
1 Basic definitions in linear programming

The following problem will be our standing testing example.

The Strawberry Problem: A factory manufactures two products, strawberry jam and straw-
berry drink. It requires three inputs: fresh strawberries, water, and electricity.

Each unit of strawberry jam earns a profit of $2. To make it requires one unit of fresh straw-
berries and two units of electricity, and one unit of water appears as a byproduct. The water that
appears as a by product may be used in the production of strawberry juice.

Each unit of strawberry juice earns a profit of $3. To make it requires one unit of fresh
strawberries, one unit of water and one unit of electricity.

Each day the factory has available six units of strawberries and four units of water and ten
units of electricity.

How much strawberry juice and strawberry jam should the factory make each day in order to
maximize profit?

Formulation of the linear model: Let x1 be the number of units of strawberry jam made
each day. Let x2 be the number of units of strawberry juice made each day. The linear model is

(1)


max 2x1 + 3x2

subject to x1 + x2 ≤ 6
−x1 + x2 ≤ 4
2x1 + x2 ≤ 10
x1 , x2 ≥ 0.

Let us show that (1, 5) is an optimal solution. Suppose that (x1, x2) is any point that satisfies the
constraints. Notice that the objective function can be bounded above by

2x1 + 3x2 =
5

2
(x1 + x2) +

1

2
(−x1 + x2) ≤

5

2
6 +

1

2
4 = 17.

This shows that the objective value of (x1, x2), satisfying the constraints, can never be larger than
17. Since (1, 5) has objective value 17 it must be an optimal solution.

Of course, in order to apply this method we need to have a good guess about what the optimal
solution might be, and even then, we need to express the objective function in terms of the left-hand
sides of the constraints, which may be tricky. Another way to solver this problem is the graphical
method that we are going to discuss shortly.

In general a linear problem may include

• minimization or maximization of a linear function: z = c1x1 + c2x2 + · · ·+ cnxn + c;

• several linear constraints of the form

a1x1 + a2x2 + · · ·+ anxn


≤
=
≥

 b;
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• there may be upper and/or lower bounds on some or all of the variables, such as li ≤ xi ≤ Li,
where we allow li to be −∞ in which case there is no lower bound on xi and we allow Li to be
+∞ in which case there is not upper bound on xi. If there is neither upper nor lower bound
on xi then we say that xi is a free variable.

An LP problem is in standard inequality form if it is in the form

maximize z = c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn ≤ b1
a21x1 + a22x2 + · · · + a2nxn ≤ b2

...
...

...
am1x1 + am2x2 + · · · + amnxn ≤ bm

x1 , x2 , . . . , xn ≥ 0.

The variables x1, ..., xn are called the decision variables. The function z is called the objective
function. The next m inequalities are the functional constraints. Finally, the last line are the
positivity constraints, n of them. The numbers n and m are not related.

There are four important characteristics of the standard inequality form. 1) It is a maximization
problem; 2) the objective function has no constant term; 3) all functional constraints are less-than-
or-equal inequalities; 4) all decision variables are required to be non-negative.

An LP problem is in standard equality form if it is in the form

maximize z = c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm

x1 , x2 , . . . , xn ≥ 0.

Here all functional constraints are equalities.
Throughout the course we will use the following notation

c := (c1, ..., cn), x :=

 x1
...
xn


A :=

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 , b :=

 b1
...
bm

 .
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Clearly c, x ∈ Rn while b ∈ Rm. With this notation the two standard forms can be written succinctly
as

max z = cx
s.t. Ax ≤ b

x ≥ 0
and

max z = cx
s.t. Ax = b

x ≥ 0.

• Any x ∈ Rn is called a solution of the LP.

• If x ∈ Rn satisfies all of the constraints then it is called a feasible solution of the LP.

• If x ∈ Rn violates at least one of the constraints then it is called an infeasible solution of the
LP.

• The set of all feasible solutions is called the feasible region of the LP.

• An x ∈ Rn is an optimal solution of an LP problem if it is a feasible solution and it yields the
best objective value among all other feasible solutions. The best objective value is the largest
one if the problem is a maximization one, or the lowest if the problem is a minimization one.

• The LP problem is called infeasible if it doesn’t have any feasible solution, that is, if its feasible
region is an empty set.

• The feasible region of an LP problem is bounded if it can be enclosed in a ball with large
enough radius centered at the origin of the coordinate system. Conversely, the feasible region
is unbounded if for any ball centered at the origin, with no matter how large radius, there are
feasible points that are outside of the ball.

• An LP problem is called unbounded if we can find a sequence of feasible points having objective
values converging to +∞ (if the LP problem is a maximization one) or to −∞ (if the LP
problem is a minimization one).

• An LP problem is called bounded if has an optimal solution.

For example, the feasible region of (1) is the shaded region illustrated below. Notice that the feasible
region of an LP problem depends only on the constraints and not on the objective function. The
following three optimization problems are not LP problems.

max 2|x1| + 3x2

s.t. x1 + x2 ≤ 6
−x1 + x2 ≤ 4
2x1 + x2 ≤ 10
x1 , x2 ≥ 0.
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This is not an LP problem because the objective function is not linear.
max 2x1 + 3x2

s.t. |x1 + x2| ≤ 6
−x1 + x2 ≤ 4
2x1 + x2 ≤ 10
x1 , x2 ≥ 0.

(2)

Similarly, the left-hand side of the first constraint is not a linear function.
max 2x1 + 3x2

s.t. x1 + x2 ≤ 6
−x1 + x2 ≤ 4
2x1 + x2 ≤ 10
x1 , x2 > 0.

The third instance is not a linear problem because of the strict positivity requirements on the
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variables. Notice that optimization problem (2) can be converted into an equivalent LP problem:

max 2x1 + 3x2

s.t. x1 + x2 ≤ 6
x1 + x2 ≥ −6
−x1 + x2 ≤ 4
2x1 + x2 ≤ 10
x1 , x2 ≥ 0.

2 The graphical method for solving a linear program

2.1 Unique solution

Since problem (1) involves only two variables we were able to plot its feasible region in the plane.
We can use that graphical representation to completely solve the strawberry problem. The objective
function z = 2x1 + 3x2 can be thought of as a family of parallel lines, one line for each fixed value
of z. For example, on the figure below, the lines 6 = 2x1 + 3x2 and 9 = 2x1 + 3x2 are superimposed
on the feasible region, represented as dashed lines. For any fixed value of z the line z = 2x1 + 3x2 is
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called the level line of the objective function at level z. Looking at the figure, we notice that when
z increases the level lines move in the direction indicated by the arrow. Since the LP problem is a
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maximization problem, our goal is to find the largest value of z for which the level line z = 2x1 +3x2

intersects the feasible region. Clearly this is done by the level line 17 = 2x1+3x2 and the intersection
between this line and the feasible region contains only one point: (1, 5). Thus, the graphical method
shows that the strawberry problem has exactly one optimal solution with optimal value 17.

2.2 Infeasible LP

Let us consider the LP problem 
max x1 + x2

s.t. −x1 + x2 ≤ 1
x1 + x2 ≤ −3

x2 ≥ 0.

It is easy to see algebraically that there is no point (x1, x2) that satisfies all the constraints.
Indeed, if you add the two functional constraints we obtain 2x2 ≤ −2 or equivalently x2 ≤ −1 which
cannot be simultaneously satisfied with the positivity requirement x2 ≥ 0. Thus the LP problem is
infeasible.

2.3 Unboundedness

Let us consider the LP problem 
max x1 + x2

s.t. −x1 + x2 ≤ 1
x1 − 2x2 ≤ 1
x1 , x2 ≥ 0.

The feasible region and the level lines are given on the next figure. It is easy to see, that no matter
how large z is, the level line z = x1 +x2 will intersect the feasible region. That is, there are feasible
points with objective values z. This shows that this LP problem is unbounded. Algebraically, let

x1(t) := 1 + 2t, x2(t) := t,

where t is a positive parameter. It is easy to see that the point (x1(t), x2(t)) is feasible for every
t ≥ 0. Its objective value is

z(t) = x1(t) + x2(t) = 1 + 3t→ +∞ as t→ +∞.
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2.4 Many optimal solutions

A slight change in the objective function of the last LP problem changes its properties drastically.
It is easy to see that the problem 

max −x1 + x2

s.t. −x1 + x2 ≤ 1
x1 − 2x2 ≤ 1
x1 , x2 ≥ 0

has infinitely many optimal solutions. In fact every point on the ray {(0, 1) + t(1, 1) | t ≥ 0} is an
optimal solution. (Why?)

It is important to see the following implications. If the feasible region of an LP problem is
bounded then the LP problem has an optimal solution. If the LP problem is unbounded then its
feasible region is unbounded. Whether an LP problem is unbounded or not depends on both the
objective function and the constraints.

3 Converting any LP problem in standard forms

An LP problem has two standard forms: standard inequality form (SIF) and standard equality
form (SEF). In this section we explain how to convert any LP problem into any of the two standard
forms.
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There are several operations that we can perform on an LP problem. Each operations changes
the LP problem into a new problem equivalent to the old one. The old and the new problems are
equivalent in the sense that if one of them is infeasible, or unbounded, or has an optimal solution
then so is the other. Moreover, the transformations that we will apply are simple enough so that
knowing an optimal solution of one of the LP problems easily gives us a solution of the other one.

(i) Transformations on the objective function.

• Adding or subtracting a constant to the objective function doesn’t change the feasible
region, nor the set of optimal solutions. It only changes the optimal value. Of course,
the optimal value of the original problem can be recovered by subtracting or adding the
same constant to the optimal value of the new problem.

• One can convert a minimization problem into a maximization one (and vice versa) by
multiplying the objective function by (−1). The feasible region and the optimal solutions
of the old and the new problems are the same. The optimal value of the original problem
is minus the optimal value of the new one.

(ii) Transformations on the constraints.

• Every greater-than-or-equal constraint is equivalent to a less-than-or-equal constraint
(and vice versa) obtained after multiplying the original one by (−1). This operation
doesn’t change anything about the LP problem except its appearance.

• Every equality constraint is equivalent to two inequality constraints. For example, the
set of all vectors (x1, x2) satisfying the constraint 2x1 − 3x2 = 4 is exactly the same
as the set of all vectors (x1, x2) satisfying the pair of inequalities 2x1 − 3x2 ≤ 4 and
−2x1 + 3x2 ≤ −4.

• Every inequality constraint can be converted into an equality constraint with the help
of one additional variable, called the slack variable for that inequality. The procedure
is best described with an example. A vector (x1, x2, x3) satisfies x1 + 2x2 − 3x3 ≤ 5 if
and only if the vector (x1, x2, x3, s) satisfies x1 + 2x2 − 3x3 + s = 5 and s ≥ 0. Here,
s := 5 − x1 − 2x2 + 3x3 is the slack in the inequality constraint, hence the name of the
new variable s. If we have more than one inequality constraints that we want to convert
into equalities, we need to introduce one slack variable for each inequality constraint.
This transformation changes the feasible region of the problem. The dimension of the
feasible region of the new problems is one more than the dimension of the feasible region
of the old problem. The connection between them is clear: (x1, x2, x3, s) is feasible in
the new problem with objective value v then (x1, x2, x3) is feasible in the old problem
with the same objective value v. (Note that we have not changed the objective function.)
Conversely, if (x1, x2, x3) is feasible in the old problem then (x1, x2, x3, 5−x1−2x2 +3x3)
is feasible in the new problem. If (x∗1, x

∗
2, x
∗
3, s
∗) is an optimal solution of the new problem

then (x∗1, x
∗
2, x
∗
3) is an optimal solution of the old problem.

(iii) Transformations on the variables.
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• If a variable is required to be non-positive, say xi ≤ 0 then we can replace every occur-
rence of xi in the LP problem by x′i := −xi. Clearly, x′i ≥ 0.

• Recall that a variable is called free if it is not required to be non-negative in your original
LP problem. Any such variable can be replaced by the difference of two non-negative
new variables. In other words, if xi is not required to be non-negative we replace every
occurrence of it (both in the constraints and in the objective function) by ui − vi where
we require that ui ≥ 0 and vi ≥ 0. Thus if vector (x1, ..., xi, ..., xn) is a feasible solution
of the original LP problem then (x1, ..., ui, vi, ..., xn) is a feasible solution of the new
problem with the same objective value, where{

ui := xi and vi := 0 if xi ≥ 0
ui := 0 and vi := −xi if xi < 0.

Keep in mind that xi = ui − vi. Conversely, if (x1, ..., ui, vi, ..., xn) is a feasible solution
of the new problem then (x1, ..., ui − vi, ..., xn) is a feasible solution of the old problem
with the same objective value.

• If you have an inequality constraint involving only one variable, say xi ≤ Li (here Li is
a constant) then you can simplify the problem by letting x′i := Li − xi and substitute
every occurrence of xi in the problem by Li−x′i. Clearly the constraint xi ≤ Li becomes
a non-negative requirement for x′i, that is x′i ≥ 0. If there is a constraint li ≤ xi then we
let x′i := xi − li and substitute out xi by x′i + li. Don’t forget to require x′i ≥ 0 again.
If you have a double bound on a variable: li ≤ xi ≤ Li then we can let x′i := xi − li
and replace every instance of xi in the LP problem by x′i + li. In particular, the double
inequality li ≤ xi ≤ Li becomes 0 ≤ x′i ≤ Li − li and we treat it as two constraints: the
positivity constraint 0 ≤ x′i together with a functional constraint x′i ≤ Li− li. Of course,
you can treat the original double inequality li ≤ xi ≤ Li as two functional constraints
−xi ≤ −li and xi ≤ Li.

(iv) Free variables in an equality constraint. Suppose that xi is a free variable and appears in
an equality constraint of the LP problem. Then we can solve that constraint for xi, thus
expressing it in terms of the other variables, and then we can eliminate xi from the problem
by substituting it out of every other constraint including the objective function. Then we
throw that equality constraint out of the problem. Well, we actually, put it aside, because it
will be needed if you want to find out what the optimal value of xi in the optimal solution
should be. This transformation simplifies the problem because it reduces the number of
variables by one.

Example 1. Convert the following LP problem into standard inequality form.

min −2x1 + 3x2 + 7
s.t. x1 + x2 = 2

4x1 + 6x2 ≥ 9
x1 ≥ 0.
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First we remove the constant 7 from the objective function. Solving the problem with that constant
or without it is one and the same thing. You can always add the value 7 to the optimal solution of
the new problem. Then we multiply the objective function by (−1) and change min to max. The
result is:

max 2x1 − 3x2

s.t. x1 + x2 = 2
4x1 + 6x2 ≥ 9
x1 ≥ 0.

After we solve this problem, its optimal value now has to be multiplied by (-1) and then we should
add 7 to get the optimal value of the original one. The optimal solutions are the same.

Next, we replace the equality constraint by two inequalities with opposite signs:

max 2x1 − 3x2

s.t. x1 + x2 ≤ 2
−x1 − x2 ≤ −2
4x1 + 6x2 ≥ 9
x1 ≥ 0.

Multiply the third constraint by (−1) to reverse the direction of the inequality.

max 2x1 − 3x2

s.t. x1 + x2 ≤ 2
−x1 − x2 ≤ −2
−4x1 − 6x2 ≤ −9
x1 ≥ 0.

Finally, since x2 is a free variable, we replace all its occurrences by x2 = u2 − v2 requiring that
u2 ≥ 0 and v2 ≥ 0:

max 2x1 − 3u2 + 3v2

s.t. x1 + u2 − v2 ≤ 2
−x1 − u2 + v2 ≤ −2
4x1 + 6u2 − v2 ≤ −9
x1 , u2 , v2 ≥ 0.

The last problem is equivalent to the original one in the sense that it is infeasible or unbounded if
and only if the original one is such and it has an optimal solution if and only if the original one has.
Moreover, if (x∗1, u

∗
2, v
∗
2) is an optimal solution of the new problem then (x∗1, u

∗
2 − v∗2) is an optimal

solution of the original one.

Second approach. This particular LP problem can be simplified from the very beginning.
Since x2 is a free variable and it appears in the equality constraint x1 + x2 = 2 we can eliminate it
from the problem all together: x2 = 2− x1. Substituting it out we obtain

min −5x1 + 13
s.t. −2x1 ≥ −3

x1 ≥ 0.
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Equivalently
min −5x1 + 13
s.t. x1 ≤ 3/2

x1 ≥ 0,

immediately showing that the optimal solution is x∗1 = 3/2 with optimal value −15/2 + 13 = 11/2.
The optimal value for the variable x2 is of course x∗2 = 2− x∗1 = −7/2.

The second approach in the example above shows that we need to apply the transformations
wisely. Now that we know how to convert any LP problem into standard inequality form, in order
to show how to convert any LP problem into standard equality form, all we need to practice is the
conversion from SIF into SEF.

Example 2. Convert into an equivalent LP problem in SEF

max 2x1 − 3x2

s.t. x1 + x2 ≤ 2
4x1 + 6x2 ≤ −9
x1 , x2 ≥ 0.

We introduce two new slack variables: one for each constraint. Let s1 := 2 − x1 − x2 and s2 :=
−9− 4x1 − 6x2. The equivalent SEF is

max 2x1 − 3x2

s.t. x1 + x2 + s1 = 2
4x1 + 6x2 + s2 = −9
x1 , x2 , s1 , s2 ≥ 0.

4 Preprocessing

The standard equality form

(3)


max z = cx
s.t. Ax = b

x ≥ 0.

is used as the starting point of the simplex algorithm that we are going to develop. The functional
constraints Ax = b is a system of m linear equations with n unknowns. Since A is an m×n matrix
rankA ≤ m. Let us see that without loss of generality we may assume that rankA = m. Indeed,
suppose that rankA < m. This means that there is a non-zero linear combination between the
rows of A, that is one of the rows, say the first one, is a linear combination of the rest. If the first
coordinate of vector b is not equal to the same linear combination of the rest of its coordinates then
the system of equations Ax = b is inconsistent, it has no solution. The LP problem is infeasible
and there is nothing to solve. On the other hand, if the first coordinate of vector b is equal to the
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same linear combination of the rest of its coordinates then the first equation in Ax = b is redundant
and we may remove it. (The first equation is a linear combination of the rest. Make the distinction
between the i-th row of A and the i-th equation in Ax = b!) Thus we are left with a system A′x = b′

of m− 1 equations in n unknowns. Notice that rankA′=rankA. We can repeat the procedure until
rankA′ is equal to the number of equations or find out that the problem is infeasible. Thus, we
make the following standing assumption.

Assumption 3. Without loss of generality, we assume that rankA = m in (3).

5 Bases and basic solutions

In order to convert the strawberry model

(4)


max 2x1 + 3x2

s.t. x1 + x2 ≤ 6
−x1 + x2 ≤ 4
2x1 + x2 ≤ 10
x1 , x2 ≥ 0

into an equivalent one in standard equality form we need to introduce three new slack variables –
one for each functional constraint:

(5)


max 2x1 + 3x2

s.t. x1 + x2 + x3 = 6
−x1 + x2 + x4 = 4
2x1 + x2 + x5 = 10
x1 , x2 , x3 , x4 , x5 ≥ 0.

The data for this problem is

c := (2, 3, 0, 0, 0), A :=

 1 1 1 0 0
−1 1 0 1 0

2 1 0 0 1

 , b :=

 10
6
4

 .

By Aj we denote the j-th column in the matrix A, that is, A = [A1, ..., An].

Definition 4. A basis of the system of equations Ax = b is an m-element subset B of {1, ..., n}
such that the set of column vectors {Aj | j ∈ B} is linearly independent.

For a given basis B, denote by AB the m × m submatrix of A formed by the columns with
indexes in B:

AB := [Aj, j ∈ B].

The condition in the definition of a basis means that AB is non-singular, that is, detAB 6= 0, that
is the rows and the columns of AB form a basis (in the sense of linear algebra) of Rm. It is very
important that one makes a clear distinction between the notions a basis of a vector space (from
linear algebra) and a basis of a system of linear equations just introduced.
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Example 5. The sets {3, 4, 5} and {1, 3, 4} are bases for the system of functional constraints in

(4). Indeed, if B = {3, 4, 5} then AB =

 1 0 0
0 1 0
0 0 1

 is clearly non-singular (a permutation of the

rows gives the identity matrix). If B = {1, 3, 4} then AB =

 1 1 0
−1 0 1

2 0 0

 is non-singular because

detAB = −1 6= 0.

The variables xj for j ∈ B are called basic variables while xj for j 6∈ B are called non-basic
variables. Let

xB := (xj, j ∈ B)

be the subvector of x formed by the basic variables.
Since AB is non-singular, the system of equations ABxB = b has a unique solution xB = A−1

B b.
Notice that ABxB = b is obtained from Ax = b by setting xj = 0 for all j 6∈ B. Thus the system

(6)

[
Ax = b
xj = 0 for all j 6∈ B

has a unique solution, called the basic solution determined by the basis B.

Definition 6. A basic solution of a system of linear equations Ax = b is the unique solution of (6)
for some basis B.

In other words a basic solution of Ax = b is a vector x∗ that is a solution to the system of
equations and x∗j = 0 for all j 6∈ B for some basis B.

Theorem 7. Let A be an m × n matrix of rank m. Let x∗ be a solution of Ax = b. Then x∗ is a
basic solution of Ax = b if and only if {Aj |x∗j 6= 0} is a linearly independent set.

Proof. Suppose that x∗ is a basic solution of Ax = b determined by the basis B. Then {j |x∗j 6= 0} ⊆
B. Thus the columns {Aj |x∗j 6= 0} are among the columns of AB which are linearly independent
by definition of B.

Suppose now that {Aj |x∗j 6= 0} is a linearly independent set of columns. Since the rankA = m
we can complete the set {Aj |x∗j 6= 0} to a set of m linearly independent columns of A. (Why?)
Denote their indexes by B. Check that x∗ is the basic solution determined by B.

According to this theorem, a solution x∗ of Ax = b is not basic if and only if, {Aj |x∗j 6= 0} is
a linearly dependent set.

Example 8. For the system of equations:

x1 + 2x2 − x3 + 2x4 = 3,
x1 + 2x2 + 2x3 − x4 = 3

which of the following is a basic solution?
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(i) (2, 0, 1, 1)T ,

(ii) (0, 1, 1, 0)T

(iii) (0, 0, 3, 3)T ,

(iv) (1, 1, 0, 0)T ,

(v) (3, 0, 0, 0)T ,

In this case m = 2 and n = 4, A =

(
1 2 −1 2
1 2 2 −1

)
, and b = (3, 3)T .

(i) Since every basic solution must have at least n−m zeros, vector (2, 0, 1, 1)T is not one.
(ii) It is not basic solution, because (0, 1, 1, 0)T is not even a solution to the system of equations

Ax = b.
(iii) Basic because the third and the fourth column of A are linearly independent, by the

theorem since A has rank 2. The basis is B = {3, 4}. (Check!)
(iv) Since the first and the second column from A are not linearly independent, x∗ is not a

basic solution, by the theorem since A has rank 2.
(v) Since A has rank 2, by the theorem, we have to check if the first column is linearly inde-

pendent. It is non-zero, so yes. Thus, x∗ is a basic solution. In fact there are two bases that have
x∗ as their corresponding basic solution B = {1, 3} and B = {1, 4}. (Check.)

One of the observations from the last example is that two different bases may have the same
basic solution.

Definition 9. A basic solution x of Ax = b is called feasible if x ≥ 0. If the basic solution
determined by a basis B is feasible then B is called a feasible basis. A basic solution x of Ax = b is
called degenerate if x has more than n−m zero entries. If the basic solution determined by a basis
B is degenerate then B is called a degenerate basis.

5.1 Basic feasible solutions for a system of inequalities

Let

(7) Ax ≤ b

be a system of inequalities. Consider the related system of equations (in n+m variables)

(8) (A, I)

(
x
s

)
= b,

where I is the m ×m identity matrix. (The rank of the augmented matrix (A, I) is always m, no
matter what A is.)
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Definition 10. Vector x is called basic solution (resp. basic feasible solution) of (7) if (x, s) :=
(x, b− Ax) is a basic solution (resp. basic feasible solution) of (8).

Notice that a basic solution x∗ of Ax ≤ b need not be a solution to the system of inequalities
(e.g. the points A, D, H, I, J in the example in the next subsection). But the augmented vector
(x, s) := (x, b− Ax) is always a solution to (8). By definition, x∗ is a basic feasible solution of (7)
if and only if (x, s) := (x∗, b− Ax∗) is a basic feasible solution of (8), that is, (x, s) is basic for (8)
and (x, s) ≥ 0 or equivalently Ax∗ ≤ b and x∗ ≥ 0.

5.2 Geometric representation of the basic (feasible) solutions

In this subsection we are going to identify the basic and the basic feasible solutions of the strawberry
problem

(9)


max 2x1 + 3x2

s.t. 2x1 + x2 ≤ 10
x1 + x2 ≤ 6
−x1 + x2 ≤ 4
x1 , x2 ≥ 0

with equivalent standard equality form

(10)


max 2x1 + 3x2

s.t. 2x1 + x2 + x3 = 10
x1 + x2 + x4 = 6
−x1 + x2 + x5 = 4
x1 , x2 , x3 , x4 , x5 ≥ 0.

The graphical representation of (9) is given below. We saw before that B = {3, 4, 5} is a basis of
(10) with corresponding basic solution x∗ = (0, 0, 10, 6, 4)T . The values of the original variables
(x1, x2) are (0, 0). This is point B on the figure, the place where the equations x1 = 0 and x2 = 0
intersect. Moreover, notice that x∗ is a basic feasible solution and that (0, 0) is a corner point of
the feasible region.

Again from before we know that B = {1, 3, 4} is a basis of (10) with corresponding basic
solution x∗ = (−4, 0, 18, 10, 0)T . The values of the original variables (x1, x2) are (−4, 0). This is
point A on the figure, the place where the equations −x1 + x2 = 4 and x2 = 0 intersect. Moreover,
notice that x∗ is not a basic feasible solution and that (−4, 0) is not a point in the feasible region.

One easily sees the pattern: every one of the points A,B,...,J corresponds to one basis of (10).
The coordinates of A,B,...,J are the first two coordinates of the basic solution corresponding to that
basis. If the basis is feasible then the corresponding point among A,B,...,J is a corner point of the
feasible region. If the basis is not feasible the corresponding point among A,B,...,J is not in the
feasible region.
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x1

2
x

x1 +
<= 6

2
x

2x
1 +

<= 10

2x
-x 1+

<= 4

x2

E=(4,2)

G=(1,5)

F=(0,4)

A=(-4,0) B=(0,0) C=(5,0) D=(6,0)

H=(2,6)I=(0,6)

J=(0,10)

For example, let us find the basis corresponding to the point H= (2, 6) on the figure. Since x1 =
2 and x2 = 6 we easily find the values of x3, x4, and x5 using using the fact that (x1, x2, x3, x4, x5)
must satisfy the functional constraints in (10):

x3 = 10− 2x1 − x2 = 0,

x4 = 6− x1 − x2 = −2,

x5 = 4 + x1 − x2 = 0.

Thus x∗ = (2, 6, 0,−2, 0)T is a solution to Ax = b. To see that x∗ is a basic solution we need to
find a basis B for which x∗ is the solution of (6). Since x∗ has three non-zero coordinates and
the corresponding columns from A are linearly independent (check), by Theorem 7, x∗ is a basic
solution corresponding to the basis B = {1, 2, 4}. Notice that x∗ is not a basic feasible solution,
something that we expected since H in not in the feasible region.

Consider now a slightly modified version of the previous example: include the new constraint
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x4 ≤ 4:

(11)



max 2x1 + 3x2

s.t. 2x1 + x2 ≤ 10
x1 + x2 ≤ 6
−x1 + x2 ≤ 4

x2 ≤ 4
x1 , x2 ≥ 0

with equivalent standard equality form

(12)



max 2x1 + 3x2

s.t. 2x1 + x2 + x3 = 10
x1 + x2 + x4 = 6
−x1 + x2 + x5 = 4

x2 + x6 = 4
x1 , x2 , x3 , x4 , x5 , x6 ≥ 0.

Note that now we have four equality constraints with six variables, that is m = 4 and n = 6.
The graphical representation of (11) is given below. Note the now we have three more basic

A=(4,0) B=(0,0)

C=(5,0)
D=(6,0)

E=(4,2)

F=(0,4)

G=(1,5)

H=(2,6)I=(0,6)

J=(0,10)

K=(2,4)

L=(3,4)

x +
x <

=
6

1
2

x <=42

-x
 +

x 
<
=
4

2
1

2x +
x <

=
10

1
2

solutions corresponding to the points F , K, and L. Both F and K correspond to a basic feasible
solutions, while L corresponds to a basic solution that is not feasible. Now, the basic feasible solution
corresponding to F has a new feature, it is degenerate. Indeed, it is x = (x1, ..., x6) = (0, 4, 6, 2, 0, 0)
and has more than n − m = 2 zeros. Informally, starting from a problem in standard inequality
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form, basic solutions that are at the “intersection” of strictly more than n−m constraints (here the
positivity constraints are also counted as constraints) are degenerate. Note that n is the number of
variables in the corresponding standard equality form.

In order to formally justify the observations in this subsection, we need to introduce the notion
of a convex set.

6 Convex sets

Let x, y ∈ Rn by [x, y] we denote the set {(1 − λ)x + λy |λ ∈ [0, 1]}, the line segment between x
and y.

Definition 11. A set C ⊂ Rn is convex if for any points x, y ∈ C we have [x, y] ⊂ C.

Several examples and simple observations follow.

• The empty set ∅ is convex.

• The whole space Rn is convex.

• Subspaces of Rn are convex.

• The positive orthant Rn
+ := {x ∈ Rn |x ≥ 0} is convex.

• If a ∈ Rn and β ∈ R then the half space H+ := {x ∈ Rn |aTx ≤ β} is convex. Indeed,
let x, y be any two points in H+ and let λ be any number in [0, 1]. We have to check that
(1− λ)x+ λy ∈ H+:

aT ((1− λ)x+ λy) = (1− λ)aTx+ λaTy ≤ (1− λ)β + λβ = β.

• If a ∈ Rn and β ∈ R then the hyperplane H := {x ∈ Rn |aTx = β} is convex.

• Let A be any indexing set and suppose that Cα is a convex set for all α ∈ A. Then the
intersection C := ∩α∈ACα is convex. Indeed, let x, y be any two points in C and let λ be any
number in [0, 1]. We have to show that (1− λ)x + λy ∈ C. Since for every α, x, y ∈ Cα and
Cα is convex then, (1− λ)x+ λy ∈ Cα. Therefore (1− λ)x+ λy ∈ ∩α∈ACα.

Recall that the feasible region (FR) of an LP problem in standard inequality form is

FR = {x ∈ Rn |Ax ≤ b, x ≥ 0}
= {x ∈ Rn |Ax ≤ b} ∩ Rn

+

= ∩j=1,...,m{x ∈ Rn | aj1x1 + · · ·+ ajnxn ≤ bj} ∩ Rn
+.

All that shows that FR is the intersection of convex sets and is thus convex. Similarly one shows
that the feasible region of any LP problem (not just in standard inequality form) is a convex set.
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Proposition 12. The set of optimal solutions of an LP problem is convex.

Proof. If the LP problems has no optimal solutions then the set of optimal solutions is empty and
thus convex. So suppose now that the LP problem has at least one optimal solution, and let z∗ be
the optimal value. The set of optimal solutions is then

S := {x ∈ Rn |x is feasible and cx = z∗}.

This is just the intersection of the feasible region with the hyperplane {x ∈ Rn | cx = z∗}, both
convex sets.

The last proposition shows that for an LP problem exactly one of the following three situations
holds 1) it has zero optimal solutions (when it is infeasible or unbounded) 2) it has one optimal
solution, 3) it has infinitely many optimal solution (if it has at least two different optimal solutions
x and y then every point on the segment [x, y] is an optimal solution as well).

We say that z ∈ Rn is a convex combination of the vectors y1, ..., yN ∈ Rn if there are numbers
λ1,...,λN ∈ [0, 1] with

∑N
i=1 λi = 1 such that

z = λ1y1 + · · ·+ λNyN .

Thus, a convex combination between several vectors is just a linear combination with the additional
requirements that the coefficients are in [0, 1] and sum to 1.

Exercise 13. Show that a subset C ⊆ Rn is convex if and only if any convex combination between
any number of vectors in C is also in C.

6.1 Extreme points of convex sets

Let C be a convex set in Rn.

Definition 14. A point e ∈ C is called an extreme point if it cannot be represented as e =
(1− λ)x+ λy for some distinct x, y ∈ C and λ ∈ (0, 1).

Notice that in the definition we require x 6= y and λ 6∈ {0, 1}. Here are some examples.

• If C = [0, 1] ⊂ R then the extreme points of C are {0, 1}.

• The set C = (1, 0) is convex but has no extreme points.

• For any a ∈ Rn and β ∈ R the half-space H+ and the hyperplane H have no extreme points,
even though they are closed sets (in the sense of real analysis).

In order to formulate a good sufficient condition for a convex set to have an extreme point,
we need two notions. A subset of Rn is called closed if it contains all its “boundary” points. More
precise definition, given in a real analysis course, is beyond our needs. A subset of Rn is called
bounded if it can be enclosed in a ball with large enough radius.

19



• The set (0, 1) ⊂ R is not closed but bounded.

• The set [0, 1] ⊂ R is closed and bounded.

• For any a ∈ Rn and β ∈ R the half-space H+ and the hyperplane H are closed sets but not
bounded.

• For any a ∈ Rn and β ∈ R then set {x ∈ Rn | aTx < β} is not closed and not bounded.

Fact 15. Intersection of any number of closed sets is closed. Union of finitely many closed sets is
closed.

Just like we showed that the feasible region and the set of optimal solutions of an LP problem
are convex sets one can show that they are also closed sets. The following theorem is stated without
a proof.

Theorem 16 (Krein-Milman-Caratheodory). If C is a closed, convex and bounded subset of Rn

then it has an extreme point. Moreover, every point in C can be written as a convex combination
of at most (n+ 1) extreme points.

Example 17. Consider a point x in a triangle with vertices A, B, C in the plane R2. Clearly, the
vertices are the extreme points of the triangle. How can we express x as a convex combination of
the vertices? Let y be the point where the line from C through x intersects the side AB. Since y is

A B

C

x

y

on the segment [A,B] it can be expressed as a convex combination of A and B: y = (1− λ)A+ λB
for some λ ∈ [0, 1]. Since x is on the segment [y, C] it can be expressed as x = (1 − µ)y + µC for
some µ ∈ [0, 1]. Substituting the expression for y we get

x = (1− µ)(1− λ)A+ (1− µ)λB + µC.

This expresses x as a convex combination of A,B,C (show that this is indeed a convex combination).
Now, even if x is not inside a triangle, but say, inside a convex hexagon, or octagon, by the Krein-
Milman-Caratheodory theorem, it can be expressed as a convex combination of not more than three
of the vertices (how?).
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The relevance of all that to linear programming is given by the following theorem.

Theorem 18. Let A be an m× n matrix with rank m, and let FR := {x |Ax = b, x ≥ 0}. Then
x∗ is a basic feasible solution of Ax = b if and only if x∗ is an extreme point of FR.

Proof. Because the theorem is an “if an only if” statement, we have to prove two things:

(i) If x∗ is a basic feasible solution then it is an extreme point of FR, and conversely

(ii) If x∗ is an extreme point of FR then it is a basic feasible solution of Ax = b, x ≥ 0.

(i) Suppose that x∗ is a basic feasible solution of Ax = b. Then Ax∗ = b and x∗ ≥ 0 showing
that x∗ ∈ FR. In addition, there is a basis B such that x∗ is the unique solution of

(13)

[
Ax = b
xj = 0 for all j 6∈ B.

We will show that it is an extreme point of FR by assuming the contrary and reaching a contra-
diction. Thus, suppose that x∗ is not an extreme point of FR. Then there exist two distinct points
x1 and x2 in FR and a λ ∈ (0, 1) such that x∗ = λx1 + (1−λ)x2. But x∗ is a basic feasible solution
corresponding to B, this means that the non-basic entries of x∗ are zero:

if j 6∈ B then 0 = x∗j = λx1
j + (1− λ)x2

j .

The right-hand side is the sum of two positive numbers: λx1
j and (1 − λ)x2

j . For it to be zero we
must have λx1

j = (1− λ)x2
j = 0. Since 0 < λ < 1 we must have x1

j = x2
j = 0. This is true for every

j 6∈ B. Thus, x1 and x2 are both solutions of the system of equations (13) or x∗ = x1 = x2. This is
a contradiction with the fact that x1 and x2 are distinct. Therefore x∗ is an extreme point.

(ii) Suppose now, that x∗ is an extreme point of FR (so x∗ ∈ FR and thus it satisfies Ax∗ = b
and x∗ ≥ 0). We will show that x∗ is a basic solution of Ax = b. Suppose that this is not the case
(we will reach a contradiction). Then

{Aj |x∗j 6= 0} = {Aj |x∗j > 0}

is a linearly dependent set. Define the set of indexes J = {j |x∗j > 0}. There exist yj, j ∈ J , not all
zero such that ∑

j∈J

Ajyj = 0.

Now define yj = 0 for all j ∈ {1, 2, ..., n}\J and let y := (y1, ..., yn)T . So y ∈ Rn and y 6= 0.
Moreover

Ay = 0,

and yj = 0 whenever x∗j = 0. Consider the points x1 = x∗ − εy, x2 = x∗ + εy, where ε > 0. Notice
that, for ε close enough to zero, x1, x2 ≥ 0. Also,

Ax1 = Ax∗ − εAy = Ax∗ = b,
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and similarly Ax2 = b. Therefore, x1, x2 ∈ FR. The fact that y 6= 0 implies that x1 6= x2. Finally,
notice that

x∗ =
1

2
x1 +

1

2
x2.

This is a contradiction to the fact that x∗ is an extreme point of FR. Therefore x∗ must be a basic
feasible solution, as required.

Analogous theorem holds the feasible region of an LP problem in standard inequality form.
Notice that we do not need to require that the matrix A have rank m. (Why?)

Theorem 19. Let A be an m × n matrix and let FR := {x |Ax ≤ b, x ≥ 0}. Then x∗ is a basic
feasible solution of Ax ≤ b if and only if x∗ is an extreme point of FR.

Hence by the Krein-Milman-Caratheodory if the feasible region (resp. the set of optimal solu-
tions) of an LP problem is bounded, then every feasible solution (resp. every optimal solution) is a
convex combination of at most (n+ 1) basic feasible solutions.

7 Bases and their tableaux

The simplex method works with LP problems in standard equality form:

(14)


max z = cx
s.t. Ax = b

x ≥ 0.

Let B be a basis of Ax = b with corresponding basic solution x∗. Define the set N := {1, 2, ..., n}\B
of all indexes that are not in the basis. Recall that x = (xB, xN) is the partitioning of x into basic
and non-basic variables. The goal of this section is to describe the tableau corresponding to the
basis B. First we state the formal procedure and then we illustrate it with an example. It helps to
read the following three steps and the example at the same time.

1) Since the matrix AB is non-singular, we can apply elementary row operations to the equations
Ax = b until we obtain an equivalent system of equations Āx = b̄ in which the columns of Ā
corresponding to the basic variables form an m×m identity matrix. In other words, the final result
of these elementary row operations is equivalent to multiplying the system Ax = b on the left by
A−1
B : A−1

B Ax = A−1
B b, that is Ā := A−1

B A and b̄ := A−1
B b.

2) Solve each equation in Āx = b̄ for its basic variable and substitute it out of the objective
function z = cx to obtain the equivalent objective function z = c̄x+ v̄.

3) Finally, write z = c̄x+ v̄ as z − c̄x = v̄.
4) We keep in mind that all variables have to be non-negative but for simplicity we do not

write it.
The resulting representation of the LP problem (14) is called the tableau corresponding to the

basis B.
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Example 20. Consider the strawberry example in standard equality form.

(15)


max z = 2x1 + 3x2

s.t. 2x1 + x2 + x3 = 10
x1 + x2 + x4 = 6
−x1 + x2 + x5 = 4
x1 , x2 , x3 , x4 , x5 ≥ 0.

Let the basis B be {3, 4, 5}. The equations are already in the form that we want: the columns with
indexes 3, 4 and 5 form a 3× 3 identity matrix. There is nothing to do in step 2) because there are
no basic variables in the objective function. Thus, the tableau corresponding to this basis is

max z − 2x1 − 3x2 = 0
s.t. 2x1 + x2 + x3 = 10

x1 + x2 + x4 = 6
−x1 + x2 + x5 = 4

We know that B = {3, 4, 1} is also a basis for (15). After elementary row operations on the equality
constraints we can write them as

max z = 2x1 + 3x2

s.t. + 3x2 + x3 + 2x5 = 18
+ 2x2 + x4 + x5 = 10

x1 − x2 − x5 = −4.

Notice that columns with indexes 3, 4 and 1 form a 3×3 identity matrix. Now we want to eliminate
the basic variables from the objective function. In this case, there is only one basic variable in the
objective function: x1. From the third equation we solve for x1 and substitute it out of the z-row:

max z = 5x2 + 2x5 − 8
s.t. + 3x2 + x3 + 2x5 = 18

+ 2x2 + x4 + x5 = 10
x1 − x2 − x5 = −4.

Finally, the tableau corresponding to the basis B = {3, 4, 1} is

(16)

max z − 5x2 − 2x5 = −8
s.t. + 3x2 + x3 + 2x5 = 18

+ 2x2 + x4 + x5 = 10
x1 − x2 − x5 = −4.

To summarize, the tableau of (14) corresponding to a basis B is obtained from[
z − cx = 0

Ax = b
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by applying elementary row operations until the following form is reached[
z −

∑
j∈N c̄jxj = v̄

xi +
∑

j∈N āijxj = b̄i, ∀i ∈ B.

For example, in tableau (16) corresponding to the basis B = {3, 4, 1} we have c̄2 = +5, c̄5 = +2,
v̄ = −8, ā32 = 3, ā35 = 2, ā31 = 0, b̄3 = 18. Coefficients like b̄2, b̄5, ā13, ā31,... are not defined for
that basis. In other words, in the tableau corresponding to B, we label the rows of the matrix Ā
and the entries of the vector b̄ by the elements of B. It is a bit strange at first, but one quickly gets
used to that. The row xi +

∑
j∈N āijxj = b̄i in the tableau is called the xi-row, or just the i-row,

where i ∈ B, and the row z −
∑

j∈N c̄jxj = v̄ is called the z-row. The coefficients c̄j for j ∈ N of
the z-row are called reduced costs, or c̄j is the reduced cost of the variable xj.

The tableau corresponding to a basis B contains all the information that the original problem
has (elementary row operations do not change a system of equations). But the nice feature of a
tableau is that it displays clearly information about the basis B:

1) The basic solution corresponding to the basis B is xB = b̄ and xN = 0.
2) The objective value of that basic solution is v̄.
Thus, if the right-hand side b̄ of the tableau is b̄ ≥ 0 the the basic solution is feasible and the

basis B is feasible.

7.1 Matrix form of the tableau

Given an LP problem in standard equality form (14) and a basis B, the goal now is to derive an
expression for the tableau corresponding to B in matrix notation. We have to do essentially two
things: 1) Solve Ax = b for the basic variables, and 2) eliminate the basic variables from z = cx.
We formally split all the data into basic and non-basic parts:

c = (cB, cN), x = (xB, xN)T , A = (AB, AN).

1) Thus the system Ax = b is the same as

(17) (AB, AN)

(
xB
xN

)
= b

or after multiplying, to
ABxB + ANxN = b.

Since AB is invertible, we may multiply the last equation by A−1
B on the left to obtain

(18) xB + A−1
B ANxN = A−1

B b.

With one swoop we solved the system of equations for the basic variables xB:

xB = A−1
B b− A−1

B ANxN .
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2) Substituting out the basic variables from the objective function we obtain

z = cx = (cB, cN)

(
xB
xN

)
= cBxB + cNxN

= cB(A−1
B b− A−1

B ANxN) + cNxN

= cBA
−1
B b− cBA−1

B ANxN + cNxN

= (cN − cBA−1
B AN)xN + cBA

−1
B b.

Thus the z-row is
z − (cN − cBA−1

B AN)xN = cBA
−1
B b.

We are done. In matrix notation, the tableau corresponding to the basis B is[
z − (cN − cBA−1

B AN)xN = cBA
−1
B b

xB + A−1
B ANxN = A−1

B b.

As a bonus, we obtained matrix formulae for our previous notation

c̄ = cN − cBA−1
B AN

v̄ = cBA
−1
B b

Ā = (I, A−1
B AN)

b̄ = A−1
B b.

8 Modeling Examples

8.1 Currency Arbitrage Model

Problem. A company has a capital of 5 million dollars with which they want to play on the
currency market for US dollars ($), Euros (c), British Pounds (£), Japanese Yen (¥) and Mexican
Pesos (�). The currency dealers set the following limitations:

a transaction in $ cannot be larger than 5 million $
a transaction in c cannot be larger than 3 million c
a transaction in £ cannot be larger than 3.5 million £
a transaction in ¥ cannot be larger than 100 million ¥
a transaction in � cannot be larger than 2.8 million �

You may borrow funds from the bank in any currency and no interest will be incurred on them
as long as they are returned within an hour. The table below shows the current exchange rates
between the currencies. For example, 1 US Dollar is equal to 0.769 Euros.
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$ c £ ¥ �
$ 1 0.769 0.625 105 0.342

c
1

0.769
1 0.813 137 0.445

£ 1
0.625

1/0.813 1 169 0.543

¥ 1
105

1
137

1
169

1 0.0032

� 1
0.342

1
0.445

1
0.543

1
0.0032

1

Is it possible to increase the US dollar capital of the company by placing several instantaneous
trades on these currencies?

Model. For convenience enumerate the currencies as ($,c,£,¥, �) = (1, 2, 3, 4, 5). Let xij be
the amount in currency i used to buy currency j. Since we do not have any other currency than
US dollars, if we want to convert x British pounds into Japanese yen, we will have to borrow the
pounds from the bank.

The limitations posed by the currency dealers imply the constraints

x1j ≤ 5, j = 2, 3, 4, 5

x2j ≤ 3, j = 1, 3, 4, 5

x3j ≤ 3.5, j = 1, 2, 4, 5

x4j ≤ 100, j = 1, 2, 3, 5

x5j ≤ 2.8, j = 1, 2, 3, 4.

We want to maximize the US dollar capital of the company. That is

max 5− x12 − x13 − x14 − x15 +
1

0.769
x21 +

1

0.625
x31 +

1

105
x41 +

1

0.324
x51.

Since we have to return all the money that we borrowed from the bank in the currency that
we borrowed it, we need to balance the transactions for every currency. This gives five additional
constraints

dollars: x12 + x13 + x14 + x15 − 1
0.769

x21 − 1
0.625

x31 − 1
105
x41 − 1

0.324
x51 ≤ 5

euros: x21 + x23 + x24 + x25 − 0.769x12 − 1
0.813

x32 − 1
137
x42 − 1

0.445
x52 = 0

pounds: x31 + x32 + x34 + x35 − 0.625x13 − 0.813x23 − 1
169
x43 − 1

0.543
x53 = 0

yen: x41 + x42 + x43 + x45 − 105x14 − 137x24 − 169x34 − 1
0.0032

x54 = 0

pesos: x51 + x52 + x53 + x54 − 0.342x15 − 0.445x25 − 0.543x35 − 0.0032x45 = 0.
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Finally, we do not want to buy any currency with negative amount of money, that is xij ≥ 0
i, j = 1, ..., 5. Notice that the zero vector is always a feasible solution to this problem with objective
value 5. (This solution corresponds to the situation when we do not take any action.) Notice also
that maximizing the objective function is the same as minimizing

−x12 − x13 − x14 − x15 +
1

0.769
x21 +

1

0.625
x31 +

1

105
x41 +

1

0.324
x51,

which is the left-hand side of the dollar balancing constraint. Thus, the optimal value will always
be ≥ 5 and the dollar balancing constraint will be satisfied by the optimal solution of the modified
LP problem that do not take the dollar balancing constraint into consideration.

If we use a computer package to solve the problem we get that the optimal value is 5.086976255
million dollars. The optimal solution is (all amounts are in millions)

x[i,j] =

1 2 3 4 5

1 0 1.46302 0 0 5

2 0 0 0 0 3

3 3.5 0.930841 0 0 1.31676

4 100 100 100 0 0

5 0 0 2.8 0.96 0

Remember that all orders for the transactions have to be submitted to the trader at once and
then you should return the loans to the bank as soon as possible to avoid interest. We see that if we
follow the investment strategy we will increase the dollar holdings of the company by $86, 976.255
dollars. Not bad for a few seconds work.

8.2 Sharing a snow shovel

Three neighbours, Al, Bal, and Cal, want to clear yesterday’s snow from around their houses as
quickly as possible, with the aid of their jointly owned snowblower. For a snowfall of this size, they
could shovel their own places in 3, 4, and 5 hours respectively. Using the snowblower they would
take 1,3, and 2 hours, respectively. Formulate, but do not solve, a linear program (and then put
it in standard inequality form) whose solution describes how long each should use the snowblower
and how long each should shovel so that the last person to finish cleaning his snow finishes as soon
as possible. Each person clears only their own place. (Your program should not take any advantage
of the particular rates listed. Define the variables you use explicitly.)

Solution: Let xa, xb, and xc denote the amount of time Al, Bal, and Cal shovel by hand
respectively.

Let ya, yb, and yc denote the amount of time Al, Bal, and Cal use the snowblower respectively.
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Let t be the time when the last one finishes their job.

The LP problem is:

min t
s.t. xa + ya ≤ t

xb + yb ≤ t
xc + yc ≤ t

1
3
xa + ya = 1

1
4
xb + 1

3
yb = 1

1
5
xc + 1

2
yc = 1

ya + yb + yc ≤ t
xa , ya , xb , yb , xc , yc , t ≥ 0

Explanations:

• The objective is to minimize the time when the last one finishes their job. Thus we have to
minimize t.

• To total amount of time that Al spends working should be less than or equal to the time when
the last one finishes. This applies to Bal and Cal and explains the first three constraints.

• If Al shovel by hand his place for 3 hours his speed will be 1
3

of the job per hour. Similarly his
speed with the snowblower is 1 of the job per hour. But he is shovelling xa hours by hand and
ya hours with the snowblower and for that time he finishes the whole job, 1. Thus, we need
to have 1

3
xa + ya = 1. Similarly for Bal and Cal. This accounts for the last three constraints.

• The last constraint forbids the simultaneous use of the snowblower.

• Finally, all the times should be nonnegative.

If you wish, you may put this LP into an equivalent form as follows:

max − t
s.t. xa + ya − t ≤ 0

xb + yb − t ≤ 0
xc + yc − t ≤ 0

1
3
xa + ya = 1

1
4
xb + 1

3
yb = 1

1
5
xc + 1

2
yc = 1

ya + yb + yc − t ≤ 0
xa , ya , xb , yb , xc , yc , t ≥ 0
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8.3 A Sample Network Optimization Problem

Example. The Kitty Railroad is in the process of planning relocations of freight cars among the
5 regions of the country to get ready for the fall harvest. The following table shows the cost of
moving a car between each pair of regions, along with the number of cars in each at present and
the number needed for harvest shipping.

Region
From 1 2 3 4 5

1 - 13 9 15 37
2 13 - 14 7 51
3 9 14 - 10 26
4 15 7 10 - 20
5 37 51 26 20 -

Present 113 382 415 480 610
Need 180 505 810 190 310

We want to choose a reallocation plan to get the required number of cars in each region at
minimum total moving cost. Write a linear model for this allocation problem.

Let xij denote the number of cars moved from region i to region j.

Let cij denote the cost of moving a car from i to j.

Let pj denote the number of cars presently at j.

Let nj denote the number of cars needed at j.

minimize
5∑
i=1

5∑
j=1
j 6=i

cijxij

subject to ∑
i=1
i 6=k

xi,k −
∑
j=1
j 6=k

xk,j = nk − pk, k = 1, ..., 5

xij ≥ 0, for all i, j = 1, ..., 5, i 6= j.

There are five constraints, one for each k = 1, ...5. Each constraint makes sure that the cars
moved into region k minus the cars moved out of the region k must be equal to the net need of that
region.
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8.4 Example: scheduling production and inventory

Consider a factory producing a commodity. The demand for the commodity fluctuates from month
to month in a predictable manner over a period of n months. The demand for the commodity in
month j will be dj units, j = 1, ..., n. The factory has two shifts: regular and overtime. In order to
meet the demand the factory can do three things:

(i) Increase regular production but only up to r units a month.

(ii) Increase overtime production but only up to s units a month.

(iii) Store present excess to cover future shortages.

The cost of

• regular production is a dollars per unit;

• overtime production is b dollars per unit;

• storage is c dollars per unit per month.

Meet the fluctuating demand at the least possible cost.

Solution: For simplicity we will assume that there are only 4 months to plan ahead. The
general situation is completely analogous.

In every month j, there are two different actions that can be taken: increase regular or overtime
production. Also in every month, except the last one, we may decide to store some excess for later.
Thus, we define three variables:

• xj,a - the amount of the commodity produced during regular production cycle, j = 1, 2, 3, 4.

• xj,b - the amount of the commodity produced overtime, j = 1, 2, 3, 4.

• xj,c - the amount of the commodity stored in month j for month j + 1, j = 1, 2, 3.

Thus, there are 11 variables. The linear model is

minimize a(x1,a + x2,a + x3,a + x4,a) + b(x1,b + x2,b + x3,b + x4,b) + c(x1,c + x2,c + x3,c)
subject to 0 ≤ xj,a ≤ r, j = 1, 2, 3, 4,

0 ≤ xj,b ≤ s, j = 1, 2, 3, 4,
0 ≤ xj,c, j = 1, 2, 3,
x1,a + x1,b − x1,c = d1,
x2,a + x2,b + x1,c − x2,c = d2,
x3,a + x3,b + x2,c − x3,c = d3,
x4,a + x4,b + x3,c = d4.
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8.5 The SUDOKU puzzle

The game Sudoku is a logic-based placement puzzle. One has to enter a digit from 1 to 9 in each cell
of a 9× 9 grid made up of 9 3× 3 subgrids. Initially, some cells have already been assigned a digit.
The goal is to fill the remaining cells so that every row, every column and every 3×3 subgrid contains
every digit exactly once. A proper puzzle is one that has a unique solution. Only proper puzzles
are considered in newspapers and magazines. The Sudoku puzzle was invented in Indianapolis in
1979, you guessed by a mathematician, but reached widespread international popularity only in
2005 after being launched by the British newspapers “The Times” at the end of 2004. Here is one
difficult example:

5 1
5 8 2

4 8 9

7 4 3
6 3

1 2 7

9 5 6
8 3 9

2 1

In the above puzzle there are 24 filled (given) cells. It is clear that the more the given numbers
the easier the puzzle and vice versa. A very good question is: What is the smallest number so that
a puzzle with that many given cells is proper, that is, has a unique solution. No body knows the
answer to this problem! There are known proper Sudoku puzzles with only 17 filled cells. Needless
to say they are extremely difficult to solve by hand. Thus, 17 is an upper bound for the answer in
the conjecture. It is proposed (but not proved) that 17 is the answer to the above open problem,
that is, every Sudoku puzzle with 16 filled cells must have more than one solution. It is not too
difficult to see that if a Sudoku puzzle has 8 filled cells then it has more than one solution, thus 8
is a lower bound for the conjecture. Can you see that?

We can create an LP problem that solves a given Sudoku puzzle. The variables will be xi,j,k
where the indexes i, j, k ∈ {1, 2, ..., 9}. We define them to be

(19) xi,j,k =

{
1 if cell (i, j) has value k
0 otherwise.

The constraints arise from the fact that every row, column and subgrid must contain every
number {1, 2, ..., 9} exactly once. Do not forget that also every cell of the grid can hold only one
number. Let the cells in the i-th subgrid i = 1, 2, ..., 9 be denoted by SGi. For example:

SG1 = {(1, 1), (1, 2), (1, 3), (2, 1)..., (3, 3)}.

Now, we can formulate the constraints.
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cell: In every cell (i, j) we have to have one number:
9∑

k=1

xi,j,k = 1.

row: In every row i the number k has to appear only once:
9∑
j=1

xi,j,k = 1.

column: In every column j the number k has to appear only once:
9∑
i=1

xi,j,k = 1.

subgrid: In subgrid l the number k has to appear only once:
∑

(i,j)∈SGl

xi,j,k = 1.

What is the objective function? Well, there is none. All we want is a feasible solution. Thus, any
objective function will do! As we will see later in the course, the algorithms for linear programming
try to find a feasible solution first and only then they try to find a feasible solution that is optimal.
Thus, we can simply choose to maximize x1,1,1. It doesn’t matter what objective function you
choose.
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