STAT 9657 — Problem Set 6

You may use any results from the course notes when solving the following problems.
(i) If $\mathbb{E} X$ exists and $c \in \mathbb{R}$ then $\mathbb{E}(c X)$ exists and $\mathbb{E}(c X)=c \mathbb{E} X$.
(ii) If $X \leq Y$ and $\mathbb{E}|X|<\infty$, then $\mathbb{E} X \leq \mathbb{E} Y$.
(iii) If $X=Y$ a.s. and the expectation of one of them exists, then so does the expectation of the other and $\mathbb{E} X=\mathbb{E} Y$.
(iv) If X and Y are integrable then $a X+b Y$ is integrable and $\mathbb{E}(a X+b Y)=a \mathbb{E} X+b \mathbb{E} Y$ for all $a, b \in \mathbb{R}$.
(v) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X, X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be random variables. If $0 \geq X_{n} \downarrow X$ a.s., then

$$
\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=\mathbb{E} X
$$

(vi) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function and X_{1}, \ldots, X_{n} are random variables. Show that $f\left(\mathbb{E} X_{1}, \ldots, \mathbb{E} X_{n}\right) \leq \mathbb{E} f\left(X_{1}, \ldots, X_{n}\right)$ provided that $\mathbb{E}\left|X_{i}\right|<\infty$ for all $i=1, \ldots, n$. Hint: use the fact that at every $x_{0}=\left(x_{0,1}, \ldots, x_{0, n}\right) \in \mathbb{R}^{n}$ there is a supporting hyperplane to the graph of $f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$. That means, that there is a vector $a \in \mathbb{R}^{n}$ and a number $b \in \mathbb{R}$ such that $a_{1} x_{1}+\cdots+a_{n} x_{n}+b \leq f\left(x_{1}, \ldots, x_{n}\right)$ for every vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $a_{1} x_{0,1}+\cdots+a_{n} x_{0, n}+b=f\left(x_{0,1}, \ldots, x_{0, n}\right)$.
(vii) For $0<p<q<\infty$ we have that $\left(\mathbb{E}|X|^{p}\right)^{1 / p} \leq\left(\mathbb{E}|X|^{q}\right)^{1 / q}$.
(viii) Let $X \geq 0$ be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ and let $p>0$, then

$$
\mathbb{E} X^{p}=\int_{0}^{\infty} p x^{p-1} \mathbb{P}(X>x) d x
$$

(ix) a) Suppose $\mathcal{F}_{i, j}, 1 \leq i \leq n, 1 \leq j \leq m_{i}$ are independent σ-algebras. Let $\mathcal{G}_{i}:=\sigma\left(\cup_{j=1}^{m_{i}} \mathcal{F}_{i, j}\right)$ for $i=1, \ldots, n$. Show that $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ are independent σ-algebras.
b) Let X_{1}, \ldots, X_{n} be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{F}_{i}:=\sigma\left(X_{i}\right), i=1, \ldots, n$ be the σ-algebras that they generate. Consider the function $\left(X_{1}, \ldots, X_{n}\right): \Omega \rightarrow\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$. Show that the σ-algebra that it generates on Ω is

$$
\sigma\left(\left(X_{1}, \ldots, X_{n}\right)\right)=\sigma\left(\cup_{i=1}^{n} \mathcal{F}_{i}\right)
$$

c) Suppose $X_{i, j}, 1 \leq i \leq n, 1 \leq j \leq m_{i}$ are independent random variables. Suppose the functions $f_{i}: \mathbb{R}^{m_{i}} \rightarrow \mathbb{R}$ are measurable, and let $Y_{i}:=f_{i}\left(X_{i, 1}, \ldots, X_{i, m_{i}}\right)$ for $i=1, \ldots, n$. Show that the random variables Y_{1}, \ldots, Y_{n} are also independent.
(x) Let $X>0$ be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, show that

$$
\lim _{y \rightarrow \infty} y \mathbb{E}\left((1 / X) 1_{\{X>y\}}\right)=0 \text { and } \lim _{y \downarrow 0} y \mathbb{E}\left((1 / X) 1_{\{X>y\}}\right)=0
$$

(Do not assume that $\mathbb{E}(1 / X)<\infty$.)
(xi) If $X=\operatorname{normal}(\alpha, a)$ and $Y=\operatorname{normal}(\beta, b)$ are independent, show that $X+Y=\operatorname{normal}(\alpha+$ $\beta, a+b)$. (Here, a and b are variances.)
(xii) If $X=\operatorname{gamma}(\alpha, \lambda)$ and $Y=\operatorname{gamma}(\beta, \lambda)$ are independent, show that $X+Y=\operatorname{gamma}(\alpha+$ $\beta, \lambda)$.

