
1 Introduction

The field of Mathematical Optimization is concerned with finding minimums and maximums of
functions of one or several variables. Often the variables must also satisfy certain equations, called
constraints. Of importance also, when possible, is finding the values of the variables that minimize
or maximize the function. Sometimes the functions can be described in a geometric way as in the
following example.

Example 1. The ancient greek mathematician Heron of Alexandria posed one of the first opti-
mization problems. Let A and B be two points and let ` be a line in the plane. Find a point C on
the line ` so that the sum of the distances dist (A,C) + dist (C,B) is as small as possible.

Solution: In class.

Example 2 (The Arithmetic-Geometric Mean Inequality). Let x and y be two non-negative num-
bers, that is x ≥ 0 and y ≥ 0. Then we always have the inequality

√
xy ≤ x+ y

2
.

Equality holds if and only if x = y.

Example 3. Suppose you have enough material to build a fence of length `. What is the maximal
rectangular area that you can enclose with the fence?

Solution: In class.

Most inequalities, can be interpreted as optimization problems. Indeed, the arithmetic geomet-
ric mean inequality can be reformulated as

minimize x+ y
subject to xy = 1

x, y ≥ 0

or equivalently
maximize xy
subject to x+ y = 1

x, y ≥ 0

These are examples of constrained optimization problems. The letters x and y are called decision
variables, since have to decide what values of the variables attains the maximum/minimum. The
function that we have to minimize or maximize is called the objective function, while the conditions
that the decision variables must satisfy are called constraints.

Example 4. Find the minimum of the function f(x) = x+ 1/x on (0,∞).

Solution: In class.

Recall the following standard theorem from Calculus.
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Theorem 5 (First and second derivative tests). Suppose f(x) is differentiable on an open interval
(a, b). If x∗ ∈ (a, b) is a local extremum (minimum or a maximum) then f ′(x∗) = 0.

In addition, suppose that f(x) is twice differentiable on (a, b). If f ′′(x∗) > 0 then x∗ is a local
minimum. Respectively, if f ′′(x∗) < 0 then x∗ is a local maximum. If f ′′(x∗) = 0 then nothing can
be concluded and alternative ideas must me employed.

Example 6. Find the local maxima and minima of the function fn(x) = xn, n ≥ 1.

Solution: To find the candidates for local minima and maxima we need to find the critical
points of fn(x). Differentiating

f ′(x) = nxn−1

and setting f ′n(x) = 0 we obtain that when n = 1 there is no critical point, while for n > 1 there
is one critical point x = 0. Thus, when n = 1, f1(x) has no extrema. To determine if the critical
point is a minima or a maxima, we may try the second derivative test. Since f ′′n(x) = n(n− 1)xn−2

we see that f ′′2 (0) = 2 > 0 when n = 2 and f ′′n(0) = 0 when n > 2. Thus, the second derivative test
implies that x = 0 is a local minimum when n = 2 but it fails when n > 2.

To get around this problem when n > 2, we need to determine the sign of f ′n(x) right before
x = 0 and right after x = 0. This is easy, let n > 2, we need to consider two cases. If n is an odd
number then f ′n(x) > 0 for all x 6= 0 thus fn(x) is strictly increasing for all x 6= 0 and x = 0 is not
an extremum. If n is an even number then f ′n(x) < 0 for all x < 0 and f ′n(x) > 0 for all x > 0
thus fn(x) is strictly decreasing for x < 0 and strictly increasing for x > 0, thus x = 0 is a global
minima.

Example 7. Find the rectangle, inscribed in the circle centered at the origin of the coordinate
system with radius 1, having the largest area.

Solution: Without loss of generality, we may assume that the sides of the rectangle are
parallel to the coordinate axis. Then, let (x, 0) and (−x, 0) be the points where the vertical sides
cross the x-axis. Since the rectangle is inscribed in circle with radius one, x ∈ [0, 1]. By the
Pythagorean theorem, we find that the four vertices of the rectangle are (x,

√
1− x2), (x,−

√
1− x2),

(−x,−
√

1− x2), and (−x,
√

1− x2). The area is

f(x) = 4x
√

1− x2 x ∈ [0, 1].

Since f(0) = f(1) = 0, and since f(x) ≥ 0 for x ∈ [0, 1], the maximum of f(x) occurs in the open
interval (0, 1). We need to find the derivatives of f .

f ′(x) = 4
√

1− x2 − 4x2√
1− x2

.

In order to find the critical points of f , we need to solve the equation f(x) = 0. The solution is
x = 1/

√
2. This is the only critical point in (0, 1) and hence it must be the point where f attains its

maximum. (Why?) The maximal area of an inscribed rectangle is f(1/
√

2) = 2. We can calculate
the lengths of the sides of the the maximal rectangle (how?) to see that they are both equal of
length

√
2. Thus, the rectangle with maximal area inscribed in a circle is a square. Did it matter

that the circle had radius 1, or that its center is the origin of the coordinate system?
We conclude this section with a result that generalizes Theorem 5.
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Theorem 8 (n-th derivative test). Suppose f(x) is n-times continuously differentiable on an open
interval (a, b). Suppose x∗ ∈ (a, b) is such that

f ′(x∗) = f ′′(x∗) = · · · = f (n−1)(x∗) = 0 but f (n)(x∗) 6= 0.

If n is even and f (n)(x∗) > 0 then x∗ is a local minimum. If n is even and f (n)(x∗) < 0 then x∗ is
a local maximum. If n is odd then there is neither local minimum nor a local maximum at x∗.

Exercise 9. Find the local maxima and minima of the function fn(x) = xnex, n ≥ 1.

Exercise 10. Given a point C in the interior of an acute angle, find the points A and B on the
sides of the angle such that the perimeter of the triangle ABC is as short as possible.

Exercise 11. Find the minima of the functions

f(x) = x ln(x)

g(x) = x− ln(x),

on the interval (0,∞). Show all details of your work.

Exercise 12. Show that the function f(x) = x2 − 1/ ln(x) has no local or global minima on either
(0, 1) or (1,∞).

Exercise 13. Prove Theorem 8. Hint: Use the n-th order Taylor expansion of f at x∗.

Exercise 14. Find the local extremums of the functions.

(i) x3 − 12x;

(ii) x3 − 3x2 + 6x+ 7;

(iii) x3 − 9x2 + 15x− 3;

(iv) x4 − 8x3 + 22x2 − 24x+ 12;

(v) x5 − 5x4 + 5x3 − 1;

(vi) x
1+x2

;

(vii) x2−7x+6
x−10 ;

(viii) x2 ln(x), x ∈ (0,∞);

(ix) xx, x ∈ (0,∞);

(x) x(ln(x))2, x ∈ (0,∞);

(xi) xne−x;

(xii) x2e−x
2
;
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(xiii) e−x − e−2x;

(xiv) x3(x− 1)2/3, x ∈ [−2, 2];

(xv) ex cos(x).

Exercise 15. For any α in the interval

(i) (0, 4) let m(α) be the global minimum of the function ln(x2 + αx + α). For what value of α
does m(α) attains its maximum?

(ii) (−∞, 1] let m(α) be the global minimum of the function (1+x) arctan(x)−(x+1) arctan(α)−
x 1+α
1+α2 , x ∈ (−∞, 1]. For what value of α does m(α) attains its maximum?

(iii) (−∞, 0] let m(α) be the global minimum of the function x ln( 1+x2

1+α2 )− 2α2x
1+α2 + 2α, x ∈ [0,∞).

For what value of α does m(α) attains its maximum?

(iv) (0,∞) let M(α) be the global maximum of the function arctan(x) − α
2

ln(1 + x2) + α
2

ln(a),
a > 1. For what value of α does M(α) attains its minimum?

Exercise 16. Find the optimal value and the optimal solution of the optimization problem

minimize (x1 + x2 + x3)
(

1
x1

+ 1
x2

+ 1
x3

)
subject to x1 > 0, x2 > 0, x3 > 0.

Exercise 17. Find the right circular cylinder of volume V having the least surface area.

Exercise 18. (i) Find the cylinder inscribed in a sphere with radius one with the largest surface
area.

(ii) Find the cylinder inscribed in a sphere with radius one with the largest volume.

(iii) Find the cone inscribed in a sphere with radius one with the largest surface area.

(iv) Find the cone inscribed in a sphere with radius one with the largest volume.

Exercise 19 (The Arithmetic-Geometric Mean Inequality). Let x1, ..., xn non-negative numbers.
Then we always have the inequality

n
√
x1 · · ·xn ≤

x1 + · · ·+ xn
n

.

Equality holds if and only if x1 = · · · = xn.

Exercise 20. Find all pairs of real numbers x ≥ 0, y ≥ 0 that minimize the polynomial P (x, y) =
x4y2 + x2y4 − 3x2y2 + 1.

Exercise 21. If a triangle has sides with lengths a, b, and c, then (according to Heron’s formula)
its ares is given by

√
s(s− a)(s− b)(s− c), where s = (a+ b+ c)/2 is half of the perimeter. Given

enough material to make a fence with length `, enclose a triangular-shaped land with the largest
area and perimeter `.
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Exercise 22 (The harmonic-geometric mean inequality). Let x1, ..., xn non-negative numbers. Then
we always have the inequality

n
1
x1

+ · · ·+ 1
x1

≤ n
√
x1 · · ·xn.

Equality holds if and only if x1 = · · · = xn.

Exercise 23 (Power mean inequality). For all non-negative numbers x1, x2,...,xn and all integer
powers m = 1, 2, ... one has the inequality

x1 + · · ·+ xn
n

≤ m

√
xm1 + · · ·+ xmn

n
.

Equality holds if and only if x1 = · · · = xn.

1.1 Norm and inner product

Let x = (x1, ..., xn) and y = (y1, ..., yn) be two vectors in Rn. The distance between x and y is given
by

dist (x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

The norm or length of vector x is

‖x‖ =
√
x21 + · · ·+ x2n.

Note that the norm of x (or the length of x) is the distance from x to the origin of the coordinate
system O = (0, ..., 0). The inner product between x and y is defined by

〈x, y〉 := x1y1 + · · ·+ xnyn.

Note that ‖x‖ =
√
〈x, x〉 and that dist (x, y) = ‖x− y‖.

Theorem 24 (Cauchy-Schwarz inequality). For any two vectors x and y in Rn we have

|〈x, y〉| ≤ ‖x‖‖y‖.(1)

Equality holds if and only if either y = 0 or there is a scalar t0 such that x = t0y.

Proof. If y = 0 the inequality is trivial so suppose that y 6= 0, that is 〈y, y〉 = ‖y‖2 > 0. Consider
the quadratic function in t:

f(t) := 〈x− ty, x− ty〉 = 〈y, y〉t2 − 2〈x, y〉t+ 〈x, x〉.

Since 〈x− ty, x− ty〉 = ‖x− ty‖2 ≥ 0 we see that f(t) ≥ 0 for all t. This can happen if and only if
the discriminant of the quadratic function is non-positive:

D = 〈x, y〉2 − 〈y, y〉〈x, x〉 ≤ 0.

Moving 〈y, y〉〈x, x〉 to the right of the inequality and taking square roots from both sides we arrive
at (1).

Suppose that (1) holds with equality. Then, the quadratic equation f(t) = 0 has a real root
t0. That is, 0 = f(t0) = ‖x − t0y‖ implying that x = t0y. In the opposite direction, if there is a
number t0 such that x = t0y then again one can easily verify the equality.
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Again the Cauchy-Schwartz inequality can be recast as an optimization problem. Indeed, for
a fixed vector y ∈ Rn solve

maximize 〈x, y〉
subject to ‖x‖ = 1

x ∈ Rn.

By the Cauchy-Schwarz inequality, the optimal solution of this problem is x∗ = y/‖y‖ with optimal
value 〈x∗, y〉 = ‖y‖

We saw that the notion of a norm in Rn allows us to measure distances, while the notion of
an inner product allows us to measure angles between vectors in Rn. Indeed, let x and y be two
vectors in Rn that have length 1, that is ‖x‖ = ‖y‖ = 1, then by the Cauchy-Schwarz inequality we
have |〈x, y〉| ≤ 1 or equivalently

−1 ≤ 〈x, y〉 ≤ 1.

We define, the angle between x and y to be the unique number θ in [0, π] that satisfies cos(θ) = 〈x, y〉.
In general, when the vectors x and y do not necessarily have length one we define the angle between
x and y to be the unique number θ in [0, π] that satisfies

cos(θ) =
〈x, y〉
‖x‖‖y‖

.

Thus, 〈x, y〉 > 0 holds if and only if the angle between x and y is sharp; 〈x, y〉 = 0 holds if and
only if x and y are perpendicular; and 〈x, y〉 < 0 holds if and only if the angle between x and y is
obtuse.

Exercise 25. Consider the set

C =
{
x = (x0, x1, ..., xn) ∈ R× Rn : x0 ≥

√
x21 + · · ·+ x2n

}
.

The set C is called the Minkowski’s light cone and plays an important role is the Einstein’s theory
of relativity. For any two vectors x, y ∈ C define the Lorentz inner product between x and y by

[x, y] := x0y0 − x1y1 − x2y2 − · · · − xnyn,

and the Lorenz norm

JxK :=
√

[x, x] =
√
x20 − x21 − x22 − · · ·x2n.

Show that for any two vectors x, y from the Minkowski’s light cone C the following reversed Cauchy-
Schwarz inequality holds

JxKJyK ≤ [x, y].

Equality holds if and only if y0xi = x0yi for all i = 1, ..., n.

Hint: Imitate the proof of the original Cauchy-Schwatz inequality. Show first that the quadratic
polynomial in t has two distinct real roots. Thus, the discriminant must be strictly positive.
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2 Calculus review

The open ball in Rn centered at a ∈ R with radius r > 0 is the set defined by

B(a, r) := {x ∈ Rn : ‖a− x‖ < r}.

That is, B(a, r) is the set of all vectors x in Rn that are at a distance less than r from a. For
example, in R the open ball B(a, r) is the open interval (a− r, a + r). In R2 the open ball B(a, r)
is the open disc centered at a with radius r. In R3 the open ball B(a, r) is the open ball centered
at a with radius r.

A set D in Rn is called open if for every point a ∈ D there is an open ball centered at a that
is entirely contained in D. For example, the whole space Rn and the empty set are open. The
intersection of two open sets is an open set. The union of any number of open sets is an open set.
Informally speaking, a set D is open if, whenever x is sufficiently close to a point from D then x is
also in D.

Every open interval (a, b) is an open subset of R. The set in R2 defined by {(x, y) ∈ R2 : xy >
1, x > 0} is open. In general, if the definition of a set contains the usual arithmetic operations and
inequalities that are all strict, then the set is open. For example, let a ∈ Rn, then the set in Rn

defined by {x ∈ Rn : a1x1 + · · · + anxn < 0} is open. The set of all vectors with strictly positive
coordinates is open: Rn

++ := {x ∈ Rn : x1 > 0, ..., xn > 0}. This set is called the strictly positive
orthant.

A set D in Rn is called closed if its compliment Dc := Rn \D is open. The intersection of any
number of closed sets is a closed set. The union of two closed sets is a closed set. Usually, if the
definition of a set contains the usual arithmetic operations, and the relationships ≥,≤,= then the
set is closed. The whole space Rn and the empty set are both closed.

A set D in Rn is bounded if there is a ball B(a, r) in Rn (with possibly very large radius) that
contains D.

Let f(x1, ..., xn) be a function defined on a subset D of Rn. The point, x0 ∈ D is global
minimizer of f on D if f(x0) ≤ f(x) for all x ∈ D and f(x0) is the global minimum of f(x) on
D. (Respectively, the point, x0 ∈ D is global maximizer of f on D if f(x0) ≥ f(x) for all x ∈ D
and f(x0) is the global maximum of f(x) on D.) The point, x0 ∈ D is a local minimizer of f on
D if f(x0) ≤ f(x) for all x ∈ D ∩ B(x0, r) for some radius r > 0 and f(x0) is a local minimum of
f(x) on D. (Respectively, the point, x0 ∈ D is a local maximizer of f on D if f(x0) ≥ f(x) for all
x ∈ D ∩B(x0, r) for some radius r > 0 and f(x0) is a local maximum of f(x) on D. ) Note that if
x0 is a global (local) minimizer of f on D if and only if x0 is a global (local) maximizer of −f(x)
on D. Thus, finding minimizers is equivalent to finding maximizers.

The reason why we are interested in closed and bounded sets is given by the next theorem.

Theorem 26 (The fundamental theorem of optimization). If f(x) is a continuous function defined
on a closed and bounded set D in Rn then there is a point x∗ ∈ D that is a global maximizer of f(x)
on D. (Also, there is a, possibly different, point that is a global minimizer of f(x) on D.)

The theorem fails if D is not closed and/or bounded. For example consider the following sets
and functions on the real line. The set D = [1,∞) is closed but not bounded subset of R and the
function f(x) = 1/x doesn’t have a minimum on D. Alternatively, the set D = (0, 1] is bounded
but not closed and the function f(x) = 1/x doesn’t have a maximum on D. If D = (0,∞), neither
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closed nor bounded set, then the function f(x) = 1/x doesn’t have any extremum on D. As a final
example, the set D = (−π/2, π/2) is bounded but not closed, and the function f(x) = tan(x) has
no extremums on D.

The reason why we are interested in open subsets of Rn is given by the next theorem.

Theorem 27 (First order necessary conditions). Suppose that f(x) is a differentiable function
defined on an open subset D of Rn. If x∗ ∈ D is a local minimizer (or a local maximizer) of f(x)
on D, then

∂f

∂xi
(x∗) = 0 for all i = 1, ..., n.

Proof. Suppose that x∗ is a local minimizer. (The proof when x∗ is a local maximizer is analogous.)
By definition the i-th partial derivative of f at x∗ is

∂f

∂xi
(x∗) = lim

h→0

f(x∗1, ..., x
∗
i + h, ..., x∗n)− f(x∗)

h
.

Since D is open set, when h is close to 0 the point (x∗1, ..., x
∗
i + h, ..., x∗n)T is in D, thus the function

value f(x∗1, ..., x
∗
i + h, ..., x∗n) is defined. Since x∗ is local minimizer, if h is close to 0 then f(x∗) ≤

f(x∗1, ..., x
∗
i + h, ..., x∗n). Thus, when h approaches 0 with positive values we get

∂f

∂xi
(x∗) = lim

h→0+

f(x∗1, ..., x
∗
i + h, ..., x∗n)− f(x∗)

h
≥ 0.

Alternatively, when h approaches 0 with negative values, we get

∂f

∂xi
(x∗) = lim

h→0−

f(x∗1, ..., x
∗
i + h, ..., x∗n)− f(x∗)

h
≤ 0,

because the numerator is positive while the denominator is negative. Hence ∂f
∂xi

(x∗) = 0.

When f(x) is a differentiable function defined on an open subset D of Rn the vector

∇f(x) :=
( ∂f
∂x1

(x),
∂f

∂x2
(x), ...,

∂f

∂xn
(x)
)T

is called the gradient of f at x. A point x∗ ∈ D is called a critical point for f(x) on D if ∇f(x∗) = 0.
Thus, Theorem 27 says that the local extremums of a differentiable function f are among its critical
points. If the partial derivatives ∂f

∂xi
(x) are continuous in x on D then f is called continuously

differentiable on D and we write f ∈ C1(D).
The following is an important theorem from Calculus. Given two points x, y ∈ Rn, the line

segment, [x, y] joining x and y is defined to be the set

[x, y] := {z ∈ Rn | z = (1− t)x+ ty, t ∈ [0, 1]}.

Theorem 28 (Mean value theorem). Suppose that f(x) is continuously differentiable on an open
set containing the line segment [x, y]. Then, there is a point z ∈ [x, y] such that

f(x) = f(y) + 〈∇f(z), x− y〉.
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Sometimes the mean value theorem is also called first order Taylor expansion of f around y.
Notice that when x is close to y, x − y is close to 0, and thus the term 〈∇f(z), x − y〉 is close to
zero. Thus, the mean value theorem says that when x is close to y f(x) is close to f(y), with error
f(x)− f(y) equal to 〈∇f(z), x− y〉.

When f(x) is a twice differentiable function defined on an open subset D of Rn the matrix of
all second partial derivatives

∇2f(x) :=



∂2f
∂x21

(x) ∂2f
∂x1∂x2

(x) · · · ∂2f
∂x1∂xn

(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x22

(x) · · · ∂2f
∂x2∂xn

(x)

...
...

. . .
...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x)
... ∂2f

∂xn∂xn
(x)


is called the Hessian of f at x. If all second partial derivatives ∂2f

∂xi∂xj
(x) are continuous in x on D

then f is called twice continuously differentiable on D and we write f ∈ C2(D).
Next is another standard result from Calculus.

Theorem 29. If f ∈ C2(D), where D is an open subset of Rn, then

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x) for all i, j = 1, ..., n.

In other words, when f is twice continuously differentiable, it doesn’t matter in what order we
differentiate to find the second partial derivatives. Note that in that case the Hessian ∇2f(x) is an
n× n symmetric matrix. Recall that an n× n matrix A is called symmetric if A = AT .

Theorem 30 (Second order Taylor theorem). Suppose that f(x) is twice continuously differentiable
on an open set containing the line segment [x, y]. Then, there is a point z ∈ [x, y] such that

f(x) = f(y) + 〈∇f(y), (x− y)〉+
1

2
〈∇2f(z)(x− y), (x− y)〉

= f(y) +∇f(y)T (x− y) +
1

2
(x− y)T∇2f(z)(x− y).

Notice that when x is close to y, x− y is close to 0, and thus the term 〈∇f(y), x− y〉 is close to
zero but the term 1

2
(x− y)T∇2f(z)(x− y) is much closer to zero since it contains the small factor

(x − y) twice. Thus, the second order Taylor theorem says that when x is close to y the value of
the function f(x) is close to the value of the affine in x function f(y) +∇f(y)T (x− y), where the
error of the approximation is equal to 1

2
(x− y)T∇2f(z)(x− y).

2.1 A digression on symmetric matrices.

Suppose that A is an n× n symmetric matrix.

• A is called positive semidefinite matrix if xTAx ≥ 0 for all x ∈ Rn.
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• A is called positive definite matrix if xTAx > 0 for all x ∈ Rn s.t. x 6= 0.

• A is called negative semidefinite matrix if xTAx ≤ 0 for all x ∈ Rn.

• A is called negative definite matrix if xTAx < 0 for all x ∈ Rn s.t. x 6= 0.

• A is called indefinite matrix if there is a vector y ∈ Rn with yTAy > 0 and a vector z ∈ Rn

with zTAz < 0.

For example, note that the zero matrix is not indefinite. It is positive semidefinite, and also
negative semidefinite. In fact, it is the only matrix that is both positive and negative semidefinite.

It is important to have an easy way to check if a matrix is positive or negative (semi-)definite.
One criteria is given by the eigenvalues. The eigenvalues of a matrix A are the roots of

det(A− λI) = 0

considered as a polynomial (of degree n) in λ. Since each polynomial of degree n has n roots, the
matrix A has n eigenvalues. It is important to keep in mind that since the matrix A is symmetric,
all eigenvalues are real numbers. Denote them by λ1(A), λ2(A),...,λn(A).

Theorem 31. Suppose A is an n× n symmetric matrix. Then

• A is positive semidefinite if and only if λi(A) ≥ 0 for all i = 1, ..., n.

• A is positive definite if and only if λi(A) > 0 for all i = 1, ..., n.

• A is negative semidefinite if and only if λi(A) ≤ 0 for all i = 1, ..., n.

• A is negative definite if and only if λi(A) < 0 for all i = 1, ..., n.

• A is indefinite if and only if λi(A) < 0 and λj(A) > 0 for some distinct i, j.

Suppose that A is an n× n symmetric matrix. Define ∆k to be the determinant of the k × k-
submatrix in the upper left-hand corner of A, for k = 1, 2, ..., n. The determinant ∆k is called the
k-th principal minor of A.

Theorem 32. If A is an n × n symmetric matrix and if ∆k is the k-th principal minor of A for
k = 1, 2, ..., n, then:

(i) A is positive definite if and only if ∆k > 0 for k = 1, 2, ..., n.

(ii) A is negative definite if and only if (−1)k∆k > 0 for k = 1, 2, ..., n. That is, ∆1 < 0, ∆2 > 0,
∆3 < 0, and so on.

Similar theorem doesn’t hold for positive (negative) semidefinite matrices.
Now, we have three possible ways to check if a matrix is positive (or negative) definite: we can

either check if it satisfies the definition, or apply Theorem 31, or apply Theorem 32. One cannot
say in advance which criteria will be better in a given situation.
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3 Second order conditions

Theorem 33 (Global second order sufficient conditions). Suppose that f(x) is twice continuously
differentiable on Rn. Suppose that x∗ is a critical point of f(x). Then

(i) If the Hessian ∇2f(x) is positive semidefinite for every x ∈ Rn, then x∗ is a global minimizer
for f(x).

(ii) If the Hessian ∇2f(x) is negative semidefinite for every x ∈ Rn, then x∗ is a global maximizer
for f(x).

Proof. We show only the first part of the theorem, since the second one is analogous. Since x∗ is
a critical point of f(x), the first partial derivatives of f(x) are zero, that is ∇f(x∗) = 0. Let x be
any other point in Rn other than x∗, then by the second order Taylor expansion, there is a point
z ∈ [x, x∗] such that

f(x) = f(x∗) +∇f(x∗)T (x− x∗) +
1

2
(x− x∗)T∇2f(z)(x− x∗)

= f(x∗) +
1

2
(x− x∗)T∇2f(z)(x− x∗).

If the Hessian ∇2f(z) is positive semidefinite for every z ∈ Rn then

f(x)− f(x∗) =
1

2
(x− x∗)T∇2f(z)(x− x∗) ≥ 0.

Thus, f(x) ≥ f(x∗) for all x ∈ Rn, showing that x∗ is a global minimizer.

Theorem 34 (Local second order sufficient conditions). Suppose that f(x) is twice continuously
differentiable on an open set D of Rn. Suppose that x∗ is a critical point of f(x).

(i) If the Hessian ∇2f(x∗) is positive definite, then x∗ a local minimizer for f(x).

(ii) If the Hessian ∇2f(x∗) is negative definite, then x∗ a local maximizer for f(x).

Proof. We prove the first part of the theorem since the second part is analogous. The key is the
following

observation. If g(x) is a function on Rn that is continuous at the point x∗ and g(x∗) > 0 then
there exists a number r > 0 such that g(x) > 0 for all x ∈ B(x∗, r).

Define ∆k(x) to be the k-th principal minor of the Hessian ∇2f(x). By hypothesis, and by
Theorem 32, we know that ∆k(x

∗) > 0 for k = 1, 2, ..., n. Now because the second partial derivatives
of f(x) are continuous, each ∆k(x) is a continuous function of x. Since ∆k(x

∗) > 0 from continuity
it follows that there exists a number rk > 0 (one for each k = 1, 2, ..., n) such that ∆k(x) > 0 if
x ∈ B(x∗, rk). Set r = min{r1, r2, ..., rk} and observe that for all k = 1, 2, ..., n we have ∆k(x) > 0 if
x ∈ B(x∗, r). Therefore by Theorem 32 the Hessian ∇2f(x) is positive definite for all x ∈ B(x∗, r).

Choose the radius r even smaller if necessary, so that B(x∗, r) ⊂ D. This can be done because
D is an open set.

11



Now take any x ∈ B(x∗, r). By the second order Taylor expansion there is a z ∈ [x, x∗] such
that

f(x) = f(x∗) +∇f(x∗)T (x− x∗) +
1

2
(x− x∗)T∇2f(z)(x− x∗)

= f(x∗) +
1

2
(x− x∗)T∇2f(z)(x− x∗),

where we used that x∗ is a critical point. Observe that z ∈ B(x∗, r). Hence, ∇2f(z) is positive
definite, that is 1

2
(x − x∗)T∇2f(z)(x − x∗) ≥ 0. Therefore f(x) ≥ f(x∗) for every x ∈ B(x∗, r).

Since B(x∗, r) ⊂ D this shows that x∗ is a local minimizer.

Example 35. Find all critical points of the function. Explain which critical point is global/local
minimizer/maximizer. If a critical point is none of the above explain why.

a) f(x1, x2) = x31 − 12x1x2 + 8x32,

b) f(x1, x2) = x51 − x1x62

Solution: a) We compute the gradient and the Hessian of f :

∇f(x1, x2) =

(
3x21 − 12x2

−12x1 + 24x22

)
, ∇2f(x1, x2) =

(
6x1 −12
−12 48x2

)
.

The critical points are (2, 1) and (0, 0). The Hessian at the point (2, 1) is

∇2f(2, 1) =

(
12 −12
−12 48

)
,

with ∆1 = 12, ∆2 = 432. It follows that the critical point (2, 1) is a local minimizer.

The Hessian at the point (0, 0) is

∇2f(0, 0) =

(
0 −12

−12 0

)
,

which is indefinite. Therefore (0, 0) is a saddle point as it will be explained shortly in Subsection 3.1.

b) We compute the gradient and the Hessian of f :

∇f(x1, x2) =

(
5x41 − x62
−6x1x

5
2

)
, ∇2f(x1, x2) =

(
20x31 −6x52
−6x52 30x1x

4
2

)
.

The only critical point is (0, 0). At it, the Hessian is

∇2f(0, 0) =

(
0 0
0 0

)
,

which is positive semidefinite. We do not have a criteria that tells us if (0, 0) is local extremum
in this case. That is why we have to be more inventive. Consider the points {(t, 0) | t ∈ R}. The
function values at these points are

f(t, 0) = t5.

For this function t = 0 is neither local min nor local max, therefore the same is true for (0, 0).
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3.1 Indefinite Hessian

Suppose f ∈ C2(D) and x∗ ∈ D is a critical point of f , that is, ∇f(x∗) = 0. Suppose that ∇2f(x∗)
is indefinite matrix, this means that there are nonzero vectors y and z in Rn such that

yT∇2f(x∗)y > 0 and zT∇2f(x∗)z < 0.

Define the functions

Y (t) := f(x∗ + ty) and Z(t) := f(x∗ + tz) for t close to 0.

Using the chain rule we can compute the first two derivatives of Y (t) and Z(t) at t = 0.

Y ′(t) = yT∇f(x∗ + ty), Z ′(t) = zT∇f(x∗ + tz),

Y ′′(t) = yT∇2f(x∗ + ty)y, Z ′′(t) = zT∇2f(x∗ + tz)z.

Thus, Y ′(0) = Z ′(0) = 0 and Y ′′(0) = yT∇2f(x∗)y > 0, Z ′′(0) = zT∇2f(x∗)z < 0. Therefore,
t = 0 is a local minimizer for Y (t) and a local maximizer for Z(t). Thus, if we move from x∗ in the
direction of y or −y the value of f(x) increases, while if we move from x∗ in the direction of z or
−z, the value of f(x) decreases. This is the reason for calling the critical point x∗ a saddle point
for f(x). In other words, x∗ is a saddle point for f(x) if ∇f(x∗) = 0 and the Hessian ∇2f(x∗) is
indefinite.

For example, on the figure below, you see the graph of the function f(x, y) = x2− y2 for which
the point (0, 0) is a saddle point. In this example, y = (1, 0) and z = (0, 1).

−2
−1

y0
1

2
−2−1

x
012

−4

−2

0

2

4

Exercise 36. Find and classify the extremums, if any, of the following functions:
a) f(x, y) = y2 + x2y + x4;
b) f(x, y) = x2 + y2 + x+ y + xy;
c) f(x, y) = (x− 1)4 + (x− y)4;
d) f(x, y) = y2 − x3.

Exercise 37. Find the point(s) where f achieves its global minimum. If f has no global minimum
explain why.

a)f(x1, x2, x3) = x21 + x22 + x23 − x1x2 + x2x3 − x1x3;
b)f(x, y) = ex−y + ey−x;

c)f(x, y, z) = ex−y + ey−x + ex
2

+ z2.
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Exercise 38. Locate all local/global maximizers, minimizers and saddle points of the functions
(a) f(x1, x2, x3) = x21 + x22 + x23 − 4x1x2;
(b) f(x, y, z) = ex + ey + ez + 2e−x−y−z.

Exercise 39. Let A be an n × n symmetric positive semidefinite matrix, let b ∈ Rn and c ∈ R.
Find the optimal value and the minimizer and/or maximizer of f(x) = xTAx+ bTx+ c.

4 Lagrange multipliers

It turns out that some constrained optimization problems can be easily turned into unconstrained
ones. We explain how that is done now.

Suppose that f(x), h1(x),...,hp(x) are continuously differentiable functions defined on an open
set D of Rn. We are interested in solving the optimization program.

(P ) :



min/max f(x)
subject to h1(x) = 0

h2(x) = 0
...
hp(x) = 0
x ∈ D.

This problem has n variables x = (x1, ..., xn), called decision variables. The function f(x) is called
the objective function. The equations h1(x) = 0,..., hp(x) = 0 are called constraints. That is, there
are p equality constraints. The set

FR := {x ∈ D : h1(x) = 0, ..., hp(x) = 0}

is called the feasible region. The goal of the optimization program is two-fold: 1) to find the points
x∗ ∈ FR yielding the smallest (resp. largest) value of f(x) on FR; and 2) to calculate f(x∗). In
other words, we want to find the global minimum (resp. maximum) of f(x) on FR and the points
in FR that achieve it. The points (possibly more than one) that minimize (resp. maximize) f(x)
on FR are called minimizers (resp. mzaximizers) or just optimal solutions. If x∗ is a maximizer (or
minimizer) then f(x∗) is called optimal value. Note that even though there may be more than one
maximizers (or minimizers) there is always only one optimal value.

It turns out that solving the optimization problem above reduces to finding the critical points
of the Lagrangian function:

L(x, λ) := f(x)−
p∑
i=1

λihi(x),

where λ = (λ1, ..., λp) is a vector of new variables called Lagrange multipliers. Note that the
Lagrangian is a function on n+ p variables. Its gradient is given by

∇L(x, λ) =


∇f(x)−

∑p
i=1 λi∇hi(x)

−h1(x)
−h2(x)
· · ·
−hp(x)

 ,
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where the column vector ∇f(x) −
∑p

i=1 λi∇hi(x) contains the partial derivatives with respect to
x1, ..., xn, while −h1(x),...,−hp(x) are the partial derivatives with respect to λ1,...,λp.

Theorem 40 (Lagrange multiplier theorem - necessary conditions). If x∗ ∈ FR is an optimal
solution of (P ) and the vectors ∇h1(x∗),...,∇hp(x∗) are linearly independent, then there are (unique)
numbers λ∗ = (λ∗1, ..., λ

∗
p) such that

∇L(x∗, λ∗) = 0.(2)

Notice that if p = 0, that is, if there are no constraints, then L(x, λ) = f(x), FR = D, and the
theorem says that if x∗ ∈ D is a maximizer (or minimizer) of f(x) then ∇L(x∗, λ∗) = ∇f(x∗) = 0.
That is, if there are no constraints, Theorem 40 reduces to Theorem 27.

Equation (2) in fact defines a system of n+p equations in n+p unknowns. Solving this system
gives all vectors x∗ some of which are the optimal solutions of (P ). Usually, the difficulty is that
the system of equations is non-linear and thus, often difficult to solve.

Note that if p > n then the vectors ∇h1(x∗),...,∇hp(x∗) are always linearly dependent (since
each gradient is an n-dimensional vector and there are p of them), thus the theorem can not be
applied. Remember, the theorem only finds those candidates x∗ for optimal solutions at which
∇h1(x∗),...,∇hp(x∗) are linearly independent. Sometimes there are optimal solutions x∗ at which
∇h1(x∗),...,∇hp(x∗) are linearly dependent, those have to be found separately, by other means.

Example 41. Find the maximum of the function f(x) = x1+3x2−2x3 on the sphere x21+x22+x23 =
14.

Solution: Here D = R3 the whole space, and there is one constraint: h1(x) = 0, where h1(x) =
x21 + x22 + x23− 14. The feasible region is the sphere centered at the origin (0, 0, 0) with radius

√
14.

First, let us see if there are points x∗ in the feasible region for which the vector ∇h1(x∗) =
(2x∗1, 2x

∗
2, 2x

∗
3) is linearly dependent. Recall that one vector is linearly dependent if and only if it

is the zero vector. Note that ∇h1(x∗) = 0 when x∗ = 0. But x∗ = 0 doesn’t belong to the feasible
region so we conclude that for every x∗ ∈ FR the vector ∇h1(x∗) is linearly independent.

The Lagrangian is

L(x1, x2, x3, λ) = x1 + 3x2 − 2x3 − λ(x21 + x22 + x23 − 14).

If x∗ ∈ FR is an optimal solution (necessarily ∇h1(x∗) is linearly independent), then there is a
number λ∗ such that ∇L(x∗, λ∗) = 0. Written out the system of equations is

1− 2λ∗x∗1 = 0

3− 2λ∗x∗2 = 0

−2− 2λ∗x∗3 = 0

(x∗1)
2 + (x∗2)

2 + (x∗3)
2 = 14.

First we solve this system. From the first three equations we find

x∗1 =
1

2λ∗
, x∗2 =

3

2λ∗
, x∗3 = − 2

2λ∗
.
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Substituting into the last equation we find two possible values for λ∗ = ±1/2 and thus two possible
solutions

(x∗1, x
∗
2, x
∗
3, λ
∗) = (1, 3,−2,−1

2
), (x∗1, x

∗
2, x
∗
3, λ
∗) = (−1,−3, 2,

1

2
).

Thus, by Theorem 40 both (x∗1, x
∗
2, x
∗
3) = (1, 3,−2) and (x∗1, x

∗
2, x
∗
3) = (−1,−3, 2) are candidates for

optimal solution.
Third, argue from scratch that the optimization problem must have a maximizer. In this

case the feasible region is a sphere, that is a closed and bounded set. The objective function is
continuous. By the fundamental theorem of optimization, Theorem 26, every continuous function
has a maximizer (resp. minimizer) over a closed and bounded set.

Finally, the fourth step is to compute the objective value at each candidate solution. The
objective value of the first solution is 14, while that of the second solution is −14. Since the
problem must have a maximizer (and a minimizer) (x∗1, x

∗
2, x
∗
3) = (1, 3,−2) must be the maximizer

with maximal value 14, while (x∗1, x
∗
2, x
∗
3) = (−1,−3, 2) must be the minimizer with minimal value

−14.

Example 42. Solve the optimization problem.

(P ) :


minimize x1 + x2
subject to x21 + x22 − 2x1 = 0

x21 + x22 − 4x1 = 0
x ∈ R2.

The Lagrangian is

L(x1, x2, λ1, λ2) = x1 + x2 − λ1(x21 + x22 − 2x1)− λ2(x21 + x22 − 4x1),

where f(x) = x1 + x2, h1(x) = x21 + x22 − 2x1, and h2(x) = x21 + x22 − 4x1. If x∗ is an optimal
solution, for which ∇h1(x∗), ∇h2(x∗) are linearly independent, then there are numbers λ∗1, λ

∗
2 such

that ∇L(x∗, λ∗) = 0. Written out the system of equations is

1− λ∗1(2x∗1 − 2)− λ∗2(2x∗1 − 4) = 0

1− λ1(2x∗2)− λ∗2(2x∗2) = 0

(x∗1)
2 + (x∗2)

2 − 2x∗1 = 0

(x∗1)
2 + (x∗2)

2 − 4x∗1 = 0.

Subtracting the fourth equation from the third we get x∗1 = 0 and then from any of the last two
equations that x∗2 = 0. Substituting into the first two equations we see that there are no values of
λ∗1 and λ∗2 that satisfy the first two equations. Thus, the system ∇L(x∗, λ∗) = 0 has no solution.

This doesn’t yet mean that the optimization problem has no optimal solutions! It means that
the optimization problem doesn’t have optimal solutions x∗ for which the gradients ∇h1(x∗) and
∇h2(x∗) are linearly independent!

Let us see now if there are points x∗ in the feasible region for which the vectors ∇h1(x∗)
and ∇h2(x∗) are linearly dependent. (Calculate that ∇h1(x∗) = (2x∗1 − 2, 2x∗2) and ∇h2(x∗) =
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(2x∗1 − 4, 2x∗2).) To find such points x∗ ask if there is a nonzero vector β∗ = (β∗1 , β
∗
2) such that

(x∗, β∗) solves the system

β∗1∇h1(x∗) + β∗2∇h2(x∗) = 0

h1(x
∗) = 0

h2(x
∗) = 0.

Written out the system is

β∗1(2x∗1 − 2) + β∗2(2x∗1 − 4) = 0

β∗1(2x∗2) + β∗2(2x∗1) = 0

(x∗1)
2 + (x∗2)

2 − 2x∗1 = 0

(x∗1)
2 + (x∗2)

2 − 4x∗1 = 0.

This system looks very much like the one we already solved (this is always the case, why?). It is
easy to see that the only x∗ for which there is a nonzero β∗ = (β∗1 , β

∗
2) so that (x∗, β∗) is a solution

to the system is x∗ = (0, 0).
By Theorem 26, the optimization problem must have an optimal solution because we are

minimizing a continuous function over a closed bounded feasible region. (Why?)
We conclude that x∗ = (0, 0) is an optimal solution with optimal value f(x∗) = 0!

Let us summarize the procedure for solving optimization problems of the form (P ).

(i) Find all points x∗ in the feasible region FR such that the vectors ∇h1(x∗),...,∇hp(x∗) are
linearly dependent. Denote this set by S1. This is the set of points to which Theorem 40
cannot be applied. They must be investigated separately later.

(ii) Find all solutions x∗ of the system ∇L(x∗, λ∗) = 0. Check if the vectors ∇h1(x∗),...,∇hp(x∗)
are linearly independent for each solution. Discard those x∗’s for which this condition fails.
Denote by S2 the set of remaining solutions.

(iii) Argue from general principles that the problem has to have an optimal solution. Most of the
times the objective function is continuous and the feasible region is closed and bounded set.

(iv) Calculate the objective value f(x∗) for all x∗’s in the set S1∪S2. The x∗ that gives the largest
value f(x∗) is the maximizer, while the x∗ that gives the smallest value f(x∗) is the minimizer.
(That is, the Lagrange multimplier procedure simultaneously finds both the maximizers and
the minimizers.)

Note that it doesn’t matter in what order you perform the first three steps in the above
procedure as long as they are all completed before the last step.

4.1 Related results

We conclude this section with two more related results. A function h(x1, x2, ..., xn) is called linear1

if it has the form
h(x1, x2, ..., xn) = a1x1 + a2x2 + · · ·+ anxn − α,

1Technically, this function is affine, but let’s not complicate matters.
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for some vector a = (a1, a2, ..., an) and a scalar α. For example, x1 − 3.4x2 + 2x3 − 0.333 is a linear
function. Note also that every linear function can be written concisely as 〈a, x〉 − α.

Theorem 43 (Lagrange multiplier theorem - linear constraints). If x∗ ∈ FR is a solution of
(P ) and the functions h1(x),...,hp(x) are all linear, then there are (possibly not unique) numbers
λ∗ = (λ∗1, ..., λ

∗
p) such that

∇L(x∗, λ∗) = 0.(3)

This result is a significant simplification of Theorem 40. In order to solve an optimization
problem with linear constraints all we have to do is

(i) Find all solutions x∗ of the system ∇L(x∗, λ∗) = 0.

(ii) Argue from general principles that the problem has to have an optimal solution.

(iii) Calculate the objective value f(x∗) for all solutions x∗ found in step (i). The x∗ that gives
the largest value f(x∗) is the maximizer, while the x∗ that gives the smallest value f(x∗) is
the minimizer.

In the case when the functions f(x), h1(x),...,hp(x) are twice continuously differentiable, we
may have a criteria distinguishing between minimizers and maximizers.

Theorem 44 (Lagrange multiplier theorem - sufficient conditions). If x∗ ∈ Rn and λ∗ ∈ Rp satisfy

∇L(x∗, λ∗) = 0

and

yT
(
∇2f(x∗)−

p∑
i=1

λ∗i∇2hi(x
∗)
)
y > 0,(4)

for all nonzero vectors y that are perpendicular to ∇h1(x∗),...,∇hp(x∗), then x∗ is a local minimizer
of f(x) on FR.

If the inequality in (4) is < then x∗ is a local maximizer. If (4) holds with equality for some
nonzero vector y perpendicular to ∇h1(x∗),...,∇hp(x∗) then the criteria fails and we have to find
alternative ways to deal with the problem.

Note that when there are no constraints, that is p = 0 then this theorem becomes identical to
Theorem 34.

Armed with this theorem, we do not have to justify from general principles any more that the
optimization problem has an optimal solution. One drawback is that it cannot tell when a local
extremum is global. Another drawback is that the criteria sometimes fails to give any information.
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4.2 Exercises

Exercise 45. Find the minimum value of x21+3x22+2x23 subject to the condition 2x1+3x2+4x3 = 15.

Exercise 46. Find the minimum value of 2x21+x22+2x23 subject to the condition 2x1+3x2−2x3 = 13.

Exercise 47. Minimize the function −x1x2−x1x3−x2x3 subject to the condition x1 +x2 +x3 = 3.

Exercise 48. Find the minimum value of x21+x22+x23 subject to the conditions 2x1+2x2+x3 = −9
and 2x1 − x2 − 2x3 = 18.

Exercise 49. Find the minimum value of 4x21+2x22+3x23 subject to the conditions x1+2x2+3x3 = 9
and 4x1 − 2x2 + x3 = −19.

Exercise 50. Find the minimum value of x21 + x22 + x23 + x24 subject to the condition 2x1 + x2 −
x3 − 2x4 = 5.

Exercise 51. Find the minimum value of x21+x22+x23+x24 subject to the conditions x1−x2+x3+x4 =
4 and x1 + x2 − x3 + x4 = −6.

Exercise 52. Find the points on the curve 4x21 + 4x1x2 + x22 = 25 that are nearest to the origin.

Exercise 53. Find the points on the curve 7x21 + 6x1x2 + 2x22 = 25 that are nearest to the origin.

Exercise 54. Find the points on the curve x41 + 3x1x2 + x42 = 2 that are farthest from the origin.

Exercise 55. Let b1, ..., bk be positive numbers. Find the maximum value of
∑k

i=1 bixi subject to

the condition
∑k

i=1 x
2
i = 1.

Exercise 56. Let A be an n × n positive definite symmetric matrix. Find the maximum value of
‖x‖ subject to the condition xTAx = 1.

Exercise 57. Let A be an n × n positive definite symmetric matrix. Find the maximum value of
xTAx subject to the condition ‖x‖ = 1.

Exercise 58. Minimize the function x1 + x2 + · · · + xn subject to the conditions x1x2 · · ·xn = 1,
xi > 0 for i = 1, ..., n.

Exercise 59. Minimize the function x21 + x22 + x23 subject to x21 + x22/4 + x23/9 = 1.

Exercise 60. Determine all maximizers and minimizers of the function

f(x1, x2, x2) =
1

x21 + x22 + x23

subject to

h1(x1, x2, x2) = 1− x21 − 2x22 − 3x23 = 0,

h2(x1, x2, x2) = x1 + 2x2 + x3 = 0.

Exercise 61. Find the extreme values of x2 + 2y2 subject to x2 + y2 ≤ 1.
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Exercise 62. Find the points on the sphere x2 + y2 + z2 = 4 that are closest to and farthest from
the point (3, 1,−1).

Exercise 63. A rectnagular box without a lid is made from 12 square meters of cardboard. Find
the maximum volume of such a box.

Exercise 64. Find the maximizers and the minimizers of the function subject to the given con-
straints.
a) x2 − y2 s.t. x2 + y2 = 1
b) 4x+ 6y s.t. x2 + y2 = 13
c) x2y s.t. x2 + 2y2 = 6
d) x2 + y2 s.t. x4 + y4 = 1
e) 2x+ 6y + 10z s.t. x2 + y2 + z2 = 35
f) 8x− 4z s.t. x2 + 10y2 + z2 = 5
g) xyz s.t. x2 + 2y2 + 3z2 = 6
h) x2y2z2 s.t. x2 + y2 + z2 = 1
i) x+ 2y s.t. x+ y + z = 1 and y2 + z2 = 4
j) 3x− y − 3z s.t. x+ y − z = 0 and x2 + 2z2 = 1
k) yz + xy s.t. xy = 1 and y2 + z2 = 1.

Exercise 65. Find the maximizers and the minimizers of the function subject to the given con-
straints.
a) 2x2 + 3y2 − 4x− 5 s.t. x2 + y2 ≤ 16
b) e−xy s.t. x2 + 4y2 ≤ 1.

Exercise 66. Find the maximizers and the minimizers of the function subject to the given con-
straints.
a) yex−z s.t 9x2 + 4y2 + 36z2 = 36 and xy + yz = 1
b) x+ y + z s.t. x2 − y2 = z and x2 + y2 = 4.

Exercise 67. Find the shortest distance from the point (0, b) on the y-axis to the parabola x2−4y =
0.

Exercise 68. a) Find the shortest distance from the point (a1, a2, a3) ∈ R3 to the plane b1x2 +
b2x2 + b3x3 + b0 = 0.
b) Find the point on the line of intersection of the two planes

a1x2 + a2x2 + a3x3 + a0 = 0

and
b1x2 + b2x2 + b3x3 + b0 = 0

which is nearest to the origin O = (0, 0, 0).

Exercise 69. Find the local extremum of xk1 + · · ·+ xkn subject to the condition x1 + · · ·+ xn = a.

Exercise 70. Find the extremums of x21 + x22 subject to x21 + x23 + x24 = 4 and x22 + 2x23 + 3x24 = 9.

Exercise 71. Find the extremums of x21 + x22 subject to x21 + x23 + x24 = 4 and x22 + 2x23 + 3x24 = 9.
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Exercise 72.∗ Find the extremums of x3 + 2xyz − z2 subject to x2 + y2 + z2 = 1.

Exercise 73.∗ Show that the extreme values of f(x1, x2, x3) = x21 + x22 + x33 subject to

3∑
j=1

3∑
i=1

aijxixj = 1 (aij = aji)

and
b1x2 + b2x2 + b3x3 = 0 (b1, b2, b3) 6= (0, 0, 0)

are t−11 , t−12 , where t1 and t2 are the roots of the equation∣∣∣∣∣∣∣∣
b1 b2 b3 0
a11 − t a12 a13 b1
a21 a22 − t a23 b2
a31 a32 a33 − t b3

∣∣∣∣∣∣∣∣ = 0.

Show that this is a quadratic equation in t and give a geometric argument to explain why the roots
t1, t2 are real and positive.

Exercise 74.∗[Hadamard inequality] Let X be an n × n real matrix and let Xi = (xi1, xi2, ..., xin)
be its i-th row. Show the inequality

detX ≤ ‖X1‖ · · · ‖Xn‖.

Equality holds if and only if the matrix X is positive definite diagonal matrix. Hint: Prove this by
treating detX as a function on n2 variables subject to n constraints.

Exercise 75.∗ Calculate the function and plot its graph

Φ(λ) = min
(x1,x2)∈R2

{
ex2 + λ

(√
x21 + x22 − x1

)}
,

where λ ∈ R. Hint: no theory applies here. You have to be clever and argue from general principles.
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