STAT 9657 - Problem Set 4

You may use any results from the course notes when solving the following problems.
(i) If X and Y are random variables on (Ω, \mathcal{F}), then so are $X Y, X / Y$ provided that $Y \neq 0$, and $|X|$.
(ii) Show that step-functions are measurable. Hint: use the fact that by taking all possible intersections of the sets A_{i} and by adding appropriate complements, we can find a collection of sets $C_{1}, \ldots, C_{N} \in \mathcal{F}$ such that
(a) $C_{j} \cap C_{k}=\emptyset$ for $j \neq k$;
(b) $\cup_{j=1}^{N} C_{j}=\cup_{i=1}^{n} A_{i}$; and
(c) for every set A_{i} there is an index set $I_{i} \subseteq\{1,2, \ldots, N\}$ such that $A_{i}=\cup_{j \in I_{i}} C_{j}$.
(iii) Let the function $X:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable with $X \geq 0$. Show that there is a sequence $\left\{X_{n}\right\}$ of step-functions $X_{n}:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $0 \leq X_{1}(\omega) \leq X_{2}(\omega) \leq$ $\cdots \leq X(\omega)$ and $X(\omega)=\lim _{n \rightarrow \infty} X_{n}(\omega)$ for all $\omega \in \Omega$.
(iv) Let the function $X:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable. Show that there is a sequence $\left\{X_{n}\right\}$ of step-functions $X_{n}:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $0 \leq\left|X_{1}(\omega)\right| \leq\left|X_{2}(\omega)\right| \leq \cdots \leq$ $|X(\omega)|$ and $X(\omega)=\lim _{n \rightarrow \infty} X_{n}(\omega)$ for all $\omega \in \Omega$.
(v) Let $X: \Omega \rightarrow S$ be a function between the sets Ω and S. Let \mathcal{S} be a σ-algebra on S. Show that
(a) The collection of subsets $\sigma(X):=\left\{X^{-1}(A): A \in \mathcal{S}\right\}$ is a σ-algebra on Ω. This σ-algebra is called the σ-algebra generated by X.
(b) If \mathcal{F} is a σ-algebra on Ω such that $X:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ is measurable, then $\sigma(X) \subseteq \mathcal{F}$. Hence $\sigma(X)$ is the smallest σ-algebra such that $X:(\Omega, \sigma(X)) \rightarrow(S, \mathcal{S})$ is measurable.
(c) Let $X:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable. Let $\mathcal{S}_{0}:=\{(-\infty, x]: x \in \mathbb{R}\}$. Show that $\sigma(X)$ is generated by $\left\{X^{-1}(A): A \in \mathcal{S}_{0}\right\}$.
(vi) Assume that $(\Omega, \mathcal{F}, \mathbb{P})$ is a measure space and let (S, \mathcal{S}) be a measurable space. Let X : $(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ be a measurable function. For every set $B \in \mathcal{S}$ define

$$
\mathbb{P}_{X}(B):=\mathbb{P}(\{\omega \in \Omega: X(\omega) \in B\})=\mathbb{P}\left(X^{-1}(B)\right) .
$$

Show that \mathbb{P}_{X} is a measure on \mathcal{S}. If \mathbb{P} is a probability measure, show that \mathbb{P}_{X} is also a probability measure. The measure \mathbb{P}_{X} is called the image of \mathbb{P} under X or the law of X.
(vii) Let \mathbb{P}_{1} and \mathbb{P}_{2} be two measures on $\mathcal{B}(\mathbb{R})$. Show that $\mathbb{P}_{1}=\mathbb{P}_{2}$ if and only if $\mathbb{P}_{1}((-\infty, x])=$ $\mathbb{P}_{2}((-\infty, x])$ for all $x \in \mathbb{R}$.
(viii) a) Let (Ω, \mathcal{S}) be a measurable space and let \mathcal{M} be a collection of functions from Ω to \mathbb{R} containing all step functions. Suppose that if $\left\{X_{n}\right\}$ is a sequence of functions from \mathcal{M} converging to X then X is also in \mathcal{M}. Show that \mathcal{M} contains all measurable real-valued functions (i.e. random variables) on (Ω, \mathcal{S}).
(b) Let $X, Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be two random variables. There exists a measurable function $f:(\mathbb{R}, \mathcal{B}(\mathbb{R})) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $Y=f(X)$ if and only if $\sigma(Y) \subseteq \sigma(X)$. Hint: let $\mathcal{S}:=\sigma(X)$ and consider the set \mathcal{M} of all functions of the form $f(X(\omega))$ for some measurable $f: \mathbb{R} \rightarrow \mathbb{R}$.

