STAT 9657 - Problem Set 3

You may use any results from the course notes when solving the following problems.
(i) Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ be two measurable spaces. Let \mathcal{G}_{1} be a collection of subsets of Ω_{1} that generates \mathcal{F}_{1}, that is $\sigma\left(\mathcal{G}_{1}\right)=\mathcal{F}_{1}$. Let \mathcal{G}_{2} be a collection of subsets of Ω_{2} that generates \mathcal{F}_{2}, that is $\sigma\left(\mathcal{G}_{2}\right)=\mathcal{F}_{2}$. Suppose in addition, that $\Omega_{1} \in \mathcal{G}_{1}$ and $\Omega_{2} \in \mathcal{G}_{2}$. Then, the collection of rectangles

$$
\left\{A \times B: A \in \mathcal{G}_{1}, B \in \mathcal{G}_{2}\right\}
$$

generates the σ-algebra $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$.
(ii) Define the function $F(x)$ equal to 0 if $x<0$; to $1 / 2$ if $0 \leq x<2$ and to 1 if $2 \leq x$. What is the measure on $\mathcal{B}(\mathbb{R})$ determined by $F(x)$.
(iii) Suppose the sequence q_{1}, q_{2}, \ldots contains all rational numbers, each one exactly once. Let $\alpha_{i}>0$ be such that $\sum_{i=1}^{\infty} \alpha_{i}=1$. Define the function

$$
F(x)=\sum_{i=1}^{\infty} \alpha_{i} \mathbf{1}_{\left[q_{i}, \infty\right)}(x)
$$

Show that $F(x)$ is increasing and right-continuous. What is the measure on $\mathcal{B}(\mathbb{R})$ determined by $F(x)$? (Explain only what the measure is on the sets of the form $(a, b],-\infty<a \leq b<\infty$.)
(iv) Let $A_{1}, A_{2}, \ldots, A_{n}$ be events, where $n \geq 2$. Show that

$$
\begin{aligned}
\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) & =\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{1 \leq i<j \leq n} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\sum_{1 \leq i<j<k \leq n} \mathbb{P}\left(A_{i} \cap A_{j} \cap A_{k}\right) \\
& -\cdots+(-1)^{n+1} \mathbb{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right) .
\end{aligned}
$$

(v) Let $\left\{A_{n}\right\}$ be a sequence of events in a probability space, such that $\mathbb{P}\left(A_{n}\right)=1$ for all $n=1,2, \ldots$. Show that $\mathbb{P}\left(\cap_{n=1}^{\infty} A_{n}\right)=1$.
(vi) Ten percent of the surface of a sphere is coloured blue, the rest is red. Show that no matter how the colours are distributed, it is possible to inscribe a cube in the sphere with all its vertices red.
(vii) Let $A_{1}, A_{2}, \ldots, A_{n}$ be n events in Ω. Consider the sequence

$$
A_{1}, A_{2}, \ldots, A_{n}, A_{1}, A_{2}, \ldots, A_{n}, A_{1}, A_{2}, \ldots, A_{n}, \ldots
$$

What is liminf and limsup of that sequence?
(viii) Let $A_{1}, A_{2}, \ldots, A_{n}$ be n events in Ω. Consider the sequence

$$
A_{1}, A_{2}, \ldots, A_{n}, \emptyset, \emptyset, \emptyset, \ldots
$$

What is liminf and limsup of that sequence?

We say that the sequence of sets $\left\{A_{n}\right\}$ converge to A if $\limsup A_{n}=\liminf A_{n}=A$, in which case we denote the limit by $\lim A_{n}=A$.
(ix) a) Let $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \cdots$ be an increasing sequence of events in Ω. What is liminf and limsup of that sequence?
b) Let $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots$ be a decreasing sequence of events in Ω. What is liminf and limsup of that sequence?
(x) Let $\left\{A_{n}\right\}$ be a sequence of events. Let $C_{n}:=\cap_{i=n}^{\infty} A_{i}$ and $B_{n}:=\cup_{i=n}^{\infty} A_{i}$, let $C:=\liminf A_{n}$ and $B:=\limsup A_{n}$. Show that
a) If A_{n} converges to A then $\mathbb{P}\left(A_{n}\right)$ converges to $\mathbb{P}(A)$.
b) If B_{n} is independent of C_{n} for every n, then B is independent of C.
c) If B_{n} is independent of C_{n} for every n and if A_{n} converges to A then $\mathbb{P}(A)$ equals zero or one.
(xi) Give an example of a sequence of sets $\left\{A_{n}\right\}$ that converges to the empty set, but such that the sequence $\left\{\left|A_{n}\right|\right\}$ converges to infinity. (Recall that $\left|A_{n}\right|$ is the number of elements in the set A_{n}.)
(xii) Suppose you have billiard balls, which are numbered $0,1,2, \ldots$. At each step of the game you add two balls to a bag and you withdraw one. More precisely, at at one minute before noon balls numbered 0 and 1 are placed in the bag and ball number 0 is removed. At $1 / 2$ minute before noon balls numbered 2 and 3 are added, and ball number 1 is removed. At $1 / 3$ minute before noon balls 4 and 5 are added and ball number 2 is taken out. This process is continued, and the question is asked: How many balls are in the bag at noon?
(xiii) Let A_{1}, A_{2}, \ldots be a sequence of events from a probability space. Show that $\mathbb{P}\left(\limsup A_{n}\right) \geq$ $\limsup _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)$. Is there analogous relationship for liminf?

For the next problems, you may or may not have to use Borel-Cantelli lemma.
(xiv) Let X_{1}, X_{2}, \ldots be non-negative, independent and identically distributed random variables with infinite mean. Show that

$$
\mathbb{P}\left(\limsup _{n \rightarrow \infty} \frac{X_{n}}{n}=\infty\right)=1
$$

(xv) Let X_{1}, X_{2}, \ldots be independent and exponentially distributed with parameter 1 . Show that

$$
\mathbb{P}\left(\limsup _{n \rightarrow \infty} \frac{X_{n}}{\log (n)}=1\right)=1
$$

Hint: consider the events $A_{n}:=\left\{X_{n} / \log (n) \geq 1+\epsilon\right\}$ and consider two cases when ϵ is positive or negative number close to zero.
(xvi) a) Show that for $x>0$, the following bounds hold

$$
\left(\frac{1}{x}-\frac{1}{x^{3}}\right) e^{-\frac{x^{2}}{2}} \leq \int_{x}^{\infty} e^{-\frac{y^{2}}{2}} d y \leq \frac{1}{x} e^{-\frac{x^{2}}{2}}
$$

Hint: For the first inequality show and use that

$$
\int_{x}^{\infty}\left(1-\frac{3}{y^{4}}\right) e^{-\frac{y^{2}}{2}} d y=\left(\frac{1}{x}-\frac{1}{x^{3}}\right) e^{-\frac{x^{2}}{2}}
$$

For the second change the variable $y=x+z$.
b) Let X_{1}, X_{2}, \ldots be independent and identically distributed $N(0,1)$ random variables. Show that

$$
\mathbb{P}\left(\limsup _{n \rightarrow \infty} \frac{\left|X_{n}\right|}{\sqrt{\log (n)}}=\sqrt{2}\right)=1
$$

Hint: consider the events $A_{n}:=\left\{\left|X_{n}\right| \geq \sqrt{2 \log (n)}(1+\epsilon)\right\}$.
(xvii) Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a sequence of events. Show that if $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right) \rightarrow 0$ and $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}^{c} \cap A_{n+1}\right)<\infty$, then $\mathbb{P}\left(\limsup A_{n}\right)=0$.
(xviii) Let X_{1}, X_{2}, \ldots be independent and exponentially distributed with parameter 1 . Show that

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty}\left(\max _{1 \leq k \leq n} X_{k}\right) / \log (n)=1\right)=1
$$

by executing the following strategy. Let

$$
B_{n}:=\left\{\left(\max _{1 \leq k \leq n} X_{k}\right) / \log (n) \geq 1-\epsilon\right\} \text { and } C_{n}:=\left\{\left(\max _{1 \leq k \leq n} X_{k}\right) / \log (n) \leq 1+\epsilon\right\}
$$

Show that $\mathbb{P}\left(B_{n}^{c} \cup C_{n}^{c}\right)=\left(1-1 / n^{1-\epsilon}\right)^{n}+1-\left(1-1 / n^{1+\epsilon}\right)^{n}$. Let $A_{n}:=B_{n}^{c} \cup C_{n}^{c}$ and show that the sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ satisfies the conditions from the previous exercise. To do that, show that $A_{n}^{c} \cap A_{n+1} \subseteq\left\{\max _{i=1, \ldots, n+1} X_{i} \leq(1-\epsilon) \log (n+1)\right\} \cup\left\{X_{n+1} \geq(1+\epsilon) \log (n+1)\right\}$ and use it to make the estimate $\mathbb{P}\left(A_{n}^{c} \cap A_{n+1}\right) \leq\left(1-1 /(n+1)^{1-\epsilon}\right)^{n+1}+1 /(n+1)^{1+\epsilon}$.
(xix) Consider a sequence of random variables X_{1}, X_{2}, \ldots on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

We say that the sequence $\left\{X_{n}\right\}$ converges to the random variable X almost surely, if there is a set $A \subset \Omega$ with measure 1 such that $\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)$ for all $\omega \in A$.
We say that the sequence $\left\{X_{n}\right\}$ completely converges to the random variable X if

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)<\infty \text { for all } \epsilon>0
$$

Show that if $\left\{X_{n}\right\}$ completely converges to X then it converges to X almost surely.

