STAT 9657 — Problem Set 7

You may use any results from the course notes when solving the following problems.
(i) Show that two random variables X and Y are independent if and only if the σ-algebras $\sigma(X)$ and $\sigma(Y)$ are independent. The same result holds true for any number of random variables. Hint: note that $\sigma(X)$ contains Ω.
(ii) Let X_{1}, \ldots, X_{n} be random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. If the c.d.f. $F\left(x_{1}, \ldots, x_{n}\right)$ has density $f\left(x_{1}, \ldots, x_{n}\right)$ that is

$$
F\left(x_{1}, \ldots, x_{n}\right)=\int_{-\infty}^{x_{n}} \cdots \int_{-\infty}^{x_{1}} f\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n}
$$

and if $f\left(x_{1}, \ldots, x_{n}\right)=g_{1}\left(x_{1}\right) \cdots g_{n}\left(x_{n}\right)$, where $g_{i} \geq 0$ is a measurable function $i=1, \ldots, n$, then X_{1}, \ldots, X_{n} are independent.
(iii) Let the joint distribution of X and Y be as follows

		Y		
		1	0	-1
	1	0	a	0
X	0	b	c	b
	-1	0	a	0

where the numbers a, b, c are strictly positive with $2 a+2 b+c=1$. Show that X and Y are not independent but we have $\mathbb{E}(X Y)=\mathbb{E} X \mathbb{E} Y$.
(iv) Let X be a random variable and let $c \in \mathbb{R}$. Show that

$$
\int_{\mathbb{R}}\left(F_{X-c}(x)-F_{X}(x)\right) d x=c
$$

(v) If X and Y are independent integer-valued random variables then

$$
\mathbb{P}(X+Y=n)=\sum_{m \text {-integer }} \mathbb{P}(X=m) \mathbb{P}(Y=n-m) .
$$

(vi) Let $X=\operatorname{Poisson}(\lambda)$ and $Y=\operatorname{Poisson}(\mu)$ are independent random variables. Show that $X+Y=\operatorname{Poisson}(\lambda+\mu)$.
(vii) Let $X=\operatorname{Binomial}(n, p)$ and $Y=\operatorname{Binomial}(m, p)$ are independent random variables. Show that $X+Y=\operatorname{Binomial}(n+m, p)$.
(viii) Show that the sum of n independent $\operatorname{Bernoulli}(p)$ random variables is $\operatorname{Binomial}(n, p)$.
(ix) Let X_{1}, \ldots, X_{n} be independent exponential (λ) random variables. Show that $X_{1}+\cdots+X_{n}$ is $\operatorname{gamma}(n, \lambda)$.
(x) Let $X, Y \geq 0$ be independent with c.d.f.'s F_{X} and F_{Y}. Find the distribution function of $X Y$.
(xi) Suppose that $X_{n} \xrightarrow{L_{p}} X$ and $Y_{n} \xrightarrow{L_{q}} Y$, where $1 / p+1 / q=1$. Show that $X_{n} Y_{n} \xrightarrow{L_{1}} X Y$.
(xii) Let $1 \leq q \leq p<\infty$ and suppose that $X_{n} \xrightarrow{L_{p}} X$. Show that $X_{n} \xrightarrow{L_{q}} X$.
(xiii) Let $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(S, \mathcal{S})$ be a measurable map. Let $g:(S, \mathcal{S}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a measurable real-valued function. Let $A \in \mathcal{F}$.
(a) Use the change of variable formula to represent the integral

$$
\int_{A} g(X(\omega)) d \mathbb{P}(\omega)
$$

as an integral over S. (Assuming $g(X) \mathbf{1}_{A} \geqslant 0$ a.s. or $\mathbb{E}\left|g(X) \mathbf{1}_{A}\right|<\infty$.)
(b) Express the measure, over S that you used in part a), in terms of \mathbb{P}, A and X only.
(xiv) Show that the following conditions are equivalent
(a) $X_{n} \xrightarrow{\text { a.s. }} X$;
(b) $\lim _{n \rightarrow \infty} \mathbb{P}\left(\sup _{m \geq n}\left|X_{m}-X\right|>\epsilon\right)=0$ for all $\epsilon>0$;
(c) $\mathbb{P}\left(\limsup \left\{\left|X_{n}-X\right|>\epsilon\right\}\right)=0$ for all $\epsilon>0$.
(xv) Show that for a random variable Y, we have

$$
\mathbb{E}[Y]=\int_{0}^{\infty} P(Y>y) d y-\int_{0}^{\infty} P(Y<-y) d y
$$

