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Abstract:
Current methods of estimation of the univariate spectral density are reviewed and

some improvements are suggested. It is suggested that spectral analysis may perhaps
be best thought of as another exploratory data analysis (EDA) tool which complements
rather than competes with the popular ARIMA model building approach. A new diag-
nostic check for ARMA model adequacy based on the nonparametric spectral density
is introduced. Two new algorithms for fast computation of the autoregressive spectral
density function are presented. A new style of plotting the spectral density function is
suggested. Exploratory spectral analysis of a number of hydrological time series is per-
formed and some interesting periodicities are suggested for further investigation. The
application of spectral analysis to determine the possible existence of long memory in
riverflow time series is discussed with long riverflow, treering and mud varve series. A
comparison of the estimated spectral densities suggests the ARMA models fitted previ-
ously to these datasets adequately describe the low frequency component. The software
and data used in this paper are available by anonymous ftp from fisher.stats.uwo.ca in
the directory pub\mhts.

Key words: AIC-Bayes, autoregressive spectral density estimation, diagnostic checks
for ARMA models, exploratory data analysis, fast Fourier transform, Hurst coefficient,
long-memory time series, periodogram smoothing, riverflow time series, spectral density
plots
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Introduction Spectral analysis includes many useful methods based on the Fourier
analysis of the time series. The most fundamental is the estimation of the spectral den-
sity function. The textbooks by Brillinger (1981) and Priestley (1981) offer definitive
accounts of the theory of spectral analysis. An excellent introduction is given by the
monograph of Bloomfield (1976). The recent monograph of Percival and Walden (1993)
which devoted entirely to contemporary univariate spectral density estimation methods
is also an excellent reference with an emphasis on applications. For an state-of-the-art
introduction to additional spectral methods see Brillinger and Krishnaiah (1983).

The spectral analysis of time series provides a useful exploratory data analysis tool
for examining time series data. Indeed exploratory data analysis (EDA) is often charac-
terized by the four R’s: Revelation, Re-expression, Residuals and Resistance. Spectral
analysis satisfies the first three requirements and at least partially the fourth. Revela-
tion: Spectral analysis can provide an intuitive frequency based description of the time
series and indicate interesting features such as long memory, presence of high frequency
variation and cyclical behaviour. Re-expression: Often the time series are transformed
either with a power transformation to stabilize the variance or by differencing or other
filtering to remove nonstationary features. Residuals: Often the time series data are
prewhitened by fitting either trend models or simple parametric models such as autore-
gressive or autoregressive-moving average models and the residuals from these models
are analyzed. Resistance: Standard spectral methods do not exhibit resistance in the
usual EDA sense which would mean being insensitive to very large outliers. However
spectral analysis methods do possess a certain degree of robustness since the normal dis-
tribution need not be assumed.

Tukey has pointed out on many occasions that exploratory spectral analysis may
reveal features of the data which are missed by using low order ARMA models. For ex-
ample, Tukey (1978) notes that “the discovery of phenomena is one of the major tasks of
science and more phenomena have been discovered by detecting narrowish bumps in the
spectrum than have been discovered by fitting ARMA or ARIMA models.”

To apply spectral analysis we need a time series, denoted by, zt, t = 1, 2, . . . which
satisfies two theoretical conditions. The first condition is that the time series is covari-
ance stationary which means that E(zt) = µ and cov(zt, zt−k) = γk. Both µ and γk

must exist and be independent of k. The sequence γk is called the sample autocovari-
ance function (TACVF). The second requirement, known as ergodicity, is that the sam-
ple estimators of µ and γk must converge as the length of the sampled series increases.
Given n successive observations, zt, t = 1, . . . , n, of a time series the sample estimator for
µ is simply the sample mean, z̄ =

∑
zt/n and for the TACVF, the sample autocovari-

ance function (SACVF) is given as

ck =
1
n

n∑
�=k+1

(zt − z̄)(zt−k − z̄) for k ≥ 0,

and for k < 0, ck = c−k. Necessary and sufficient conditions for a general covariance
stationary process to be ergodic for the mean and TACVF are given by Hannan (1970,
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Theorem 6, p.210). One necessary condition for this is that

lim
n→∞

1
n

n∑
k=1

γk = 0. (1)

A simple example of a stationary non-ergodic time series is the symmetrically correlated
time series which has TACVF given by

γk = γ0, if k = 0,

= γ, if k �= 0,
(2)

where γ < γ0. Ergodicity is a theoretical condition which is not normally possible to
verify in practice.

In the next section, the basic properties of the spectral density function of a time
series are reviewed. In §3 of estimating the spectral density function are discussed. In
§4, it is shown that the spectral density function provides the best tool to define what
is meant by long memory in time series. The application of spectral methods to annual
riverflow and other hydrological data is discussed. A new style of plotting the spectral
density function is recommended.

Spectral analysis is a component in a PC time series package developed by McLeod
and Hipel. A student version of this package is available via anonymous ftp as men-
tioned in the Abstract.

2 Spectral Analysis Primer

2.1 Spectral Density Function
Spectral analysis can be regarded as the development of a Fourier analysis for sta-

tionary time series. Just as in classical Fourier analysis a real function z(t) is repre-
sented by a Fourier series, in spectral analysis the autocovariance function of a station-
ary time series has a frequency representation in terms of a Fourier transform. This
representation was first given by Herglotz (1911) who showed that any positive-definite
function, such as the autocovariance function, γk, of a stationary time series can be rep-
resented as

γk =
∫

(−π,π]

eiωkdP (ω), (3)

where P (ω) is the spectral distribution function. In the case where a spectral density
function exists, we have dP (ω) = p(ω)dω and Herglotz’s equation, eq. (3), can be writ-
ten

γk = 2

π∫
0

p(ω) cos(ωk)dω. (4)

The function p(ω), −π ≤ ω ≤ π is called the spectral density function and shares many
properties of the probability density function. In addition, note that p(ω) is symmet-
ric, p(ω) = p(−ω). For mathematical convenience the units of ω are in radians per unit
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time, which is known as angular or circular frequency. In practice, however, it is more
convenient to work in units of cycles per unit time, which is related to ω by the equation
ω = 2πf , where f is now in cycles per unit time.

2.2 Periodogram
A natural estimator of the spectral density function given n observations z1, . . . , zn

from a covariance stationary time series, is given by the periodogram,

I(fj) =
1
n

∣∣∣ n∑
t=1

zte
−2πfj(t−1)

∣∣∣2, (5)

where fj = j/n, j = [−(n − 1)/2], . . . , 0, . . . , [n/2], where [•] denotes the integer part
function. Since I(fj) = I(−fj) the periodogram is symmetric about 0, and so when the
periodogram or spectral density is plotted we only plot the part where fj > 0. When
fj = 0, I(0) = nz̄2, where z̄ =

∑n
t=1 zt/n. This component, I(0), is usually very large

due to a non-zero mean and so is ignored in the periodogram and spectral plots.
In the case where the spectral density function exists, the expected value of I(fj)

can be shown to be approximately equal to p(fj), where p(f) is the spectral density
function. In fact, in large samples, I(fj) for j = 1, . . . , [(n − 1)/2] are statistically in-
dependent and exponentially distributed with mean p(fj).

Schuster (1898) developed the periodogram for searching for periodicities in time
series. Sometimes I(fj) is plotted against its period 1/fj but this is not very satisfactory
because, since I(fj) is calculated at equi-spaced frequencies, the low-frequency part is
too spread out. A new style of plotting is suggested in §4 which shows the periodicities
on the x-axis.

2.3 Frequency Interpretation
Another important property for the interpretation of the periodogram is that it can

be shown that I(fj) is proportional to the square of the multiple correlation between
the observed data sequence z1, . . . , zn and a sinusoid having frequency fj . Specifically,
consider the regression,

zt = A0 + Aj cos(2πfj) + Bj sin(2πfj) + et, (6)

where et is the error term. Then the least-squares estimates of A0, Aj and Bj are given
by

A0 =
1
n

n∑
t=1

zt

Aj =
2
n

n∑
t=1

zt cos(2πfj)

Bj =
2
n

n∑
t=1

zt sin(2πfj).
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The multiple correlation coefficient, R2
j , can be shown to be given by

R2
j = A2

j + B2
j .

In terms of the periodogram we have then

I(fj) =
n

2
R2

j .

Thus p(f) can be interpreted as measuring the strength of a random sinusoidal com-
ponent having a period 1/f in the data sequence. Time series exhibiting cycles or oscil-
latory behaviour will have a peak in the spectral density function at the frequency which
corresponds to the cycle period. For example, if there is a ten-year cyclical component,
then there will be a peak in the spectral density function at f = 0.1. The sharpness of
the peak depends on how closely the period 1/f appears in the data sequence, and the
relative size of the peak depends on the relative amplitude of the cycle in the time series.
The units of fj are cycles per unit time. The period corresponding to fj is Tj = 1/fj .

2.4 ANOVA Decomposition
Taking k = 0 in eq. (4) we obtain for var(zt) = γ0,

var(zt) = 2

2π∫
0

p(ω)dω. (7)

It can be shown that spectral analysis provides an anova like decomposition of a time
series into its frequency components and this fact is illustrated in eq. (7). The sample
analogue of eq. (7) is

n∑
t=1

(zt − z̄)2 = 2
[(n−1)/2]∑

j=1

I(fj) + I(f[n/2]),

where the last term I(f[n/2]) is omitted when n is an odd.
The spectral density function can be derived by taking the inverse Fourier transfor-

mation to eq. (4) which yields,

p(f) =
∞∑

k=−∞
γke−2πfk, |f | ≤ 0.5, (8)

The sample analogue of this formula also holds, viz.

I(f) =
n−1∑

k=−(n−1)

cke−2πfk,
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where ck denotes the sample autocovariance function given by

ck =
1
n

n∑
�=k+1

(zt − z̄)(zt−k − z̄) for k ≥ 0,

and for k < 0, ck = c−k.

2.5 Aliasing
There is an upper limit to the highest frequency that can be observed in the time

series. This upper limit, which is 0.5 cycles per unit time or π radians per unit time, is
called the Nquist frequency. This upper limit arises because of the discrete time nature
of our time series. There is no such upper limit in the continuous time case. To see why
aliasing occurs, let f̃ denote any frequency in the interval [0, 0.5] and let f̈ = f̃ + 0.5.
Then it is easily shown for all integer t that cos(f̈) = cos(f̃) and sin(f̈) = sin(f̃). The
frequencies f̃ and f̈ are said to be aliases. Aliased frequencies, such as f̈ , are observa-
tionally indistinguishable from frequencies in the range [0, 0.5].

2.6 Spectral Density and ARMA Model
The ARMA(p, q) model, may be written in operator notation as,

φ(B)zt = θ(B)at,

where, φ(B) = 1 − φ1B − . . . − φpB
p, θ(B) = 1 − θ1B − . . . − θqB

q, at is white noise with
variance σ2

a and B is the backshift operator on t, is said to be not redundant if and only
if φ(B) = 0 and θ(B) = 0 have no common roots. Due to stationarity and invertibility,
all roots of the equation φ(B)θ(B) = 0 are assumed to be outside the unit circle. When
q = 0 this model is referred to as the autoregression of order p or AR(p). Fitting high
order autoregressive models to estimate the spectral density will be discussed in §3.

The theoretical spectral density for time series generated by the ARMA(p, q) model
is given by

p(f) = σ2
a|ψ(e2πif )|2,

where

ψ(B) =
θ(B)
φ(B)

.

3 Spectral Density Estimation Methods

3.1 Periodogram Smoothing
This is the frequency domain approach because in this approach one works with

the Fourier transform of the data sequence rather than the original data sequence. It
is the most natural approach to estimating p(f) although the other approach by high-
order autoregressive modelling will often produce a more accurate overall estimate in



8 Exploratory Spectral Analysis

the sense of the integrated mean-square error criterion. On the other hand, periodogram
smoothing is better suited to revealing bumps and narrow peaks in the spectrum which
is often the principal goal of exploratory spectral analysis in the first place.

The Discrete Fourier Transform (DFT) of the sequence z1, . . . , zn, is defined as

Zj =
n∑

t=1

zte
−2πitfj , j = −[(n − 1)/2], . . . , 0, . . . , [n/2],

where [•] denotes the integer part and fj = j/n. The frequencies fj are referred to as
the Fourier frequencies. The functions cos(2πfjt) and sin(2πfjt) are orthogonal with
respect to the usual inner product when evaluated at the Fourier frequencies.

The periodogram is given by

I(fj) =
1
n
|Zj |2.

It follows from the orthogonality mentioned above that

[n/2]∑
j=−[(n−1)/2]

I(fj) =
n∑

t=1

z2
t .

Thus I(fj) can be interpreted as analysis of variance of the data. I(fj) shows the
amount of variation due to each frequency component. Since the periodogram is sym-
metric about zero, only positive frequencies need be considered.

The periodogram smoothing approach to the estimation of p(f) is based on the fol-
lowing two large-sample results:

< I(fj) >≈ p(fj),

and
cov(I(fj), I(fk)) ≈ p2(fj), whenj = k,

≈ 0, whenj �= k.

From the above two equations we see that although I(fj) is an unbiased estimator of
p(fj), it is not consistent. If p(f) is assumed to be a smooth function of f , an estimator
with smaller mean-square error can be obtained by averaging values of the periodogram.

The periodogram smoother may be written

p̂(fj) =
i=q∑

i=−q

wiI(fj+i),

where q is the half-length of the smoother and the weights wi satisfy the following condi-
tions:
(i) wi ≥ 0,
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(ii) wi = w−i,
(iii)

∑q
i=−q wi = 1.

The Rectangular window uses wi = (2q + 1)−1, i = −q, . . . , 0, . . . , q. As shown by
Hamming (1977, §5.8), the Modified Rectangular,

wi = 1/(2q), if |i| < q,

= 0.5/(2q), if |i| = q,

is generally even better. These smoothers can be iterated several times to produce
smoothers which yield very smooth and generally more desirable estimates of the spec-
tral density. These iterated smoothers correspond to a single non-iterated smoother
whose weights, wi, form a symmetric bell-shaped like function with peak at w0. It is
sometimes of interest to plot these weights, wi. Since the weights are symmetric, it is
sufficient to plot the weights for i = 0, ..., q. When the weights are plotted on the same
graph as the spectral density, it is convenient to rescale the weights since it is just the
shape and width of the weight function that we are primarily interested in.

The equivalent degrees of freedom, denoted by edf, is given by

edf =
2

q∑
i=−q

w2
i

.

For the Rectangular smoother edf = 4q + 2. An approximate 95% confidence interval for
p(fj) is (

edf p̂(fj)
χ2

0.975(edf)
edf p̂(fj)

χ2
0.025(edf)

)
,

where χ2
0.025(edf) and χ2

0.975(edf) denote the 2.5% and the 97.5% points of the χ2-
distribution on edf degrees of freedom. The percentage point for fractional degrees of
freedom are obtained by linear interpolation. See Bloomfield (1976, §8.5) and Brillinger
(1981, §5.7) for proofs.

These confidence intervals may be used to provide an informal ARMA diagnos-
tic check. If the model is adequate then its spectral density function should lie mostly
within limits. It should be noted that since these limits are not simultaneous, some al-
lowance should be made for small departures of the fitted ARMA spectral density.

3.2 Autoregressive Spectral Density Estimation
Here p(f) is estimated by fitting an autoregression,

φ(B)(zt − µ) = at,

where φ(B) = 1 − φ1B − . . . − φpB
p and at is white noise with variance σ2

a. Then p(f)
can be determined from the equation

p(f) =
σ2

a

|φ(e2πif )|2 .
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This is a popular method since it seems to produce an estimate of the spectral density
which often has lower integrated mean square error than the periodogram smoothing
approach.

Akaike (1979) addressed the problem of choosing the model order p by suggesting
that the weighted average of all spectral functions of all autoregressions of orders p =
0, 1, . . . , K, where K is some upper limit, should be used. Each spectral density in the
average is weighted according to the quasi-likelihood or Bayes posterior given by

e−
1
2AIC.

This weighted average estimate is itself equivalent to a special AR(K) model with co-
efficients determined by the weighting. This model is referred to as the AR-AIC-Bayes
filter. Typically, the AR-AIC-Bayes filter produces a spectral density which shows more
features similar to the estimate produced by periodogram smoothing than simply fitting
a fixed order AR model.

As recommended by Percival and Walden (1993, p.414–417) the AR model parame-
ters are estimated using the Burg algorithm rather than the standard Yule-Walker esti-
mates. The reason for this is that the standard Yule-Walker estimates are now known to
be severely biased in some situations.

3.3 Algorithms For Fast Autoregressive Spectral Density Computation
The spectral density function is normally interpreted by plotting it over the inter-

val (0, 1
2 ). This requires its evaluation at a large number of values. We provide two new

faster algorithms for this computation. Fast AR spectrum evaluation is of interest when
p is large. In applications, large values of p are not uncommon particularly with the AR-
AIC-Bayes filter and also in other applications such as in Percival and Walden (1993,
p.522). The two algorithms given can easily be extended to the evaluation of the spec-
tral density function of ARMA models.

The direct method evaluates the spectral density function, f(λ) given the param-
eters φ1, . . . , φp and σ2

a directly and in general requires O(np) floating point operations
(flops) in addition to O(np) complex exponential evaluations.

This method may be improved by avoiding the calculation of the large num-
ber of complex exponentials. First, note that the evaluation of the complex expo-
nential is equivalent to one sine and cosine function evaluation. So if f(λ) is evalu-
ated at equally spaced values throughout [0, 1

2 ] then the necessary trigonometric func-
tions may be evaluated recursively using the sum of angles formulae for sine and co-
sine functions. This technique has been previously used in the evaluation of the dis-
crete Fourier transform at a particular frequency, see Robinson (1967, pp. 64–65).
Given the autoregressive parameters φ1, . . . , φp and innovation variance σ2

a, the re-
cursive algorithm for spectral density computation may be summarized as follows:
Step 1: Initializations.
Select M the number of equi-spaced frequencies. Typically, M ← 256 is adequate. Set
k ← 1, sβ ← 0, cβ ← 1, sm ← sin(π/(m − 1)) and cm ← cos(π/(m − 1)).
Step 2: Compute p(k/2(m − 1))
(a) Set j ← 1, sα ← sβ , cα ← cβ , s ← sα c ← cα A ← 0 and B ← 1.
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(b) A ← A − sφj and B ← A − cφj

(c) j ← j + 1
(d) If j > p then p(k/2(m − 1)) ← σ2

a/(A2 + B2) and go to Step 3. Otherwise if j ≤ p
then t ← c, c ← cαt − sαs, s ← sαt + cαs, and return to (b)
Step 3: Increment for next k
Set k ← k + 1. Terminate if k > m. Otherwise if k ≤ m then t ← cβ , cβ ← cmt − smsβ ,
sβ ← smt + cmsβ , and return to Step 2

In many situations an even faster method is based on the fast Fourier transform
(FFT). Given a sequence {ψk}, k = 0, . . . , M the discrete Fourier transform is a se-
quence {Ψ�}, 
 = 0, . . . ,M given by

Ψ� =
M∑

k=0

ψ�e
i2πk�

M .

When M = 2q for some positive integer q, the discrete Fourier transform may be eval-
uated using an algorithm known as the FFT which requires only O(M log2(M)) flops
when M is a power of 2. The FFT may be applied to evaluate f(λ) by setting ψ0 = −1,
ψk = φk, k = 1, . . . , p and ψk = 0, k > p. To evaluate f(λ) at N = 2r

equi-spaced points on [0, 1
2 ], set M = 2N and apply the FFT. Then f(
/(2N)) =

σ2
a/(Ψ(
)Ψ̄(
)), 
 = 0, . . . , N , where Ψ̄(
) denotes the complex conjugate of Ψ(
). In

many situations, N = 256 is adequate.
The FFT method is the most expedient and convenient method to use with higher

level programming languages such as Mathematica in which it is best to vectorize the
calculations. In such languages the FFT is provided as a system level function. For ex-
ample, in Mathematica (Wolfram, 1991) the following function evaluates the spectral
density with σ2

a = 1 at 256 equi-spaced points:

Arspec[phi_] := 1./(512*Re[#1*Conjugate[#1]] & )[
Take[Fourier[Join[{1}, -phi, Table[0, {511 - Length[phi]}]]], 256]]

In the above Mathematica function the parameter phi is the vector (φ1, . . . , φp).
The recursive algorithm may be preferable to the FFT method in certain situations

where the number of frequencies at which the spectral density is to be evaluated is not
a power of 2. This is the case, for example, when spectral methods are used to estimate
the parameters of ARMA models (Hannan, §VI.5).

The three algorithms outlined above were programmed in Fortran. The FFT
method used the algorithm of Monro (1976). Timings for N = 256 equi-spaced eval-
uations of f(λ) on [0, 1

2 ] on a 286/7 PC are shown in Table I. For faster computers,
the times will be reduced. Counting the number of flops the recursive method requires
O(Np) while the FFT method requires O(N log2(N)). This suggests as a rough esti-
mate, for p > 8 it may be expected that the FFT will be faster. In fact, as shown in
Table I, the FFT method is faster for p ≥ 10.

TABLE I
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Timings in seconds for AR(p) spectrum.

method p = 1 p = 5 p = 10 p = 30 p = 60 p = 120

direct 0.54 2.14 4.01 11.86 23.62 47.01
recursive 0.33 0.88 1.59 4.34 8.46 16.81
FFT 1.16 1.21 1.26 1.27 1.26 1.32

4 The Hurst Phenomenon from the Spectral Viewpoint

Long memory time series were first suggested by Barnard (1956) as a possible cause
of the Hurst effect. However, Hipel and McLeod (1978) have demonstrated that the
Hurst effect can also be due to the finite, albeit long, length of the geophysical time se-
ries studied by Hurst.

Barnard (1956) pointed out that the autocovariance function of such a long-memory
time series is not summable and several authors, for example Hipel and McLeod (1978),
have used this as the definition of long memory. In fact the spectral viewpoint provides
a much better definition and understanding of long memory in time series. As first sug-
gested by Hosking (1981), we will say that a covariance-stationary time series exhibits
long memory if and only if

lim
f→0

p(f) = +∞. (9)

From eq. (8), it follows that the autocovariance function is not summable. However for
the same reason it also follows that any time series such that

lim
f→f0

p(f) = ∞

also has a TACVF which is not summable. Thus summability of the TACVF is a neces-
sary but not a sufficient condition for long memory. Note however that the divergence of∑

γk is equivalent to (9).
Thus the symmetrically correlated process of eq. (2), is a long-memory process

which is stationary but not ergodic. The ARIMA(p, d, q) models of Box and Jenkins
(1976) when d ≥ 1 are also long memory models in the sense that the sample spectral
density function tends to get indefinitely large at very low frequencies as the sample size
increases although these models are non-stationary as well. The first stationary model
suggested was Mandelbrot’s fractional Gaussian noise (FGN) model described by Man-
delbrot and Van Ness (1968) and advocated for hydrological time series by Mandelbrot
and Wallis (1969). A more flexible approach to long-memory models was initiated by
Granger and Joyeux (1980) and Hosking (1981) who suggested what is now referred to
as the fractional ARMA model. This provides a comprehensive family of stationary and
ergodic models which generalize the usual ARMA model. Beran (1992) gives a recent
review of long-memory time series models and several other researchers have enthusiasti-
cally recommended long-memory models for various types of geophysical data.
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4.1 Exploratory Spectral Analysis of Hydrological Time Series
Hipel and McLeod (1978) previously analyzed some of the longest available station-

ary hydrological time series to see if there was a long-memory effect which could not be
accounted for by short-memory ARMA models. Some of the data from that study is
described in Table II. These datasets include the longest available annual unregulated
riverflows as well as long time series on water level, mud varves and treerings.

If the long-memory hypothesis is correct then one would expect to see high power
in the lowest frequencies and the longer the series length, the more pronounced this ef-
fect would be expected to become. It is of interest to compare the two methods of ex-
ploratory spectral estimation described in §3. With periodogram smoothing it is ex-
pected that the estimates of the spectral density will be more variable but perhaps bet-
ter able to resolve the peak at the zero frequency. In the autoregressive approach we will
set K quite large so that a good approximation is obtained for any possible long memory
effect. The spectral plots are shown in Figures 1–20. Panel (a) in each Figure refers to
the periodogram smooth and Panel (b) to the AR-AIC-Bayes Filter.

The plotting style for the spectral density shows the periods instead of frequencies
on the x-axis. But the scaling on the x-axis is equi-spaced on the frequency scale. This
scale desirable because every interval on the frequency scale corresponds to the same
number of periodogram estimates. All that changes is just the particular labels used
on the axis. These labels are more immediately informative since in most applications
most practioners think in terms of the period not of the frequency. The y-axis shows
the log to the base 2 of the spectral density function estimate. Cleveland (1994, p.122)
pointed out that it is often preferable in statistical graphics to use a log to the base 2
transformation for one of the axes since it is much easier to interpret. When log to the
base 2 is used a change of one unit means a doubling of the value in the orginal domain.
Similarly, an increase of 0.5 on a log to the base 2 scale, implies a 40% increase. On the
other hand fractional powers of ten are much harder to interpret.

In the bottom left-hand corner of each plot of the periodogram smooth the shape
of the smoother is inset. Only the right half of the bell shaped smoother is shown. The
ordinate scale is just chosen for convenience and is not important. The width of the bell
shows the number of frequencies involved and its shape indicates the relative weights,
wi, in the smooth.

In general the two spectral estimation methods, periodogram smoothing and the
AR-AIC-Bayes Filter provide quite similar estimates of the spectral density. In general,
both methods show that their is high power near the zero frequency which is consistent
with the long-memory hypothesis. Some interesting differences between these methods
occur for mstouis, neumunas, bigcone, naramata, and navajo. In each of these
cases, the periodogram smooth suggests a peak close to zero but not exactly at zero
whereas the AR-AIC-Bayes Filter has the peak at zero. In some cases the periodogram
smooth suggests interesting possible periodicities in the time series such as in the case of
the gota or the ninemile.



14 Exploratory Spectral Analysis

TABLE II

Hydrological Time Series.

Code Name Description n

danube Danube River, Orshava, Romania, 1837–1957, annual flow 120
gota Gota River, Sjotorp-Vanersburg, Sweden, 1807–1957, annual flow 150
mstouis Mississippi River, St. Louis, Missouri, 1861–1957, annual flow 96
neumunas Neumunas River, Smalininkai, Russia, 1811–1943, annual flow 132
ogden St. Lawrence River, Ogdensburg, N.Y., 1860–1957, annual flow 96
rhine Rhine River, Basel, Switzerland, 1807–1957, annual flow 150
minimum Nile River, Rhoda, Egypt, 622–1469, annual minimum level 848
espanola Espanola, Ontario, -471– -820, mud varve 350
bigcone Big cone spruce, Southern California, 1458–1966, treering width 509
bryce Ponderosa pine, Bryce, Utah, 1340–1964, treering width 625
dell Limber pine, Dell, Montana, 1311–1965, treering width 655
eaglecol Douglas fir, Eagle Colorado, 1107–1964, treering width 858
exshaw Douglas fir, Exshaw, Alberta, 1460–1965, treering width 506
lakeview Ponderosa pine, Lakeview, Oregon, 1421–1964, treering width 544
naramata Ponderosa pine, Naramata, B.C., 1451–1965, treering width 515
navajo Douglas fir, Belatakin, Arizona, 1263–1962, treering width 700
ninemile Douglas fir, Nine Mile Canyon, Utah, 1194–1964, treering width 771
snake Douglas fir, Snake River Basin, 1281–1950, treering width 669
tioga Jeffrey pine, Tioga Pass, California, 1304–1964, treering width 661
whitemtn Bristlecone pine, California, 800–1963, treering width 1164

4.2 Comparison with the ARMA Models
For comparison, Panel (c) in each Figure shows the fitted spectral density for the

ARMA models estimated by Hipel and McLeod (1978). The specific ARMA model is
indicated on the plot. These ARMA models were fitted using the approximate likelihood
algorithm of McLeod (1977). In many cases, such as for minimum and espanola, the
best fitting ARMA has even higher spectral mass near zero than either of the spectral
methods. Only in the case of the ninemile does the spectral density function from the
fitted ARMA model seem to be drastically out of line. In this case, after refitting, it was
found that an ARMA(9,1) model with φ2 = . . . = φ8 = 0 provided a better fit. The new
diagnostic plot is shown in Figure 21.

The period of about ten years for the ninemile series is very close to the annual
sunspot numbers. Using a pre-whitening analysis, it is found that there is a rather large
negative correlation, -0.121 (±0.06 sd) between treering width and sunspot activity
in the previous year. It is known that high sunspot activity is strongly related to the
incidence of melanoma in human males in Conneticut two years later (Andrews and
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Hertzberg, 1984, p.199), so it is plausibe that high sunspot activity may be damaging
to tree growth at this particular site.

[Figures 1-21 About Here]

4.3 Conclusions
Exploratory spectral analysis of our datasets has perhaps uncovered a new phe-

nomenon in the case of ninemile. Some of the other data sets also show suggestive peri-
odicities as well.

Exploratory spectral analysis shows that for most of the datasets analyzed there is
indeed a large spectral mass near zero. However comparison of the estimated spectral
densities with those of the best fitting ARMA model indicates that this phenomenon
can easily be modelled satisfactorily by a low order ARMA model. In situations such as
this where there are two possible models, a so called long memory model and an ARMA
model, one could appeal to the principle of parsimony or to Occam’s razor. The princi-
ple of parsimony advocates choosing the model with the fewest number of parameters.
On the other hand Occam’s razor indicates the conceptually simplest model should be
chosen. For most practicing hydrologists, Occam’s razor would probably suggest that
the long-memory model should be discarded since there is little a priori justification.
From the standpoint of the principle of parsimony there seems very little to gain by
switching to the more complex long-memory models since low order ARMA models seem
to do quite well.
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