STAT 9657 — Problem Set 2

You may use any results from the course notes when solving the following problems.
(i) (a) Fix two subsets $A, B \subseteq \Omega$ with $A \subseteq B$. What is the σ-algebra generated by $\{A, B\}$?
(b) Fix two subsets $A, B \subseteq \Omega$ with $A \cap B=\emptyset$. What is the σ-algebra generated by $\{A, B\}$?
(c) Fix two subsets $A, B \subseteq \Omega$. What is the σ-algebra generated by $\{A, B\}$?
(ii) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a measure space and let $A_{1}, A_{2}, \ldots \in \mathcal{F}$ be any sets. Show that
(1) $\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{m \rightarrow \infty} \mathbb{P}\left(\bigcup_{n=1}^{m} A_{n}\right)$.
(2) If $\mathbb{P}\left(A_{1}\right)<\infty$ then $\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{m \rightarrow \infty} \mathbb{P}\left(\bigcap_{n=1}^{m} A_{n}\right)$.
(iii) If $A_{1}, \ldots, A_{n} \in \mathcal{F}$ are such that $\mathbb{P}\left(A_{1}\right)<\infty$ and $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots$ show that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(\bigcap_{i=1}^{\infty} A_{i}\right)
$$

(iv) Give an example where the union of two σ-algebras is not a σ-algebra.
(v) Let $x \in \mathbb{R}$. Is it true that $\{x\} \in \mathcal{B}(\mathbb{R})$, where $\{x\}$ is the set consisting of the element x only? Recall that \mathbb{Q} is the set of rational numbers. Is it true that $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$?
(vi) For any sets $B, A_{1}, A_{2}, \ldots \subseteq \Omega$ we have

$$
\left(\bigcup_{i=1}^{\infty} A_{i}\right) \cap B=\bigcup_{i=1}^{\infty}\left(A_{i} \cap B\right) \quad \text { and } \quad\left(\bigcap_{i=1}^{\infty} A_{i}\right) \cup B=\bigcap_{i=1}^{\infty}\left(A_{i} \cup B\right)
$$

(vii) A collection of sets $\mathcal{F} \subseteq 2^{\Omega}$ is called a monotonic class if for any $A_{1}, A_{2}, \ldots \in \mathcal{F}$, such that $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \cdots$, we have $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{F}$. Show that if a collection of sets $\mathcal{F} \subseteq 2^{\Omega}$ is an algebra and a monotonic class, then \mathcal{F} is a σ-algebra.
(viii) Suppose \mathcal{F} is a σ-algebra on Ω. Let $\bar{\Omega} \subseteq \Omega$. Show that the collection of sets

$$
\overline{\mathcal{F}}:=\{\bar{\Omega} \cap A: A \in \mathcal{F}\}
$$

is a σ-algebra on $\bar{\Omega}$.
(ix) Show the equality $\sigma\left(\mathcal{F}_{0}\right)=\sigma\left(\mathcal{F}_{2}\right)=\sigma\left(\mathcal{F}_{4}\right)$ in Proposition 36 .
(x) Show that $\sigma(\sigma(\mathcal{F}))=\sigma(\mathcal{F})$ for any collection of sets $\mathcal{F} \subseteq 2^{\Omega}$.
(xi) Let $\Omega \neq \emptyset, A \subseteq \Omega, A \neq \emptyset$, and $\mathcal{F}:=2^{\Omega}$. For any $B \subseteq \Omega$ define

$$
\mathbb{P}(B):= \begin{cases}1 & \text { if } B \cap A \neq \emptyset \\ 0 & \text { if } B \cap A=\emptyset\end{cases}
$$

Is $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space?
(xii) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $A \in \mathcal{F}$ with $\mathbb{P}(A)>0$. Show that $(\Omega, \mathcal{F}, \mu)$ is a probability space, where $\mu(B):=\mathbb{P}(B \mid A)$.
(xiii) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. If $A, B, C \in \mathcal{F}$ are three independent events, show that A^{c}, B^{c}, C^{c} are also independent.
(xiv) Let $\Omega=\{(k, l): 1 \leq k, l \leq 6\}, \mathcal{F}:=2^{\Omega}$, and $\mathbb{P}(\{(k, l)\})=\frac{1}{36}$ be the model of rolling two dice. Define the events

$$
\begin{aligned}
& A:=\{(k, l): l=1,2 \text { or } 5\}, \\
& B:=\{(k, l): l=4,5 \text { or } 6\}, \\
& C:=\{(k, l): k+l=9\} .
\end{aligned}
$$

Are the events A, B, C independent?
(xv) Let \mathbb{Q} be a finite measure on $\mathcal{B}(\mathbb{R})$. Define the function $F(x):=\mathbb{Q}((-\infty, x])$. Show that F is increasing, right-continuous, and $\mathbb{Q}((a, b])=F(b)-F(a)$ for all $-\infty<a \leq b<\infty$.
(xvi) Let \mathbb{P} be the measure in Theorem 56 from the course notes. Show that
(a) $\mathbb{P}((-\infty, b))=F(b-)-\lim _{x \rightarrow-\infty} F(x)$;
(b) $\mathbb{P}((a, b))=F(b-)-F(a)$;
(c) $\mathbb{P}(\{a\})=F(a)-F(a-)$;
(d) $\mathbb{P}([a, b))=F(b-)-F(a-)$;
(e) $\mathbb{P}([a, b])=F(b)-F(a-)$.
(f) $\mathbb{P}((a, \infty))=\lim _{x \rightarrow \infty} F(x)-F(a)$;
(g) $\mathbb{P}([a, \infty))=\lim _{x \rightarrow \infty} F(x)-F(a-)$;
(h) If, in addition, the function F is continuous, then
i. $\mathbb{P}((-\infty, b])=\mathbb{P}((-\infty, b))=F(b)-\lim _{x \rightarrow-\infty} F(x)$;
ii. $\mathbb{P}((a, b))=\mathbb{P}([a, b))=\mathbb{P}((a, b])=\mathbb{P}([a, b])=F(b)-F(a)$;
iii. $\mathbb{P}(\{a\})=0$.
(i) If $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$, show that \mathbb{P} is a probability measure.

