STAT 9657 — Problem Set 1

You may use any results from the course notes when solving the following problems.

- (i) Consider the sequence $\{a_n\}$ on [0, 1] defined as follows: $a_1 = 0, a_2 = 1, a_2 = 1/2, a_4 = 1/4, a_5 = 3/4, a_6 = 1/8, a_7 = 3/8, a_8 = 5/8, a_9 = 7/8, \dots$ What are the limit points of $\{a_n\}$, limsup and liminf?
- (ii) Consider the sequence $\{a_n\}$ on [0, 1] defined as follows: $a_1 = 0, a_2 = 1, a_2 = 0, a_4 = 1/2, a_5 = 1, a_6 = 0, a_7 = 1/4, a_8 = 2/4, a_9 = 3/4, a_{10} = 1, a_{11} = 0, a_{12} = 1/8, a_{13} = 2/8, a_{14} = 3/8, a_{15} = 4/8, a_{16} = 5/8, a_{17} = 6/8, a_{18} = 7/8, a_{19} = 1, \dots$ What are the limit points of $\{a_n\}$, limsup and liminf?
- (iii) For any functions f(x) and g(x) defined on (a, ∞) we have

 $\operatorname{limsup}_{x \to \infty}(f(x) + g(x)) \ge \operatorname{limsup}_{x \to \infty}f(x) + \operatorname{liminf}_{x \to \infty}g(x) \ge \operatorname{liminf}_{x \to \infty}(f(x) + g(x)).$

(iv) Let f(x) and g(x) be any functions defined on (a, ∞) and suppose that

$$\operatorname{liminf}_{x \to \infty}(g(x) - f(x)) \ge 0.$$

Show that

$$\operatorname{limsup}_{x \to \infty} f(x) \leq \operatorname{limsup}_{x \to \infty} g(x), \quad \text{and} \\ \operatorname{liminf}_{x \to \infty} f(x) \leq \operatorname{liminf}_{x \to \infty} g(x).$$

(v) Give an example of two sequences $\{a_n\}$ and $\{b_n\}$ such that

(vi) Let X and Y be sets, and let $f : X \to Y$ be a function. Let $A_i, i \in I$ be a family of subsets of X where I is an index set. Let $B_j, j \in J$ be a family of subsets of Y where J is an index set. Carefully show that

(a)
$$f\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f(A_i);$$

(b) $f\left(\bigcap_{i\in I} A_i\right) \subseteq \bigcap_{i\in I} f(A_i);$
(c) $f^{-1}\left(\bigcup_{j\in J} B_j\right) = \bigcup_{j\in J} f^{-1}(B_j);$
(d) $f^{-1}\left(\bigcap_{j\in J} B_j\right) = \bigcap_{j\in J} f^{-1}(B_j);$

- (vii) Let X, Y, and Z be sets and let $f: X \to Y, g: Y \to Z$ be two functions. Carefully show that
 - (a) $(f^{-1} \circ f)(A) \supseteq A;$
 - (b) $(f \circ f^{-1})(B) \subseteq B;$
 - (c) $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C)).$
- (viii) Let $\{a_n\}$ be a convergent sequences of real numbers with $\lim_{n\to\infty} a_n = a$. Define $b_n := \frac{1}{n} \sum_{i=1}^n a_i$ for n = 1, 2, 3, ... Show that $\lim_{n\to\infty} b_n = a$.
- (ix) For any sets $A_1, A_2, \ldots \subseteq \Omega$ show that

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$$
 and $\left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} A_i^c$.

(x) Let $k \in \mathbb{N}$ be a fixed natural number, find the limit of the sequence $\{b_n\}$, where

$$b_n := \frac{1}{n^{k+1}} \sum_{m=1}^n m^k.$$

(xi) Let Ω_1 and Ω_2 be two sets and let $f : \Omega_1 \to \Omega_2$ be a function between them. Show that for any σ -algebra \mathcal{F} on Ω_2 , we have that $f^{-1}(\mathcal{F})$ is a σ -algebra on Ω_1 .

Here, by $f^{-1}(\mathcal{F})$ we understand the collection of all subsets of Ω_1 that are the pre-image of a set in \mathcal{F} . In other words:

$$f^{-1}(\mathcal{F}) := \{ f^{-1}(A) : A \in \mathcal{F} \}$$

(xii) Let Ω_1 and Ω_2 be two sets and let $f : \Omega_1 \to \Omega_2$ be a function between them. Suppose that \mathcal{M} is a collection of subsets of Ω_2 . Show that $f^{-1}(\sigma(\mathcal{M})) = \sigma(f^{-1}(\mathcal{M}))$.

The following problem is for the diehards and it is not required for the exams.

(xii) What are the limit points of the sequence $\{\sin(n)\}_{n=1}^{\infty}$.