STAT 9657 — Problem Set 4

You may use any results from the course notes when solving the following problems.

- (i) If X and Y are random variables on (Ω, \mathcal{F}) , then so are XY, X/Y provided that $Y \neq 0$, and |X|.
- (ii) Show that step-functions are measurable. Hint: use the fact that by taking all possible intersections of the sets A_i and by adding appropriate complements, we can find a collection of sets $C_1, ..., C_N \in \mathcal{F}$ such that
 - (a) $C_j \cap C_k = \emptyset$ for $j \neq k$;
 - (b) $\bigcup_{i=1}^{N} C_i = \bigcup_{i=1}^{n} A_i$; and
 - (c) for every set A_i there is an index set $I_i \subseteq \{1, 2, ..., N\}$ such that $A_i = \bigcup_{j \in I_i} C_j$.
- (iii) Let the function $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable with $X \ge 0$. Show that there is a sequence $\{X_n\}$ of step-functions $X_n : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $0 \le X_1(\omega) \le X_2(\omega) \le \cdots \le X(\omega)$ and $X(\omega) = \lim_{n \to \infty} X_n(\omega)$ for all $\omega \in \Omega$.
- (iv) Let the function $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable. Show that there is a sequence $\{X_n\}$ of step-functions $X_n : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $0 \leq |X_1(\omega)| \leq |X_2(\omega)| \leq \cdots \leq |X(\omega)|$ and $X(\omega) = \lim_{n \to \infty} X_n(\omega)$ for all $\omega \in \Omega$.
- (v) Let $X : \Omega \to S$ be a function between the sets Ω and S. Let \mathcal{S} be a σ -algebra on S. Show that
 - (a) The collection of subsets $\sigma(X) := \{X^{-1}(A) : A \in \mathcal{S}\}$ is a σ -algebra on Ω . This σ -algebra is called the σ -algebra generated by X.
 - (b) If \mathcal{F} is a σ -algebra on Ω such that $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ is measurable, then $\sigma(X) \subseteq \mathcal{F}$. Hence $\sigma(X)$ is the smallest σ -algebra such that $X : (\Omega, \sigma(X)) \to (S, \mathcal{S})$ is measurable.
 - (c) Let $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable. Let $\mathcal{S}_0 := \{(-\infty, x] : x \in \mathbb{R}\}$. Show that $\sigma(X)$ is generated by $\{X^{-1}(A) : A \in \mathcal{S}_0\}$.
- (vi) Assume that $(\Omega, \mathcal{F}, \mathbb{P})$ is a measure space and let (S, \mathcal{S}) be a measurable space. Let $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ be a measurable function. For every set $B \in \mathcal{S}$ define

$$\mathbb{P}_X(B) := \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) = \mathbb{P}(X^{-1}(B)).$$

Show that \mathbb{P}_X is a measure on \mathcal{S} . If \mathbb{P} is a probability measure, show that \mathbb{P}_X is also a probability measure. The measure \mathbb{P}_X is called the **image of** \mathbb{P} **under** X or the **law of** X.

(vii) Let \mathbb{P}_1 and \mathbb{P}_2 be two measures on $\mathcal{B}(\mathbb{R})$. Show that $\mathbb{P}_1 = \mathbb{P}_2$ if and only if $\mathbb{P}_1((-\infty, x]) = \mathbb{P}_2((-\infty, x])$ for all $x \in \mathbb{R}$.

(viii) a) Let (Ω, \mathcal{S}) be a measurable space and let \mathcal{M} be a collection of functions from Ω to \mathbb{R} containing all step functions. Suppose that if $\{X_n\}$ is a sequence of functions from \mathcal{M} converging to X then X is also in \mathcal{M} . Show that \mathcal{M} contains all measurable real-valued functions (i.e. random variables) on (Ω, \mathcal{S}) .

(b) Let $X, Y : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be two random variables. There exists a measurable function $f : (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that Y = f(X) if and only if $\sigma(Y) \subseteq \sigma(X)$. Hint: let $\mathcal{S} := \sigma(X)$ and consider the set \mathcal{M} of all functions of the form $f(X(\omega))$ for some measurable $f : \mathbb{R} \to \mathbb{R}$.