STAT 9657 — Problem Set 7

You may use any results from the course notes when solving the following problems.

- (i) Show that two random variables X and Y are independent if and only if the σ -algebras $\sigma(X)$ and $\sigma(Y)$ are independent. The same result holds true for any number of random variables. Hint: note that $\sigma(X)$ contains Ω .
- (ii) Let $X_1, ..., X_n$ be random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. If the c.d.f. $F(x_1, ..., x_n)$ has **density** $f(x_1, ..., x_n)$ that is

$$F(x_1, ..., x_n) = \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} f(y_1, ..., y_n) \, dy_1 ... dy_n$$

and if $f(x_1, ..., x_n) = g_1(x_1) \cdots g_n(x_n)$, where $g_i \ge 0$ is a measurable function i = 1, ..., n, then $X_1, ..., X_n$ are independent.

(iii) Let the joint distribution of X and Y be as follows

			Y	
		1	0	-1
	1	0	a	0
X	0	b	c	b
	-1	0	a	0

where the numbers a, b, c are strictly positive with 2a + 2b + c = 1. Show that X and Y are not independent but we have $\mathbb{E}(XY) = \mathbb{E}X\mathbb{E}Y$.

(iv) Let X be a random variable and let $c \in \mathbb{R}$. Show that

$$\int_{\mathbb{R}} \left(F_{X-c}(x) - F_X(x) \right) dx = c.$$

(v) If X and Y are independent integer-valued random variables then

$$\mathbb{P}(X+Y=n) = \sum_{m-\text{integer}} \mathbb{P}(X=m)\mathbb{P}(Y=n-m).$$

- (vi) Let $X = Poisson(\lambda)$ and $Y = Poisson(\mu)$ are independent random variables. Show that $X + Y = Poisson(\lambda + \mu)$.
- (vii) Let X = Binomial(n, p) and Y = Binomial(m, p) are independent random variables. Show that X + Y = Binomial(n + m, p).
- (viii) Show that the sum of n independent Bernoulli(p) random variables is Binomial(n, p).
- (ix) Let $X_1, ..., X_n$ be independent $exponential(\lambda)$ random variables. Show that $X_1 + \cdots + X_n$ is $gamma(n, \lambda)$.

- (x) Let $X, Y \ge 0$ be independent with c.d.f.'s F_X and F_Y . Find the distribution function of XY.
- (xi) Suppose that $X_n \xrightarrow{L_p} X$ and $Y_n \xrightarrow{L_q} Y$, where 1/p + 1/q = 1. Show that $X_n Y_n \xrightarrow{L_1} XY$.
- (xii) Let $1 \leq q \leq p < \infty$ and suppose that $X_n \xrightarrow{L_p} X$. Show that $X_n \xrightarrow{L_q} X$.
- (xiii) Let $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (S, \mathcal{S})$ be a measurable map. Let $g : (S, \mathcal{S}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a measurable real-valued function. Let $A \in \mathcal{F}$.
 - (a) Use the change of variable formula to represent the integral

$$\int_{A} g(X(\omega)) \, d\mathbb{P}(\omega)$$

as an integral over S. (Assuming $g(X)\mathbf{1}_A \ge 0$ a.s. or $\mathbb{E}|g(X)\mathbf{1}_A| < \infty$.)

- (b) Express the measure, over S that you used in part a), in terms of \mathbb{P} , A and X only.
- (xiv) Show that the following conditions are equivalent
 - (a) $X_n \xrightarrow{a.s.} X;$
 - (b) $\lim_{n \to \infty} \mathbb{P}(\sup_{m \ge n} |X_m X| > \epsilon) = 0$ for all $\epsilon > 0$;
 - (c) $\mathbb{P}(\limsup\{|X_n X| > \epsilon\}) = 0$ for all $\epsilon > 0$.

(xv) Show that for a random variable Y, we have

$$\mathbb{E}[Y] = \int_0^\infty P(Y > y) \, dy - \int_0^\infty P(Y < -y) \, dy.$$