STAT 9657 - Problem Set 1

You may use any results from the course notes when solving the following problems.
(i) Consider the sequence $\left\{a_{n}\right\}$ on $[0,1]$ defined as follows: $a_{1}=0, a_{2}=1, a_{2}=1 / 2, a_{4}=1 / 4, a_{5}=$ $3 / 4, a_{6}=1 / 8, a_{7}=3 / 8, a_{8}=5 / 8, a_{9}=7 / 8, \ldots$ What are the limit points of $\left\{a_{n}\right\}$, limsup and liminf?
(ii) Consider the sequence $\left\{a_{n}\right\}$ on [0,1] defined as follows: $a_{1}=0, a_{2}=1, a_{2}=0, a_{4}=1 / 2, a_{5}=$ $1, a_{6}=0, a_{7}=1 / 4, a_{8}=2 / 4, a_{9}=3 / 4, a_{10}=1, a_{11}=0, a_{12}=1 / 8, a_{13}=2 / 8, a_{14}=3 / 8, a_{15}=$ $4 / 8, a_{16}=5 / 8, a_{17}=6 / 8, a_{18}=7 / 8, a_{19}=1, \ldots$ What are the limit points of $\left\{a_{n}\right\}$, limsup and liminf?
(iii) For any functions $f(x)$ and $g(x)$ defined on (a, ∞) we have

$$
\limsup _{x \rightarrow \infty}(f(x)+g(x)) \geq \limsup _{x \rightarrow \infty} f(x)+\liminf _{x \rightarrow \infty} g(x) \geq \liminf _{x \rightarrow \infty}(f(x)+g(x)) .
$$

(iv) Let $f(x)$ and $g(x)$ be any functions defined on (a, ∞) and suppose that

$$
\liminf _{x \rightarrow \infty}(g(x)-f(x)) \geq 0
$$

Show that

$$
\begin{aligned}
\limsup _{x \rightarrow \infty} f(x) & \leq \limsup _{x \rightarrow \infty} g(x), \quad \text { and } \\
\liminf _{x \rightarrow \infty} f(x) & \leq \liminf _{x \rightarrow \infty} g(x) .
\end{aligned}
$$

(v) Give an example of two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ such that

$$
\begin{aligned}
-\infty<\liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n} & <\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)<\liminf _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n} \\
& <\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)<\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}<\infty .
\end{aligned}
$$

(vi) Let X and Y be sets, and let $f: X \rightarrow Y$ be a function. Let $A_{i}, i \in I$ be a family of subsets of X where I is an index set. Let $B_{j}, j \in J$ be a family of subsets of Y where J is an index set. Carefully show that
(a) $f\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f\left(A_{i}\right)$;
(b) $f\left(\bigcap_{i \in I} A_{i}\right) \subseteq \bigcap_{i \in I} f\left(A_{i}\right)$;
(c) $f^{-1}\left(\bigcup_{j \in J} B_{j}\right)=\bigcup_{j \in J} f^{-1}\left(B_{j}\right)$;
(d) $f^{-1}\left(\bigcap_{j \in J} B_{j}\right)=\bigcap_{j \in J} f^{-1}\left(B_{j}\right)$;
(vii) Let X, Y, and Z be sets and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be two functions. Carefully show that
(a) $\left(f^{-1} \circ f\right)(A) \supseteq A$;
(b) $\left(f \circ f^{-1}\right)(B) \subseteq B$;
(c) $(g \circ f)^{-1}(C)=f^{-1}\left(g^{-1}(C)\right)$.
(viii) Let $\left\{a_{n}\right\}$ be a convergent sequences of real numbers with $\lim _{n \rightarrow \infty} a_{n}=a$. Define $b_{n}:=$ $\frac{1}{n} \sum_{i=1}^{n} a_{i}$ for $n=1,2,3, \ldots$. Show that $\lim _{n \rightarrow \infty} b_{n}=a$.
(ix) For any sets $A_{1}, A_{2}, \ldots \subseteq \Omega$ show that

$$
\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}=\bigcap_{i=1}^{\infty} A_{i}^{c} \quad \text { and } \quad\left(\bigcap_{i=1}^{\infty} A_{i}\right)^{c}=\bigcup_{i=1}^{\infty} A_{i}^{c}
$$

(x) Let $k \in \mathbb{N}$ be a fixed natural number, find the limit of the sequence $\left\{b_{n}\right\}$, where

$$
b_{n}:=\frac{1}{n^{k+1}} \sum_{m=1}^{n} m^{k} .
$$

(xi) Let Ω_{1} and Ω_{2} be two sets and let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a function between them. Show that for any σ-algebra \mathcal{F} on Ω_{2}, we have that $f^{-1}(\mathcal{F})$ is a σ-algebra on Ω_{1}.
Here, by $f^{-1}(\mathcal{F})$ we understand the collection of all subsets of Ω_{1} that are the pre-image of a set in \mathcal{F}. In other words:

$$
f^{-1}(\mathcal{F}):=\left\{f^{-1}(A): A \in \mathcal{F}\right\}
$$

(xii) Let Ω_{1} and Ω_{2} be two sets and let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a function between them. Suppose that \mathcal{M} is a collection of subsets of Ω_{2}. Show that $f^{-1}(\sigma(\mathcal{M}))=\sigma\left(f^{-1}(\mathcal{M})\right)$.

The following problem is for the diehards and it is not required for the exams.
(xii) What are the limit points of the sequence $\{\sin (n)\}_{n=1}^{\infty}$.

