STAT 9657 - Problem Set 5

You may use any results from the course notes when solving the following problems.
(i) Show that Step 2 in the definition of expected value is "backwards" compatible with Step 1. That is, if X is a non-negative step function, then $\mathbb{E} X=\sup \{\mathbb{E} Z: 0 \leq Z(\omega) \leq$ $X(\omega)$ for all $\omega \in \Omega ; Z$ is a step function $\}$.
(ii) Show that there are at most countably many $x \in \mathbb{R}$ where a distribution function F is not continuous.
(iii) Let F be a distribution function. Recall that the quantile function is defined by

$$
F^{-1}(\omega):=\sup \{y: F(y)<\omega\} \quad \text { for all } \omega \in(0,1)
$$

Show that
(a) If $z<F^{-1}(\omega)$ then $F(z)<\omega$
(b) $F^{-1} \circ F(z) \leq z$ for all $z \in \mathbb{R}$ such that $0<F(z)<1$
(c) $F \circ F^{-1}(\omega) \geq \omega$ for all $\omega \in(0,1)$
(iv) Let Y be a random variable uniformly distributed in $(0,1)$. This means that there is a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $Y:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow((0,1), \mathcal{B}(0,1))$ satisfies $\mathbb{P}(Y \leq a)=a$ for all $a \in(0,1)$. Let F be a distribution function. Recall that F^{-1} can be viewed as a random variable on $((0,1), \mathcal{B}(0,1))$ with the Lebesgue measure. Let $X:=F^{-1}(Y)$. Note that this is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. Show that $F_{X}(x)=F(x)$ for all $x \in \mathbb{R}$.
(v) (a) Let $Y:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable with c.d.f. F_{Y}. Suppose F_{Y} is continuous function. Show that $F_{Y}(Y)$ is uniformly distributed on $(0,1)$.
(b) Conversely, let $Y:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable and let F be a continuous distribution function. If $F(Y)$ is uniformly distributed on $(0,1)$ then $F_{Y}=F$.
(vi) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X: \Omega \rightarrow \mathbb{R}$ be a random variable. Show that if $X \geq 0$ a.s. and $\mathbb{E} X=0$ then $X=0$ a.s.
(vii) Let X_{1}, X_{2}, \ldots be positive random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Show that

$$
\sum_{k=1}^{\infty} \mathbb{E} X_{k}=\mathbb{E}\left(\sum_{k=1}^{\infty} X_{k}\right)
$$

(viii) Let $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R}$ be a non-negative, integrable random variable with $\mathbb{E} X>0$. Define the function

$$
\mu(A)=\frac{1}{\mathbb{E} X} \int_{A} X d \mathbb{P}
$$

for all $A \in \mathcal{F}$.
a) Show that μ is a probability measure on \mathcal{F}.
b) Show that for any random variable $Y:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R}$, we have

$$
\int_{\Omega} Y d \mu=\frac{1}{\mathbb{E} X} \int_{\Omega} Y X d \mathbb{P}
$$

provided Y is integrable with respect to μ. Hint: show the equality for step-functions, then for non-negative, then for any.

