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Chapter 9 - Tranching and Collateralized Debt Obligations

by Hristo Sendov

1 Collateralized debt obligations

Investors can be divided into two broad classes.
Some seek high degrees of safety. They might be life insurers who have sold life annuities and

who need to make sure they have the cash on hand to pay their annuitants each month. Such
investors are interested in bonds with low probability of default, and are willing to accept rather
low coupons in exchange. In addition, certain federally regulated entities such as life insurance
companies are forbidden to purchase debt higher than a certain risk.

Other investors seek high returns, and are willing to take risks to get it.
Demand for bonds of intermediate risk is fairly small. The coupon results results in Chapter 7

c(p) =
r + p(1−R)

1− p(1−R)

suggest that bonds with a probability of default of say 2% per annum should not pay all that much
more coupon than a risk-free bond

r = c(0) ≈ c(0.02) ≈ r + 0.02(1 + r)(1−R).

But simulation shows that even fairly large portfolios of these bonds can have, if times are bad,
serious value fluctuations.

It would be great to make a machine that converted middle of the road risk factor bonds into
some low-risk bonds and some very high return (if also very high-risk) bonds. The machine that
does that exists and it is called the collateralized debt obligation product.

The best way to understand this product is to begin with a simple example. Suppose that
there are available on the market two bonds. These are very simple bonds. At time t = 0 they cost
$X, and at time t = 1 they repay either $X + cX, with probability p, or 0, with probability 1− p.
(That is, the recovery rate R is assumed to be zero for these bonds.) Suppose that these two bonds
default entirely independent of one another.

Suppose these bonds are risky enough not to be of investment grade. How can we construct an
investment grade bond from them?

What we do is purchase the two bonds described above and put them into a special legal
structure which guards them from the rest of the world. The cash flows arising from this new
structure are distributed between investors in a special way.

We “slice” our portfolio into two equal parts called “tranches” (French for ”slice”). That is,
we create two new fixed income securities—one senior and one junior. The seniority refers to the
order in which cash flows accrue to investors in the event of a default. The junior “tranche” is only
paid its first dollar once the senior tranche has been paid in full.

If none of the bonds defaults at time t = 1, then an amount of 2(X+cX) is distributed between
the senior and the junior tranches. Say, tranche A gets X + cAX and tranche B gets X + cBX,
where we must have cA + cB = 2c.
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If exactly one of the constituent bonds defaults at time t = 1, then an amount of (X + cX)
is distributed between the senior and the junior tranches. The senior tranche A receives X + cAX
again, while the junior tranche B gets whatever is left.

Only in the devastating and, given the assumption of independence, rather unlikely event of
both constituent bonds defaulting then both tranches get 0.

Thus, the senior tranche behaves just like a bond with a probability of default of p2 < p, while
the junior tranche is more likely to default than either of the constituent bonds considered alone.
That is, the senior tranche is less risky and the junior is more risky. To reflect this, it must be
that the coupon paid to the senior tranche holders be smaller than the coupon paid to their junior
colleagues. The size of this coupon is what we will calculate next.

2 Tranched portfolios

Suppose a portfolio is made which contains two bonds with identical default probability p and
recovery rate R but whose defaults are uncorrelated. For now we assume, for simplicity’s sake, that
R = 0 and that the bonds make just one coupon payment, at maturity. We further suppose that
these bonds are sold at par, that is, the coupon rate c is given by

c =
r + p

1− p
.

An investor purchases equal amounts of each bond and creates two new products by tranching. The
products are constructed by creating a new legal entity whose only assets are the two bonds. This
asset is split into two parts with equal face value: tranche A and tranche B. These two tranches
are not, however, identical: tranche A is senior to tranche B. This means that any losses due to
default are first debited from the holdings of tranche B, the capital of tranche A being breached
only when tranche B’s capital is exhausted. That is

• If none of the bonds defaults, tranche A receives a coupon cA plus the principle 1 and tranche
B receives a coupon cB plus the principle 1, where we must have (cA + 1) + (cB + 1) = 2(c+ 1).

• If both bonds default, tranche A receives 0(cA + 1) and tranche B receives 0(cB + 1), that is
the recovery rate for both tranches is R1 := 0.

• If exactly one of the bonds defaults, tranche A receives a coupon cA plus the principle 1 and
tranche B receives R2(cB + 1), where we must have

(cA + 1) +R2(cB + 1) = c+ 1.(1)

(Remember that if one of the constituent bonds defaults it has a recovery rate of 0.)

Tranche A is like a bond that pays coupon cA and has a recovery rate R2 = 0 in the case of
default. But tranche B has three different payoffs depending on the three different possibilities for
the two constituent bonds to default. We will look at tranche B again as a bond that pays coupon
cB but that has two different recovery rates, R1 and R2, depending on the two different ways for B
to default.
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Tranche A will experience a default event only if both underlying bonds default, which will
happen with probability p2. In this case, the recovery rate will be R1 = 0. So, if tranche A is to
pay the minimum palatable coupon rate to attract expected value investors, it must pay

cA :=
r + p2

1− p2
.

Exercise 1. Show that cA ≤ c and equality holds if and only if p = 0 or 1.

The statement of the exercise makes intuitive sense: the coupon is smaller for tranche A since
the risk of default is smaller p2 ≤ p (with equality if and only if p = 0 or 1).

If none of the bonds defaults, then we have $2c dollars to distribute and the coupon remaining
to pay tranche B is determined by the equation cA + cB = 2c. In that case, it is easy to see that

cB :=
2p(1 + r) + r + p2

1− p2
.

(Note that cB ≥ cA.) If both bonds default, the probability of this occurring is p2, and then the
recovery rates, for both tranches is R1 = 0 (this was the case that also wiped out tranche A).

What remains for us to find is the recovery rate R2. We do that by considering the third
remaining case when exactly one of the two underlying bonds defaults. That happens with proba-
bility 2p(1 − p). We can see right away that R2 6= 0 since the coupon, cA, paid to the unaffected
tranche A is less than the coupon, c, paid by the bond which did not default. That is, the bond
that did not default pays us c and we pay cA to the holder of tranche A. The difference c − cA is
paid to tranche B. Using equation (1), we find that

R2 =
c− cA
1 + cB

=

(
r+p
1−p

)
−
(
r+p2

1−p2

)
1 +

(
2p(1+r)+r+p2

1−p2

) =
p(1 + r)

(1− p2) + 2p(1 + r) + r + p2

=
p(1 + r)

1 + r + 2p(1 + r)
=

p(1 + r)

(1 + r)(1 + 2p)
=

p

1 + 2p
.

3 The multiperiod case

3.1 Setup of the problem

Suppose now we have two N -period bonds with principle X (that is we paid $X to buy the bonds)
that pay coupons

C := cX

at times 1 through N − 1. At time N , if there is no default the lender pays back X + cX. The
probability of default at each period is p and the periods, as well as the two bonds, are independent
from each other. Suppose the recovery rate of the bonds is R = 0. We issue a collateralized debt
obligation consisting of two tranches: senior Tranche A and junior Tranche B. We sell the tranches
for $X each and that covers what we paid for the bonds. Hence, every period, the coupons from
the underlying two bonds have to be distributed to the tranches. We want to make tranche A less
risky and we pay its coupon first, while tranche B is more risky and pay its holder what ever is left.
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• If none of the underlying bonds defaults then each tranche gets its coupon cA and cB, which
must satisfy cA + cB = 2c.
• If both underlying bonds default then both tranches default as well and that is the end of

their lives. The recovery rate R1 of the tranches should satisfy R1(cA+1)+R1(cB+1) = 0×2(c+1).
That is, R1 = 0. This is default of type 1 and it happens with probability p2.
• If one of the underlying bonds defaults then tranche B defaults with recovery rate R2 and

that is the end of its life. The recovery rate of the tranches should satisfy cA + R2(cB + 1) = c.
Tranche A continues to exist until the remaining bond pays its coupons. But now we have to pass
the coupon c of the remaining bond entirely to tranche A. When, and if, that bond defaults, so does
tranche A and that is the end of its life. This is default of type 2 and it happens with probability
2p(1 − p). After that default the coupon of tranche A, as we will see, increases from cA to c, but
so does the probability of default of tranche A, from p2 to p. As we will see the increased coupon
compensates exactly for the increased risk and the formula for the coupon cA will be exactly the
same as the one in the single period model. Note that if the increased coupon c is not enough to
compensate for the increased risk, them we may have to bump up the size of the coupon cA that
tranche A was receiving before. So it is not a priori clear that the formula for cA, and hence cB,
should be the same as in the single period model.

So, we have two equations

cA + cB = 2c and (cA + 1) +R2(cB + 1) = c+ 1(2)

with three unknowns cA, cB, and R2. Seems an impossible task to solve. We will derive a third
equation relating cB and R2 using the fact that tranche B is like a bond but this time with two
different default types and recovery rates. Finding the coupon cB of that bond so that it is prized
at par will give the desired relationship.

3.2 Valuation of a bond with two different default types

We begin by referring to our difference equation for valuing risky bonds. Assume that three mutually
exclusive events can occur. We have a bond with principle X that pays coupons

C := cX

at times 1 through N − 1. At time N , if there is no default the lender pays back X + cX. Assume
now that the bond can default in two ways.

Default type 1 may occur in any period with probability p1 and has associated recovery rate
R1. (That is, at the end of the period the lender pays back R1(X + C).)

Default type 2 may occur in any period with probability p2 and has associated recovery rate
R2. (That is, at the end of the period the lender pays back R2(X + C).) No default occurs with
probability 1− p1 − p2.

• Let V0 be the expected value of the bond immediately after the principle X is lent.
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• Let Vk be the expected value of the bond immediately after the k-th payment is made, k =
1, . . . , N − 1. That is, there are N − k remaining payments. Note that Vk contains all the informa-
tion about possible defaults at times k + 1, k + 2, . . . , N .

• Assume that the principal is repaid a tiny bit later than the final coupon, so that VN is the value
of the principal, that is, let VN = X.

A derivation analogous to the one used when we evaluated a bond with one type of default
gives us the relationship

Vk = (1− p1 − p2)
C + Vk+1

1 + r
+ p1

R1(C +X)

1 + r
+ p2

R2(C +X)

1 + r
(3)

= (1− p1 − p2)
C + Vk+1

1 + r
+ (p1 + p2)

(p1R1 + p2R2

p1 + p2

)(C +X

1 + r

)
Define a new probability

P := p1 + p2

and a new recovery rate

S :=
p1R1 + p2R2

p1 + p2

and observe that the recursive relationship becomes

Vk = (1− P )
C + Vk+1

1 + r
+ P

S(C +X)

1 + r

with VN = X. This is the same relationship that we solved when we valued an ordinary bond
having probability of default P and a recovery rate of S. It is therefore true that the coupon rate
which must be paid on a par bond to make it minimally palatable to a risk-neutral investor will be

c =
r + P (1− S)

1− P (1− S)
.(4)

We may use this equation to determine the “fair” coupon, cB, of tranche B in order for it to be
sold at par.

Exercise 2. Find the coupon of a bond with two different default types in any period. Default type
1 occurs with probability p1 and has recovery rate R1. Default type 2 occurs with probability p2 and
has recovery rate 1. No default occurs with probability 1− p1 − p2.

Does the answer remind you of something? Can you explain the coincidence intuitively.

Exercise 3. Find the at-par coupon of a bond with three different default times occurring with
probabilities p1, p2, p3 and having corresponding recovery rates R1, R2, R3. No default occurs with
probability 1− p1 − p2 − p3.

Now apply this general formula to the collateralized debt obligation setting. Tranche B is a
bond with two different defaults. Its coupon is cB and the two recovery rates are R1 = 0 and R2,
to be determined. Moreover, the probabilities of default are p1 = p2 and p2 = 2p(1− p). Then,

P = p1 + p2 = 2p− p2,
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S =
p1R1 + p2R2

p1 + p2
=

2p(1− p)R2

2p− p2
=

2(1− p)R2

2− p
.

Hence

cB =
r + P (1− S)

1− P (1− S)
= · · · = −(2p− 2p2)R2 − r − 2p+ p2

(2p− 2p2)R2 + p2 − 2p+ 1
,

where the dots indicate that simplifications are taking place, after you plug in the expressions for
S and P .

Exercise 4. Fill in the dots above.

So

cB = −(2p− 2p2)R2 − r − 2p+ p2

(2p− 2p2)R2 + p2 − 2p+ 1
(5)

is the third equation, that we need to add to (2) to obtain a system of three equations with three
unknowns cA, cB, and R2.

3.3 Finding the value of R2

We need to solve the system of three equations

cA + cB = 2c

(cA + 1) +R2(cB + 1) = c+ 1

cB = −(2p− 2p2)R2 − r − 2p+ p2

(2p− 2p2)R2 + p2 − 2p+ 1

for the unknowns cA, cB, and R2. The problem is that the system is not linear but it is still easy
to solve. It is easy to eliminate cA by solving for it in the first equation and substituting it out in
the second:

c+R2(cB + 1) = cB

cB = −(2p− 2p2)R2 − r − 2p+ p2

(2p− 2p2)R2 + p2 − 2p+ 1

Solving the first equation for cB we get

cB =
c+R2

1−R2

and substituting into the second equation gives

c+R2

1−R2

= −(2p− 2p2)R2 − r − 2p+ p2

(2p− 2p2)R2 + p2 − 2p+ 1
.
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After the cross-multiply, we end up with a linear equation for R2, since the quadratic term cancels.

(2cp2 − 1− 2cp+ 2p2 − 2p− r)R2 + (2cp− c+ 2p− cp2 + r − p2) = 0.

It will be easier to collect all terms that contain c together

(−p2 + 2R2p
2 + 2p− 2R2p− 1)c+ r + 2R2p

2 − 2R2p−R2 + 2p− p2 −R2r = 0

Now, recall that c is the coupon of the constituent two bonds each valued at par and each having
recovery rate 0. So, we have

c =
r + p

1− p
.

Substitute in the equation for R2 to get after some simplifications

(2pr + 2p+ 1 + r)R2 − (p+ pr) = 0.

The solution is

R2 =
p

2p+ 1
.(6)

That is, the second recovery rate is exactly the same as in the single period model. The next
subsection, finds the coupons cA and cB.

3.4 Finding the values of cA and cB

Substituting (6) into (5), we obtain

cB = −(2p− 2p2)p/(2p+ 1)− r − 2p+ p2

(2p− 2p2)p/(2p+ 1) + p2 − 2p+ 1

= −(2p− 2p2)p+ (−r − 2p+ p2)(2p+ 1)

(2p− 2p2)p+ (p2 − 2p+ 1)(2p+ 1)

=
p2 + 2pr + 2p+ r

p2 − 1
.

We see that the formula for cB is exactly the same as in the single period model. Hence, using
cA = 2c− cB we can see that the formula for cA stays the same as well:

cA = 2c− cB = 2
r + p

1− p
− r + 2p(1 + r) + p2

1− p2
= · · · = r + p2

1− p2
.

Exercise 5. Show that c ≤ cB and equality holds if and only if p = 0. Compare with Exercise 1.
Why does this happen intuitively?

Recall what we said about the tranches in the case when one of the underlying bonds defaults:
Tranche B defaults and seizes to exist, while Tranche A continues to exist until the remaining bond
pays its coupons. But now we have to pass the coupon c of the remaining bond entirely to tranche
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A. When, and if, that bond defaults, so does Tranche A and that is the end of its life. Equivalently,
we may think that at the time of when the underlying bond defaults, Tranche A receives its coupon
cA and then becomes an asset that is just like the remaining bond. But we know that the value of
that bond at any time is 1 so Tranche A may just request to get all its remaining payments at the
time when one of the bonds defaults and then seize to exist. The situation is equivalent to what
we had above. Spelled out with cases, it is
• If none of the underlying bonds defaults then each tranche gets its coupon cA and cB, which

must satisfy cA + cB = 2c.
• If both underlying bonds default then both tranches default as well and that is the end of

their lives. The recovery rate R1 of the tranches should satisfy R1(cA+1)+R1(cB+1) = 0×2(c+1).
That is, R1 = 0. This is default of type 1 and it happens with probability p2.
• If one of the underlying bonds defaults then tranche B defaults with recovery rate R2 and

that is the end of its life. Tranche A receives a coupon cA and the present expected value of the of
the future coupons and principle of the remaining bond, that is 1. The recovery rate of the tranches
should satisfy (cA + 1) +R2(cB + 1) = c+ 1.

It is now immediately clear (Is it? Use one of the exercise above.) that Tranche A is a bond
with coupon cA, probability of default p2, and recovery rate 0. Hence,

cA =
r + p2

1− p2
.

Tranche B is a bond with two different default types. Its coupon cB can be calculated either using the
method in Subsection 3.2 of using the equation cA+cB = 2c, where we know that c = (r+p)/(1−p).
Then equation (cA + 1) +R2(cB + 1) = c+ 1 gives us the recovery rate R2.

Exercise 6. Solve the system of three equations

cA + cB = 2c

(cA + 1) +R2(cB + 1) = c+ 1

cA =
r + p2

1− p2

for the unknowns cA, cB, and R2. Is the solution different that before?

Exercise 7. Find the coupons and the recovery rates of Tranche A and Tranche B if the two
underlying bonds have recovery rate R > 0. Assume that in the case of two default the recovery rate
of both tranches is also R.

4 Correlation of two identical bonds

In the final section of this chapter, we will investigate the impact of correlations on two bond CDOs.
In the earlier sections of this chapter we learned that collateralized debt obligations work very

well at reducing risk in the senior tranche if the two constituent bonds have uncorrelated defaults.
With this assumption, it is quite unlikely for both bonds to default, giving quite a lot of protection
to the senior structure.
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In this section we extend that work to the more realistic case in which defaults are correlated.
Defaults tend to occur in response to the economic cycle: when times are tough, many companies
may default on their debt, while during good times even relatively poorly managed companies can
manage to survive.

Intuitively, introducing correlation between the defaults will reduce the protection to the senior
tranche. In this section, we investigate the impact of correlation between defaults in a quantitative
way.

Let us begin with some notation here:
• Let Pss = probability bond 1 and bond 2 both survive;

• Let Psd = probability bond 1 survives and bond 2 defaults;

• Let Pds = probability bond 1 defaults and bond 2 survives;

• Let Pdd = probability bond 1 and bond 2 both default.

Clearly, we must have
Pss + Psd + Pds + Pdd = 1.

In addition, each probability must be nonnegative. We assume that the two bonds have identical
unconditional default probability, which means that

Pds + Pdd = p = Psd + Pdd.

So far we have three equations in four unknowns

Pss + Psd + Pds + Pdd = 1

Pds + Pdd = p(7)

Psd + Pdd = p

together with the conditions
Pss, Psd, Pds, Pdd ≥ 0.

Any solution (7) will depend on a single parameter (in addition to p). Let us see what is the
correlation between the defaults of the two bonds and use the correlation as an additional parameter
in order to express the joint probabilities {Pss, Psd, Pds, Pdd}.

Define two random variables B1 and B2, where Bi is one if the bond i survives and zero
otherwise, for i = 1, 2. The expected values are as follows:

E[B1] = E[B2] = 1− p

and

V ar[B1] = V ar[B2] = (1− p)(1− (1− p))2 + p(0− (1− p))2 = (1− p)p2 + p(1− p)2 = p(1− p).

Now we find the correlation, ρB1,B2 , between B1 and B2:

ρB1,B2 =
Cov[B1, B2]√
V ar[B1]V ar[B2]

=
Cov[B1, B2]

p(1− p)
.
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Next,

Cov[B1, B2] = E[(B1− E[B1])(B2 − E[B2])] = E[B1B2]− E[B1]E[B2]

= (Pss · 1 + Pds · 0 + Psd · 0 + Pdd · 0)− (1− p)2

Substituting into the formula for ρB1,B2 we get

ρB1,B2 =
Pss − (1− p)2

p(1− p)
.

Let our new parameter be

ρ :=
Pss − (1− p)2

p(1− p)
or equivalently

Pss = ρp(1− p) + (1− p)2 = (1− p)(ρp+ (1− p)) = (1− p)2
(

1 + ρ
p

1− p

)
.

Since ρ is the correlation between two random variables, we have

−1 ≤ ρ ≤ 1.

Now, we find, Pds, Psd, Pdd using (7). Subtracting the second and the third equation, we obtain that
Psd = Pds. The system reduces to

Pss + 2Pds + Pdd = 1

Pds + Pdd = p

or substituting Pss, we get

2Pds + Pdd = 1− (1− p)(ρp+ (1− p))
Pds + Pdd = p

Subtracting the second equation from the first, we get

Pds = (1− p)(1− ρp− (1− p)) = p(1− p)(1− ρ).

Finally,

Pdd = p− Pds = p− p(1− p)(1− ρ) = p(1− (1− p)(1− ρ)) = p(pρ− p− ρ) = p2
(

1 + ρ
1− p
p

)
.

To summarize, we found that the joint probabilities of default must satisfy

Pss = (1− p)2
(

1 + ρ
p

1− p

)
, Psd = Pds = p(1− p)(1− ρ), Pdd = p2

(
1 + ρ

1− p
p

)
,
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where ρ is the correlation between the two bonds. But, recall that probabilities need to be non-
negative numbers. This puts restrictions on the possible values of ρ. Clearly, Psd ≥ 0 and Pds ≥ 0,
since ρ is a correlations. But in order to have Pdd ≥ 0 and Pss ≥ 0 we need to have

ρ ≥ − p

1− p
and ρ ≥ −1− p

p
.(8)

Let us see now how much of restrictions these really are. First, note that

− p

1− p
≤ 1 and − 1− p

p
≤ 1

as well as

− p

1− p
≥ −1− p

p
if and only if p ≤ 1/2

with equality holding if and only if p = 1/2. So we consider two cases.
Case 1. If p ≤ 1/2, then conditions (8) are satisfied precisely when

ρ ≥ − p

1− p

is the only condition we need to impose on ρ. (Note that in this case − p
1−p ≥ −1.)

Case 2. If p ≥ 1/2, then conditions (8) are satisfied precisely when

ρ ≥ −1− p
p

is the only condition we need to impose on ρ. (Note that in this case −1−p
p
≥ −1.)

Finally, we compare with the joint probabilities of default when the two bonds are uncorrelated.
That is, if the two bonds default independently define

P ◦
ss = (1− p)2, P ◦

ds = p(1− p), P ◦
sd = (1− p)p, P ◦

dd = p2.(9)

Notice that
Pss
P ◦
ss

= 1 + ρ
p

1− p
,
Pds
P ◦
ds

= 1− ρ, Pdd
P ◦
dd

= 1 + ρ
1− p
p

.

4.0.1 The coupons of the tranches in the correlated case

With these probabilistic preliminaries behind us, we can work out the payouts of a CDO tranche.
For simplicity, assume that for both bonds R = 0 and the senior tranche supplies half the capital
to the structure. Then the senior tranche pays off in full if at least one of the bonds survives. This
means that the senior tranche has default probability

p2
(

1 + ρ
1− p
p

)
= p2 + ρp(1− p).

With this default probability the fair coupon for the senior tranche should be

cA :=
r + p2 + ρp(1− p)
1− p2 − ρp(1− p)

,(10)
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which if ρ = 0, reduces to the familiar

cA :=
r + p2

1− p2

but if ρ = 1 it reduces to the fair rate of the constituent bonds

cA :=
r + p

1− p
.

What if ρ is as small as possible? Assuming p < 1/2, this means ρ = −p/(1 − p). Inserting that
into equation (10) yields a fair senior tranche coupon of:

cA :=
r + p2 − p2

1− p2 + p2
= r.

That is, we get a fair coupon of r since it is impossible to have two defaults:

Pdd = p2
(

1 + ρ
1− p
p

)
= 0.

As before, the coupon to the junior tranche can be obtained by subtracting the coupon payable to
the senior tranche from the total coupons paid. Thus,

cB = 2c− cA = 2
r + p

1− p
− r + p2 + ρp(1− p)

1− p2 − ρp(1− p)
.

It turns out to be not particularly insightful to expand the last difference. But we can look at it
numerically.

Exercise 8. Analyze the situation when p > 1/2 and ρ is as small as possible.

Exercise 9. Find the coupons of the tranches when the recovery rate of the underlying bonds is
R > 0. Assume that in the case of two default the recovery rate of both tranches is also R.

Example 10. Take r = 3%, p = 10%, R = 0$. Then p/(1−p) = 0.1/0.9 = 1/9. The three coupons
are: c = (r + p)/(1− p) = 0.13/0.9 = 14.44%. Consider the ρ = 0 case first:

cA,ρ=0 =
3% + 1%

1− 1%
=

4%

0.99
= 4.04%

cB,ρ=0 = 2(14.44%)− 4.04% = 24.84%.

This is really the case at the beginning of the chapter. Here, the senior tranche is very safe, and
defaults only with probability 1%, hence pays just about 1% more than the risk-free rate. But the
junior tranche is very dangerous, as it absorbs defaults about 20% of the time, hence its large coupon.

Consider now the ρ = 1 case:

cA,ρ=1 =
3% + 10%

1− 10%
=

13%

0.9
= 14.44%

cB,ρ=1 = 2(14.44%)− 14.4% = 14.44%.
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In the case of perfect correlation between bonds, the tranching inherent in the CDO does not really
do anything. (There are not even any diversification benefits to be had.) So the two tranches have
identical properties. This result may at first seem a bit counterintuitive, in that it suggests that
correlation reduces the risk (and hence the return) for the junior tranche. This is in fact true in
this framework, where the total overall number of defaults to be expected is the same with or without
correlation. The impact of the correlation is to make the senior. tranche pay for more of these
defaults, which means that the junior tranche pays for fewer.

Finally, let ρ = −11.1%:

cA,ρ=−1/9 = 3%

cB,ρ=−1/9 = 2(14.44%)− 3% = 25.88%.

Here the senior tranche is totally bulletproof, since there is no way that both bonds can default at
the same time. As such, it pays just the risk-free rate. Now ALL the costs of default are absorbed
by the junior tranche, to a degree even a bit more than in the uncorrelated case. This makes the
junior tranche a bit riskier, and hence gives it more return.
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