STAT 9657 - Problem Set 10

You may use any results from the course notes when solving the following problems.

For all of the following problems, assume that $X, Y : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are random variables that are either both non-negative or both integrable. Let $\mathcal{G} \subseteq \mathcal{F}$.

- (i) $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$
- (ii) If X is \mathcal{G} -measurable, then $\mathbb{E}(X|\mathcal{G}) = X$ a.s.
- (iii) If X = Y a.s. then $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(Y|\mathcal{G})$ a.s.
- (iv) If X = c a.s. then $\mathbb{E}(X|\mathcal{G}) = c$ a.s.
- (v) If $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$ a.s., where $a, b \ge 0$ if X and Y are both non-negative, or $a, b \in \mathbb{R}$ if X and Y are both integrable.
- (vi) If $X \leq Y$ a.s. then $\mathbb{E}(X|\mathcal{G}) \leq \mathbb{E}(Y|\mathcal{G})$ a.s.
- (vii) $|\mathbb{E}(X | \mathcal{G})| \leq \mathbb{E}(|X| | \mathcal{G})$ a.s.
- (viii) If $\{X_n\}_{n=1}^{\infty}$ is an increasing sequence of non-negative random variables converging to X, then

$$\lim_{n \to \infty} \mathbb{E}(X_n | \mathcal{G}) = \mathbb{E}(X | \mathcal{G}) \text{ a.s.}$$

(ix) If $\{X_n\}_{n=1}^{\infty}$ is a sequence of random variables converging a.s. to X and if there is an integrable random variable Y such that $|X_n| \leq Y$ for all n, then

$$\lim_{n \to \infty} \mathbb{E}(X_n | \mathcal{G}) = \mathbb{E}(X | \mathcal{G}) \text{ a.s.}$$

(x) For any $\epsilon > 0$

$$\mathbb{E}(\mathbf{1}_{\{X \ge \epsilon\}} | \mathcal{G}) \le \frac{\mathbb{E}(X^2 | \mathcal{G})}{\epsilon^2}$$

(xi) If $f : \mathbb{R} \to \mathbb{R}$ is a convex function, then

$$f(\mathbb{E}(X|\mathcal{G})) \le \mathbb{E}(f(X)|\mathcal{G}).$$

(xii) If $p \ge 1$ and $\mathbb{E}|X|^p < \infty$, then

$$|\mathbb{E}(X|\mathcal{G})|^p \leq \mathbb{E}(|X|^p|\mathcal{G})$$
 a.s.

Taking expectation from both sides of the last inequality and using property (i), gives

$$\mathbb{E}(|\mathbb{E}(X|\mathcal{G})|^p) \le \mathbb{E}(|X|^p) < \infty.$$

(xiii) If $\mathbb{E}|X|^p < \infty$ and $\mathbb{E}|Y|^q < \infty$, where $p, q \in (1, \infty)$ satisfy 1/p + 1/q = 1, then $|\mathbb{E}(XY|\mathcal{G})| \le (\mathbb{E}(|X|^p|\mathcal{G})^{1/p}(\mathbb{E}(|Y|^q|\mathcal{G})^{1/q}.$

(xiv) If $X(\omega) = Y(\omega)$ for all $\omega \in A \in \mathcal{G}$, then $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(Y|\mathcal{G})$ almost surely on A.

(xv) Show that for every $A \in \mathcal{F}$ and $B \in \mathcal{G}$, with $\mathbb{P}(A) > 0$, we have

$$\mathbb{P}(B|A) = \frac{\int_B \mathbb{P}(A|\mathcal{G}) \, d\mathbb{P}}{\int_\Omega \mathbb{P}(A|\mathcal{G}) \, d\mathbb{P}}.$$

Show that when \mathcal{G} is generated by a partition B_1, B_2, \ldots, B_n of Ω , with $\mathbb{P}(B_i) > 0$ for all i, then this equality reduces to the Bayes's formula

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\sum_{k=1}^{n} \mathbb{P}(A|B_k)\mathbb{P}(B_k)}$$

(xvi) Give an example on $\Omega = \{a, b, c\}$ in which

$$\mathbb{E}(\mathbb{E}(X|\mathcal{G}_1)|\mathcal{G}_2) \neq \mathbb{E}(\mathbb{E}(X|\mathcal{G}_2)|\mathcal{G}_1).$$

(xvii) Show that if $\mathbb{E}(Y|\mathcal{G}) = X$ and $\mathbb{E}X^2 = \mathbb{E}Y^2 < \infty$, then X = Y almost surely.