You may use any results from the course notes when solving the following problems.
For all of the following problems, assume that $X, Y:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are random variables that are either both non-negative or both integrable. Let $\mathcal{G} \subseteq \mathcal{F}$.
(i) $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$
(ii) If X is \mathcal{G}-measurable, then $\mathbb{E}(X \mid \mathcal{G})=X$ a.s.
(iii) If $X=Y$ a.s. then $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E}(Y \mid \mathcal{G})$ a.s.
(iv) If $X=c$ a.s. then $\mathbb{E}(X \mid \mathcal{G})=c$ a.s.
(v) If $\mathbb{E}(a X+b Y \mid \mathcal{G})=a \mathbb{E}(X \mid \mathcal{G})+b \mathbb{E}(Y \mid \mathcal{G})$ a.s., where $a, b \geq 0$ if X and Y are both non-negative, or $a, b \in \mathbb{R}$ if X and Y are both integrable.
(vi) If $X \leq Y$ a.s. then $\mathbb{E}(X \mid \mathcal{G}) \leq \mathbb{E}(Y \mid \mathcal{G})$ a.s.
(vii) $|\mathbb{E}(X \mid \mathcal{G})| \leq \mathbb{E}(|X| \mid \mathcal{G})$ a.s.
(viii) If $\left\{X_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence of non-negative random variables converging to X, then

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n} \mid \mathcal{G}\right)=\mathbb{E}(X \mid \mathcal{G}) \text { a.s. }
$$

(ix) If $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a sequence of random variables converging a.s. to X and if there is an integrable random variable Y such that $\left|X_{n}\right| \leq Y$ for all n, then

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n} \mid \mathcal{G}\right)=\mathbb{E}(X \mid \mathcal{G}) \text { a.s. }
$$

(x) For any $\epsilon>0$

$$
\mathbb{E}\left(\mathbf{1}_{\{X \geq \epsilon\}} \mid \mathcal{G}\right) \leq \frac{\mathbb{E}\left(X^{2} \mid \mathcal{G}\right)}{\epsilon^{2}}
$$

(xi) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function, then

$$
f(\mathbb{E}(X \mid \mathcal{G})) \leq \mathbb{E}(f(X) \mid \mathcal{G})
$$

(xii) If $p \geq 1$ and $\mathbb{E}|X|^{p}<\infty$, then

$$
|\mathbb{E}(X \mid \mathcal{G})|^{p} \leq \mathbb{E}\left(|X|^{p} \mid \mathcal{G}\right) \text { a.s. }
$$

Taking expectation from both sides of the last inequality and using property (i), gives

$$
\mathbb{E}\left(|\mathbb{E}(X \mid \mathcal{G})|^{p}\right) \leq \mathbb{E}\left(|X|^{p}\right)<\infty
$$

(xiii) If $\mathbb{E}|X|^{p}<\infty$ and $\mathbb{E}|Y|^{q}<\infty$, where $p, q \in(1, \infty)$ satisfy $1 / p+1 / q=1$, then

$$
|\mathbb{E}(X Y \mid \mathcal{G})| \leq\left(\mathbb { E } (| X | ^ { p } | \mathcal { G }) ^ { 1 / p } \left(\mathbb{E}\left(|Y|^{q} \mid \mathcal{G}\right)^{1 / q}\right.\right.
$$

(xiv) If $X(\omega)=Y(\omega)$ for all $\omega \in A \in \mathcal{G}$, then $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E}(Y \mid \mathcal{G})$ almost surely on A.
(xv) Show that for every $A \in \mathcal{F}$ and $B \in \mathcal{G}$, with $\mathbb{P}(A)>0$, we have

$$
\mathbb{P}(B \mid A)=\frac{\int_{B} \mathbb{P}(A \mid \mathcal{G}) d \mathbb{P}}{\int_{\Omega} \mathbb{P}(A \mid \mathcal{G}) d \mathbb{P}}
$$

Show that when \mathcal{G} is generated by a partition $B_{1}, B_{2}, \ldots, B_{n}$ of Ω, with $\mathbb{P}\left(B_{i}\right)>0$ for all i, then this equality reduces to the Bayes's formula

$$
\mathbb{P}\left(B_{i} \mid A\right)=\frac{\mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right)}{\sum_{k=1}^{n} \mathbb{P}\left(A \mid B_{k}\right) \mathbb{P}\left(B_{k}\right)} .
$$

(xvi) Give an example on $\Omega=\{a, b, c\}$ in which

$$
\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{G}_{1}\right) \mid \mathcal{G}_{2}\right) \neq \mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{G}_{2}\right) \mid \mathcal{G}_{1}\right) .
$$

(xvii) Show that if $\mathbb{E}(Y \mid \mathcal{G})=X$ and $\mathbb{E} X^{2}=\mathbb{E} Y^{2}<\infty$, then $X=Y$ almost surely.

