portmanteau test of Li

and McLeod (1978).

The standard deviation of r�,m may be estimated from (4.1) by using Îm and an es-

timate of Xm obtained by using the estimated parameters. As pointed out in McLeod

(1978) and Ansley and Newbold (1979), model mis-specification may be indicated if the

values of |r̂i,m| are too large relative to their estimated standard deviations. In particu-

lar, it is often useful to check r̂pm,m. This could be formalized as a statistical test.

To check the validity of this test using the lag pm value of the residual autocorrela-

tion, a simulation experiment was carried out with PAR models with parameter settings

s = 4, 12;n = 20, 50, 100; pm = 1,m = 1, . . . , s. The same parameter was used for each

period so that φ1,1 = φ1,2 = . . . = φ1,s = φ, where φ = −0.9,−0.8, . . . , 0.8, 0.9. The

mean empirical significance level, α̂, was determined using 1000 simulations for each pa-

rameter setting of s, n and φ. The values of α̂ are displayed in Figure 4. The estimated
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standard error of α̂ is about 0.002. It appears then that in many situations, this test

provides a reliable yardstick. Exceptions to this occur only when φ is close to or equal

to 0.0. This suggests the crucial importance of selecting the most parsimonious possible

model, that is the model which has the fewest number of parameters but passes the di-

agnostic checks. Including a parameter which is close to 0.0, when there are not enough

data values to get a good estimate of it, seems to cause difficulties.

[Figure 4 about here]

To test simultaneously if all residual autocorrelations at lags 1, 2, . . . , L are equal to

zero for a specified period m, a portmanteau test (Box and Jenkins, 1976) can be used.

The statistic

Qm = n
L∑

�=1

r̂2
�,m, (4.2)

will be referred to as the Box-Jenkins portmanteau. It follows as indicated in Box and

Pierce (1970) that Qm is asymptotically χ2-distributed with degrees of freedom L − pm

under the assumption that the model is adequate. Since for the case s = 1 all the results

in §4 reduce to the standard ARMA case, it would be expected, as in Davies, N., Triggs,

C.M. and Newbold, P. (1977) and Ljung and Box (1978) that a modified portmanteau

test statistic would improve the small sample properties. It is easily seen that the follow-

ing exact result holds for the periodic correlations of white noise,

Var(r�,m) =
n − �

s

n(n + 2)
, if � ≡ 0 mod s,

=
n − [ �−m+s

s ]
n2

, otherwise,

(4.3)

where [•] denotes the integer part and

r�,m =

∑
r

at(r,m)at(r,m)−�

√{∑
r

a2
t(r,m)

∑
r

a2
t(r,m−�)}

. (4.4)
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A suitable modified portmanteau statistic is then

Q̃L,m =
L∑

�=1

r̂2
�,m

Var(r�,m)
. (4.5)

Since this modification reduces in the case s = 1 to that proposed by Ljung and Box

(1978), this may be referred to as the Ljung-Box portmanteau statistic for the periodic

autoregression case. It follows using similar approximations as in Ljung and Box (1978,

p.300) that

E{Q̃L,m} = L − pm (4.6)

and that

E{QL,m} = n

L∑

�=1

Var(r�,m) − pm. (4.7)

Table II below shows that the degree of underestimation of the asymptotic mean, L−pm,

decreases as s increases from 1 and that it is less important for small values of L than

for larger values of L.

[Table II about here]

The empirical significance level for a nominal 5% portmanteau test was investigated

for both the Box-Jenkins statistic E{QL,m} and the Ljung-Box statistic E{Q̃L,m}. The

same parameter settings for the PAR model as in the previous simulation experiment

with the lag one residual autocorrelation test were used. The mean empirical signifi-

cance level, α̂, over 1000 simulations, was calculated for each of the 19 values φ used.

Boxplots of these 19 values are displayed in Figure 5. The two outliers at L = 5 occur in

all four cases when φ = −0.9 and φ = 0.9. Note that Est.Sd.(α̂) = 0.7%. The modifica-

tion clearly is worthwhile in most cases.

[Figure 5 about here]

5. APPLICATION TO FRASER RIVER TIME SERIES
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In §2, it was shown that this time series exhibits periodic correlation and

a possible model was selected. Both the BIC and PePACF methods suggest a

PAR(1,1,1,3,2,1,1,3,1,1,1,1) model. The fitted model and its diagnostic checks are dis-

played in Table III. The only diagnostic check which is significant at the 5% level is the

value of Q̃15,10 which achieves a significance level of about 3%. This does not strongly

point to model inadequacy since the level is still not too low and hence the likelihood of

a type 1 error exists. This PAR model may be compared to the PARMA model fitted

by Vecchia and Ballerini (1991) to the same data. Vecchia and Ballerini fit a PARMA

model with a first-order autoregressive and first-order moving-average component for

each period. As previously discussed no comprehensive method is available for identi-

fying such PARMA models. It appears that this model was selected without consid-

ering possible alternatives. Fewer parameters are required by the PAR model and the

goodness-of-fit achieved is at least as good or better. The last row of Table III, shows

100(σ̂′
m − σ̂m)/σ̂m where σ̂′

m denotes the residual standard deviation reported by Vec-

chia and Ballerini (1991, Table 5). This row may be interpreted as the percentage im-

provement for each period in using the PAR model. Overall there is a 4.7% average im-

provement. Due to the lack of the block diagonal structure of the PARMA model, model

estimation and diagnostic checking are many orders of magnitude more difficult.

In conclusion, the PAR model is likely to be of more use in applications — at least

at present.

[Table III about here]
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TABLE II

Approximate values of E{QL,m} for m = 1, pm = 1.

s L = 5 L = 10 L = 15 L = 20 L = 25 L = 30 L = 35

1 3.5 7.6 11.1 14.2 16.8 18.9 20.5

4 3.8 8.6 13.2 17.6 22.0 26.2 30.3

12 3.9 8.8 13.6 18.4 23.1 27.8 32.5

∞ 3.9 8.8 13.7 18.6 23.5 28.4 33.3


