
FM 3613 — Mathematics of Financial Options

Chapter 5

by Hristo Sendov

1 First-order difference equations

Linear difference equations may be solved in a manner very similar to linear differential equations.
Find a formula for Xk if

Xk+1 = αXk + β

X0 = 1,

where α and β are fixed constants. This is also known as an initial value problem since the initial
value X0 of the sequence is given. We proceed by analogy—to solve a first-order linear differential
equation; we would first divide it into a homogeneous and a particular solution:

Xk = Hk + Pk.

The homogeneous problem satisfies Hk+1 = αHk. It is clear that the solution of this homogeneous
problem is simply Hk = αkH0, where H0 is a constant.

The particular solution is anything that solves

Pk+1 = αPk + β.

Let us try a constant Pk = C. Then, we have C = αC + β, or C(1 − α) = β, provided α 6= 1 we
obtain

Pk =
β

1− α
.

Thus, the overall solution is

Xk = αkH0 +
β

1− α
.

To find the constant H0, we use the initial condition. When k = 0, we have:

1 = X0 = α0H0 +
β

1− α
.

So,

H0 = 1− β

1− α
giving us

Xk =
(

1− β

1− α

)
αk +

β

1− α

= αk +
β

1− α
(1− αk).(1)
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It is a good idea to plug this solution into the initial value problem to make sure it works (it does!).
A first-order linear difference equation requires the specification of just one piece of data, be it

an initial condition or a final condition. (This requirement for a single piece of data is reminiscent
of the ordinary differential equation setting.)

Exercise 1. Solve the first order difference equation directly by substitution. That is, express Xk,
in terms of Xk−1, express Xk−1 on its turn in terms of Xk−2 and so on until you reach X0.

2 Repaying a loan over time with constant payments

2.1 Repaying with discrete payments

We borrow $X at time t = 0 and repay it by paying $A at N equal time intervals of length ∆T until
at time N∆T , we owe no money. We pay a constant and fixed interest rate r% per time interval ∆T .

We want to pay the loan by making constant payments in each time interval.

Let Dk be the amount we owe just after making the k-th payment, that is, at time k∆T plus one
instant. Then, Dk grows with interest rate r, compounded simply, applied to Dk but is diminished
by the payment A at time (k + 1)∆T . Thus,

Dk+1 = (1 + r)Dk − A.

We know that D0 = X and that DN = 0. So, we now have a difference equation with initial and
final values specified.

SHOW THE STUDENTS HOW TO FIGURE OUT THE MORTGAGE PAYMENTS WITH
A SPREADSHEET.

It is often helpful to remove all the units before getting started by, for instance, dividing out a
term. Let us remove the currency units from this equation and non-dimensionalize it by letting

dk :=
Dk

X
, a :=

A

X
.

Then our system becomes

dk+1 = (1 + r)dk − a and

d0 = 1,

dN = 0

Dividing by X also removes one of the variables by making it clear that X just scales things: all else
being equal, the payments on a million dollar loan are simply 1000 times bigger than the payments
on a thousand dollar loan.

We have both an initial and a final value. Is the problem then over specified? Yes, if N , r, and
a are all known. Otherwise, we can control at least one of these variables. Typically, r is outside
our control, but both N and a can be manipulated.
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Now, we use equation (1) with α = 1 + r and β = −a to obtain

dk = (1 + r)k − a

1− (1 + r)

(
1− (1 + r)k

)
= (1 + r)k +

a

r

(
1− (1 + r)k

)
=
(

1− a

r

)
(1 + r)k +

a

r
.

Now, we use the final condition dN = 0 to get the interrelation between the parameters:(
1− a

r

)
(1 + r)N +

a

r
= 0

or, solving for a, we get

a =
r(1 + r)N

(1 + r)N − 1

and since A = aX we obtain

A =
rX(1 + r)N

(1 + r)N − 1
.(2)

Of what use is this expression? Why is it better than coding the recursion relation into your
spreadsheet and tuning A until the principal vanishes at the end? If our objective is to obtain the
value of our car loan payment, then the formula for A is not really that much of an advantage
over the spreadsheet. However, it allows us to use powerful techniques to extract insight about this
problem.

We consider two special cases now.
Case 1. What happens if the number of payment periods N approaches infinity? That is, we

end up with a perpetual loan. Then

A = lim
N→∞

rX(1 + r)N

(1 + r)N − 1
= rX lim

N→∞

(1 + r)N

(1 + r)N − 1
= rX,

since r > 0. This is intuitive, as in this case, the loan is never repaid, which is merely maintained
at a constant level.

Case 2. What happens if the number of payment periods N = 1? Then

A =
rX(1 + r)1

(1 + r)1 − 1
= (1 + r)X.

This is also intuitive, since if there is just a single period, we must repay the principal X and the
accrued interest rX.

Case 3. What happens if the interest rate r = 0? If we plug r = 0 into formula (2), then both
the numerator and the denominator will become zero leading to the nonsense 0/0. What we need
to find is the limit of formula (2) as r approaches zero. For that goal, divide the numerator and the
denominator by r:

lim
r→0

rX(1 + r)N

(1 + r)N − 1
= lim

r→0

X(1 + r)N(
(1 + r)N − 1

)
/r
.
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Now consider the function f(x) = xN and recall the definition of a derivative

N = f ′(1) = lim
r→0

f(1 + r)− f(1)

r
= lim

r→0

(1 + r)N − 1

r
.

So, we find

lim
r→0

X(1 + r)N(
(1 + r)N − 1

)
/r

=
X

N
,

as one expects.

Exercise 2. Suppose you cannot afford to pay more than $A in each time period. At least how
many payments do you need to make to repay the loan if the interest rate every time period is r?

Exercise 3. If you decide to increase the number of payments N , will A increase or decrease,
keeping the interest rate fixed? Does this make sense?

Exercise 4. If the interest rate r increase, will this increase the payment A, keeping the number of
payments N fixed? Does this make sense?

Exercise 5. Suppose a loan of size $X can be repaid in N instalments of size $A. Suppose you
take a loan of size X+Y for some Y ≥ 0. How many more payments do you need to make in order
to repay the loan if you can only afford to make the same payments. The interest rate in each term
is r.

2.1.1 Approximating the payment

Let us use this to expand equation (2) in a Taylor series about r = 0. This is easily done with
MAPLE with the command

simplify
(

taylor
(

rX(1+r)N

(1+r)N−1
, r = 0, 5

))
.

The result is

A =
X

N

(
1 + (1/2)(N + 1)r + (1/12)(N2 − 1)r2 − (1/24)(N2 − 1)r3

)
+O(r4)

In fact, one can show the inequalities

X

N

(
1 + (1/2)(N + 1)r

)
≤ A ≤ X

N

(
1 + (1/2)(N + 1)r + (1/12)(N2 − 1)r2

)
(3)

Note that
X

N
+ (1/2)rX ≤ X

N

(
1 + (1/2)(N + 1)r

)
,

so a crude rule of thumb for the payments A is to divide the initial principle by N and add half of
the interest on the full principle. This rule of thumb is an underestimation of A.

Exercise 6. Show that inequalities (3) hold.
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2.1.2 Repaying the loan “quickly”

First, what does “quickly” mean? In this setting, “quickly” means “before too much interest
accrues.”

Definition 7. We say that the loan is repaid quickly when the total amount of interest paid is not
more than the loan amount X.

Exercise 8. Show that the total amount of (undiscounted) interest paid over the lifetime of the loan
is

−X +
rNX(1 + r)N

(1 + r)N − 1
.

Example 9. Using the first-order Taylor approximation to (1 + r)N , we can find an upper bound
on the number of payments, N , so that the loan is repaid quickly. Indeed, start by recalling the
binomial expansion

(1 + r)N =
N∑
k=0

(
N

k

)
rk = 1 +Nr +

N(N − 1)

2
r2 + o(r2).

Thus, using the fact that the function x 7→ x/(x − 1) is decreasing over (1,∞), we get an upper
bound for the total (undiscounted) interest paid (see Exercise 8)

−X +
rNX(1 + r)N

(1 + r)N − 1
≤ −X +

rNX(1 +Nr)

(1 +Nr)− 1
= rNX.

Thus, if N < 1/r we get that rXN < X and the loan is repaid quickly. This is a first order upper
bound for N that guarantees a quick repayment of the loan.

Exercise 10. Suppose that the interest rate r ∈ [0, 1]. Using second-order Taylor approximation
to (1 + r)N , find an upper bound on the number of payments, N , so that the loan is repaid quickly.
Is this upper bound bigger or smaller than the one you found in Exercise 9? What does this mean?

2.2 Repaying continuously

2.2.1 Continuously compounded interest rates

The first thing to remember is that interest rates are always quoted per year. Say CIBC offers
deposits that will earn interest rate j at the end of a year. That is, if you deposit X dollars now,
after one year CIBC will return (1 + j)X dollars to you. Suppose that RBC offers deposits that
will pay interest, call it r, after six months, compound it (meaning it is added to the principle),
and then pay the same interest r, on the compounded amount after another six months. How much
should the interest rate r be, so that there is no arbitrage between the two banks? (This means
that no one can make sure profit by exploiting the interest rates of the two banks.) If you deposit
X dollars in the two banks, they should grow to the same amount after one year:

(1 + j)X = (1 + r)(1 + r)X.

5



If this equality does not hold, say if we have (1 + j)X > (1 + r)(1 + r)X then one can take a loan
of X dollars from RBC and deposit it in CIBC. After one year, CIBC will return them (1 + j)X
which will be more than enough to pay the loan, which grew to (1 + r)2X, to RBC, thus pocketing
the difference (1 + j)X − (1 + r)2X = ((1 + j)− (1 + r)2)X. By taking bigger and bigger loans X,
one can make an unlimited fortune.

Solving for r, we find that interest rate over the period of six months should be

r = (1 + j)1/2 − 1.

Since there are two 6-month periods in a year, and the interest rate at RBC has to be quoted per
year, we define

j2 := 2r = 2((1 + j)1/2 − 1)

and say that the interest rate is j2 per year compounded semi-annually.
In general, denote by jn the interest rate per year compounded n times, at n equally spaced

time intervals. By definition, the interest rate over each period is

r :=
jn
n
.

The connection between jn and jm is(
1 +

jn
n

)n
=
(

1 +
jm
m

)m
.(4)

What happens to jn when n gets larger and larger? Well, we always must have

jn = n((1 + j)1/n − 1),

since j is just another notation for j1. The answer is in the next exercise.

Exercise 11. Show that for any a > 0 we have

lim
n→∞

n(a1/n − 1) = log a.

The exercise shows that
lim
n→∞

jn = log(1 + j).

Denote that quantity by
j∞ := log(1 + j).

We say that j∞ is the interest rate per year compounded continuously or we just say that j∞ is the
continuously compounded interest rate or the force of interest. This gives us a connection between
j∞ and j = j1. How about between j∞ and jm? Notice that from (4) we have

jn = n
((

1 +
jm
m

)m)1/n

− 1
)
.

Thus, taking the limit as n goes to infinity and using the exercise, we get

j∞ = log
((

1 +
jm
m

)m)
= m log

(
1 +

jm
m

)
.
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Conversely, solving for jm, we have

jm = m
(
e

j∞
m − 1

)
or, alternatively, the interest rate per period (the period is of length 1/m) is

r =
jm
m

= ej∞
1
m − 1.(5)

The beauty of continuously compounded interest rate j∞ is that formula (5) holds not just for
periods of length 1/m but for periods of any length ∆T . Thus, if we know the continuously
compounded interest rate j∞ then the interest rate, r, over a period of length ∆T is

r = ej∞∆T − 1.(6)

Exercise 12. Show that formula (6) holds for any period of length ∆T . (Hint: We showed the
formula for periods ∆T = 1/m for integer m > 0. Next show the formula for periods ∆T = n/m
where n,m > 0 are integers. Finally, for arbitrary ∆T , approximate the real number ∆T by rational
numbers n/m and take a limit.)

From now on, the continuously compounded interest rate j∞ will be denoted by R and called
the force of interest.

We say that the function B(t) is the rate at which the loan is repaid if the money that is paid
over a time period [t, t+ ∆T ] is ∫ t+∆T

t

B(s) ds.

For example if a loan is repaid at a rate B (a constant) then in every time period of length ∆T , we
pay back B∆T dollars.

2.2.2 Take limit as ∆T → 0 first, solve differential equation second

We take a loan of size X now and want to repay it continuously between now, time 0, and time
T . The interest on the loan is compounded continuously with force R and we repay the loan
continuously at rate B.

Our goal is to find B so that the loan is repaid by time T .
Let D(t) be the size of the loan at time t ∈ [0, T ]. Since T is the time when the loan is

completely repaid, we have the boundary conditions

D(0) = X and D(T ) = 0.

To create a differential equation for D(t) consider the interval [t, t + ∆T ], for a small ∆T , and
consider how the function D(t) changes over this interval:

D(t+ ∆T ) = (1 + r)D(t)− A,

where r is the interest rate over the period [t, t+ ∆T ], of length ∆T , and A is the amount paid over
the period. From the previous section we have that

1 + r = eR∆T and A =

∫ t+∆T

t

B ds = B∆T.
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Thus
D(t+ ∆T ) = eR∆TD(t)−B∆T

holds for every time period ∆T . For small time periods ∆T , by the first order Taylor expansion,
we have

eR∆T = 1 +R∆T + o(∆T ).

Substituting above and regrouping gives

D(t+ ∆T )−D(t) = (R∆T + o(∆T ))D(t)−B∆T.

Diviging by ∆T and letting it approach 0, we arrive at the differential equation:

D′(t) = RD(t)−B.

This can be solved by using a homogeneous and particular solution. The homogeneous part is

D′(t) = RD(t)

with solution Dh(t) = CeRt, where C is some constant. We try the constant function Dp(t) := K
to see if it can solve the non-homogeneous equation. In order to do that, K must satisfy

0 = D′p(t) = RDp(t)−B = RK −B

or K = B/R. Adding the homogeneous and particular solutions gives a solution

D(t) = CeRt +
B

R
.

Using the condition D(0) = X we find C:

X = D(0) = C +
B

R

or C = X −B/R. So, finally

D(t) =
(
X − B

R

)
eRt +

B

R
= XeRt +

B

R
(1− eRt).

Remember that our goal is to find B, the rate of repayment. To do that, we use D(T ) = 0:

XeRT +
B

R
(1− eRT ) = 0

or
B

R
=

XeRT

eRT − 1
or B =

RXeRT

eRT − 1
.

That is the solution we get for continuous repayment when we take the limit first and solve the
differential equation second.
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2.2.3 Solve difference equation first, take limit as ∆T → 0 second

We take a loan of size X now and want to repay it continuously between now, time 0, and time
T . The interest on the loan is compounded continuously with force R and we repay the loan
continuously at rate B.

Our goal is to find B so that the loan is repaid by time T .
Let D(t) be the size of the loan at time t ∈ [0, T ]. Since T is the time when the loan is

completely repaid, we have the boundary conditions

D(0) = X and D(T ) = 0.

Divide the interval [0, T ] into N equal parts of size

∆T :=
T

N
.(7)

Our strategy now is to create a recursive relationship relating D(0 + (k+ 1)∆T ) with D(0 + k∆T ),
solve the recursive relationship to find B, and then let ∆T approach 0.

Let
Dk := D(0 + k∆T ) for k = 0, 1, . . . , N.

Clearly, D0 = X and DN = 0. As before, these quantities must satisfy

Dk+1 = (1 + r)Dk − A for all k = 0, 1, . . . , N − 1,

where r is the interest rate over the period [k∆T, (k + 1)∆T ], of length ∆T , and A is the amount
paid over the same period. That is, we have that

r = eR∆T − 1 and A = B∆T.

We know that the solution of the recursive relationship is

A =
rX(1 + r)N

(1 + r)N − 1
(8)

or, substituting A and r with their equals:

B∆T =
(eR∆T − 1)X(eR∆T )N

(eR∆T )N − 1
.

Thus, dividing both sides by ∆T , we get

B =
eR∆T − 1

∆T

XeRT

eRT − 1
,(9)

where we also used that
(eR∆T )N = eR∆TN = eRT ,

according to (17). Now, using the first order Taylor expansion of eR∆T = 1 +R∆T + o(∆T ) we find

eR∆T − 1

∆T
=

(1 +R∆T + o(∆T ))− 1

∆T
=
R∆T + o(∆T )

∆T
= R +

o(∆T )

∆T
→ R as ∆T → 0.
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Thus, taking limit at ∆T → 0 in (9), we get

B =
RXeRT

eRT − 1
(10)

That is the solution-first-limit-second answer, and it agrees with our earlier solution, which was the
answer in the limit-first-solution-second method. Excellent!

Exercise 13. What happens with the rate of payment B when T increases? Why?

Exercise 14. What happens with the rate of payment B when R increases? Why?

Exercise 15. What happens with the rate of payment B when T increases and R decreases in such
a way that RT stays constant? Why?

Exercise 16. When we repay the loan with discrete payments, we pay amount A, every time period
of length ∆T . When we repay the loan continuously, we pay amount B∆T , every time period of
length ∆T . In which case do we pay more over a time period of length ∆T? Does the answer make
financial cense?

3 Repaying a loan over time with increasing payments

3.1 The discrete case

Consider a mortgage with principal value X. This mortgage is repaid in N payments made every
∆T years. The rate of interest is constant at r% per ∆T period. However, the payments are not
equal. Instead, they are an affine function of time, with the k-th payment being

Ak = A0 + (k − 1)B.

Considering A0 as fixed, at time ∆T we make a payment of size A0, at time 2∆T we make a payment
of size A0 +B, and so on, at time N∆T we make a payment of size A0 + (N − 1)B

Find B required to exactly repay the mortgage at the end of the N -th payment. Thus, B will
be a function of X, r, N , and A0.

Let Dk denote the balance owing immediately after the k-th payment. We can now write

Dk+1 = (1 + r)Dk − Ak+1,

equivalently

Dk+1 = (1 + r)Dk − (A0 + kB),(11)

with boundary conditions
D0 = X and DN = 0.

After dividing by the principal amount X, we arrive at

dk+1 = (1 + r)dk − ak+1,(12)
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where ak+1 = a0 + kb where a0 = A0/X and b = B/X. The boundary conditions become

d0 = 1 and dN = 0.

To solve this difference equation, we begin by finding the homogenous solution that we denote by
Hk. The homogeneous problem is

Hk+1 = (1 + r)Hk

yielding the solution Hk = c(1 + r)k for some constant c.
In order to find a solution of the general difference equation, we try the trick to allow the

coefficient c to vary with k. That is, we are going to try a solution of (12) of the following form

dk = ck(1 + r)k.

To find ck we insert into (12):

ck+1(1 + r)k+1 = ck(1 + r)k(1 + r)− ak+1.

This leads to
(ck+1 − ck)(1 + r)k+1 = −ak+1

with boundary conditions c0 = d0/(1 + r)0 = 1 and cN = dN/(1 + r)N = 0.
Now, let ek := ck+1 − ck we obtain:

ek = − ak+1

(1 + r)k+1

and
ck = c0 + e0 + · · ·+ ek−1

But c0 = 1 so we can write

ck = 1 +
k−1∑
j=0

(
− aj+1

(1 + r)j+1

)
= 1−

k∑
j=1

aj
(1 + r)j

= 1−
k∑

j=1

a0 + (j − 1)b

(1 + r)j
,

where we recalled that aj = a0 + (j − 1)b. Thus, our solution is

dk =
(

1−
k∑

j=1

a0 + (j − 1)b

(1 + r)j

)
(1 + r)k.(13)

We can check to ensure that d0 = 1 (sum from j = 1 to j = 0 is empty).
Our next task is to use the boundary condition dN = 0 in order to solve for b.
First, we recall that

N∑
j=1

1

(1 + r)j
=

1− 1/(1 + r)N+1

1− 1/(1 + r)
− 1 =

(1 + r)N+1 − 1

r(1 + r)N
− 1

=
(1 + r)N − 1

r(1 + r)N
.

Second, we have the following lemma.
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Lemma 17. The following identity holds

N∑
j=1

(j − 1)

(1 + r)j
= −Nr − (1 + r)N + 1

r2(1 + r)N
.

Proof. Begin by noting that on the one hand we have

d

dr

( N∑
j=1

1

(1 + r)j−1

)
= −

N∑
j=1

(j − 1)

(1 + r)j
.

On the other hand
N∑
j=1

1

(1 + r)j−1
=

1− 1/(1 + r)N

1− 1/(1 + r)
=

(1 + r)N − 1

r(1 + r)N−1
.

Differentiating both sides of the last equality with respect to r, and after some simplifications, we
obtain

N∑
j=1

(j − 1)

(1 + r)j
= −Nr − (1 + r)N + 1

r2(1 + r)N
.

That is what we needed to show.

We now return to equation (13) with k = N , use the boundary condition dN = 0, and cancel
(1 + r)N from the right-hand side:

0 = 1−
N∑
j=1

a0 + (j − 1)b

(1 + r)j
= 1− a0

( N∑
j=1

1

(1 + r)j

)
− b
( N∑

j=1

(j − 1)

(1 + r)j

)
= 1− a0

((1 + r)N − 1

r(1 + r)N

)
+ b
(Nr − (1 + r)N + 1

r2(1 + r)N

)
.

Multiplying both sides by r2(1 + r)N gives

0 = r2(1 + r)N − ra0((1 + r)N − 1) + b(Nr − (1 + r)N + 1),

= r2(1 + r)N − ra0(1 + r)N + a0r + b(Nr − (1 + r)N + 1).

Finally, we solve for b:

b =
r(a0 − r)(1 + r)N − a0r

Nr − (1 + r)N + 1
.

Going back to the original B and A0 we find

B =
r(A0 − rX)(1 + r)N − A0r

Nr − (1 + r)N + 1
.(14)
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Exercise 18. Use the result above to consider two special cases. For both special cases, use the
numerical values N = 120, ∆T = 1/12 year, X = $100, 000, and r = 0.5% (recall, per period!).
For each special case, find the corresponding B and plot the balance owing as a function of time.

i. A0 = 0;

ii. A0 = rX (just enough to cover the interest).

Exercise 19. Consider a mortgage with principal value X. This mortgage is repaid in N payments
made every ∆T years. The rate of interest is constant at r% per ∆T period. However, the payments
are not equal. Instead, they are an affine function of time, with the k-th payment being

Ak = A0 + kB.

At time ∆T we make a payment of size A0 +B, at time 2∆T we make a payment of size A0 + 2B,
and so on, at time N∆T we make a payment of size A0 +NB.

Find B required to exactly repay the mortgage at the end of the N-th payment.

Note that Exercise 19 is precisely the case done in class. But also, it is an easy corollary of the
discrete case considered above. Indeed, we have

Ak = A0 + kB = (A0 +B) + (k − 1)B.

Thus, all we have to do is replace A0 in (14) by A0 +B and then solve for B:

B =
r(A0 +B − rX)(1 + r)N − (A0 +B)r

Nr − (1 + r)N + 1

and solving for B gives

B =
r(A0 −Xr)(1 + r)N − A0r

Nr − (1 + r)N+1 + (1 + r)
.

3.2 The continuous case

3.2.1 Take limit as ∆T → 0 first, solve differential equation second

We take a loan of size X now and want to repay it continuously between now, time 0, and time
T . The interest on the loan is compounded continuously with force R and we repay the loan
continuously at rate A0 +Bt.

Our goal is to find B so that the load is repaid by time T .
Let D(t) be the size of the loan at time t ∈ [0, T ]. Let R be the force of interest and let the

repayment rate at time t be A0 + Bt. Since T is the time when the loan is completely repaid, we
have the boundary conditions

D(0) = X and D(T ) = 0.

To create a differential equation for D(t) consider the interval [t, t+ ∆T ], for a small ∆T , and
consider how the function D(t) changes over this interval:

D(t+ ∆T ) = (1 + r)D(t)− A(t).

13



where r is the interest rate over the period [t, t+ ∆T ], of length ∆T , and A(t) is the amount paid
over the period. We have that

1 + r = eR∆T and A(t) =

∫ t+∆T

t

(A0 +Bs) ds.

Thus, we have

D(t+ ∆T ) = eR∆TD(t)−
∫ t+∆T

t

(A0 +Bs) ds.

Divide by ∆T and let it approach zero. First note that

1

∆T

∫ t+∆T

t

(A0 +Bs) ds =
1

∆T

(
A0∆T +

B

2

(
(t+ ∆T )2 − t2

))
=

1

∆T

(
A0∆T +

B

2

(
(2t∆T + (∆T )2

))
→ A0 +Bt as ∆T approaches 0.

Substituting above leads to the differential equation

D′(t) = RD(t)− (A0 +Bt).

with boundary conditions D(0) = X and D(T ) = 0. Divide both sides by X and let d(t) := D(t)/X,
a0 := A0/X, and b := B/X:

d′(t) = Rd(t)− (a0 + bt).(15)

the boundary conditions are d(0) = 1 and d(T ) = 0. To solve the above ODE, we first find a
homogeneous solution dh(t) to the homogeneous equation d′(t) = Rd(t), that is, dh(t) = eRt. Now,
let us try looking for a solution of (15) of the form

d(t) = c(t)dh(t).

Differentiating this and plugging in the original ODE, we arrive at

c′(t) = −(a0 + bt)e−Rt

with c(0) = 1. (Note that d(0) = 1 implies c(0) = 1.) The latter is a very easy separable differential
equation with the following solution:

c(t) = −
∫

(a0 + bt)e−Rt dt+ λ =
a0

R
e−Rt + b

( t
R

+
1

R2

)
e−Rt + λ.

The innitial condition c(0) = 1 yields λ = 1− a0/R− b/R2. Therefore, we have

c(t) =
a0

R
e−Rt + b

( t
R

+
1

R2

)
e−Rt + 1− a0

R
− b

R2
.

Substituting this answer in d(t) = c(t)dh(t), gives

d(t) =
(

1− a0

R
− b

R2

)
eRt +

a0

R
+ b
( t
R

+
1

R2

)
.
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To solve for b, we now use the condition d(T ) = 0 to get

b =
R(a0 −R)eRT − a0R

RT − eRT + 1
.

Going back to the original B and A0 we find

B =
R(A0 −RX)eRT − A0R

RT − eRT + 1
.(16)

3.2.2 Solve difference equation first, take limit as ∆T → 0 second

We take a loan of size X now and want to repay it continuously between now, time 0, and time
T . The interest on the loan is compounded continuously with force R and we repay the loan
continuously at rate B.

Our goal is to find B so that the loan is repaid by time T .
Let D(t) be the size of the loan at time t ∈ [0, T ]. Since T is the time when the loan is

completely repaid, we have the boundary conditions

D(0) = X and D(T ) = 0.

Divide the interval [0, T ] into N equal parts of size

∆T :=
T

N
.(17)

Our strategy now is to create a recursive relationship relating D(0 + (k+ 1)∆T ) with D(0 + k∆T ),
solve the recursive relationship to find B, and then let ∆T approach 0.

Let
Dk := D(0 + k∆T ) for k = 0, 1, . . . , N.

Clearly, D0 = X and DN = 0. As before, these quantities must satisfy

Dk+1 = (1 + r)Dk − Ak+1 for all k = 0, 1, . . . , N − 1,(18)

where r is the interest rate over the period [k∆T, (k+1)∆T ], of length ∆T , and Ak+1 is the amount
paid over the same period. That is, we have that

r = eR∆T − 1

and

Ak+1 :=

∫ (k+1)∆T

k∆T

(A0 +Bs) ds =
(
A0s+

B

2
s2
)∣∣∣(k+1)∆T

s=k∆T
= A0∆T +

B

2

(
((k + 1)∆T )2 − (k∆T )2

)
= A0∆T +

B

2
(∆T )2 + kB(∆T )2.

Exercise 20. Finish the argument above in order to obtain a formula for B. Show that when ∆T
converges to 0, the formula reduces to (16).
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