STAT 9657 — Problem Set 8

You may use any results from the course notes when solving the following problems.

- (i) Let $\{X_n\}$ be a sequence of random variables. Show that $\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}$ and $\{\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon\}$ are measurable sets.
- (ii) (Part of this exercise was already in Problem Set 5) Let F be a distribution function. Recall that the quantile function is defined by $F^{-1}(\omega) := \sup\{x : F(x) < \omega\}$ for all $\omega \in (0, 1)$. Show that
 - (a) F^{-1} is increasing, left-continuous function on (0, 1)
 - (b) If $x > F^{-1}(\omega)$ then $F(x) \ge \omega$
 - (c) If F^{-1} is continuous at ω , then $x > F^{-1}(\omega)$ implies that $F(x) > \omega$.
 - (d) If $F(x) > \omega$ then $x \ge F^{-1}(\omega)$
 - (e) If F is continuous at x, then $F(x) > \omega$ implies that $x > F^{-1}(\omega)$
 - (f) If $x < F^{-1}(\omega)$ then $F(x) < \omega$
 - (g) If $F(x) < \omega$ then $x < F^{-1}(\omega)$
 - (h) $F^{-1} \circ F(x) \le x$ for all $x \in \mathbb{R}$ such that 0 < F(x) < 1 (what goes wrong when F(x) is 0 or 1?)
 - (i) $F \circ F^{-1}(\omega) \ge \omega$ for all $\omega \in (0, 1)$
 - (j) $F \circ F^{-1} \circ F(x) = F(x)$ for all $x \in \mathbb{R}$ such that 0 < F(x) < 1
 - (k) $F^{-1} \circ F \circ F^{-1}(\omega) = F^{-1}(\omega)$ for all $\omega \in (0, 1)$. Consider the case, when $F \circ F^{-1}(\omega) = 1$ separately.
 - (1) If F has a jump at x then F^{-1} is constant on (F(x-), F(x))
 - (m) If F^{-1} has a jump at ω then F is constant on $[F^{-1}(\omega), F^{-1}(\omega+))$
 - (n) The right limit of F^{-1} at ω is $F^{-1}(\omega +) = \inf\{t : F(t) > \omega\}$
 - (o) $Y(\omega) := F^{-1}(\omega)$ is a random variable on $((0,1), \mathcal{B}(0,1))$ with the Lebesgue measure. Show that $F_Y = F$.
- (iii) For any random variables X and Y, any $x \in \mathbb{R}$ and $\epsilon > 0$ we have

$$\{Y \le x\} \subseteq \{X \le x + \epsilon\} \cup \{|Y - X| > \epsilon\}, \\ \{X \le x - \epsilon\} \subseteq \{Y \le x\} \cup \{|Y - X| > \epsilon\}.$$

- (iv) If $X_n \xrightarrow{d} X$, where $X(\omega) = c$ for every $\omega \in \Omega$, then $X_n \xrightarrow{\mathbb{P}} X$.
- (v) Suppose $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$, where $Y(\omega) = c$ for every $\omega \in \Omega$. Show that
 - (a) $X_n + Y_n \xrightarrow{d} X + Y;$

- (b) If $Z_n X_n \xrightarrow{d} 0$ then $Z_n \xrightarrow{d} X$;
- (c) $X_n Y_n \xrightarrow{d} XY$. (To avoid complications, assume that $Y_n \ge 0$ and c > 0.)
- (vi) If the events $\{A_n\}_{n=1}^{\infty}$ are independent and $A_n \to A$ then $\mathbb{P}(A) = 0$ or 1. Recall that $A_n \to A$ if $\liminf A_n = \limsup A_n = A$.
- (vii) If the random variables $\{X_n\}_{n=1}^{\infty}$ are independent and $X_n \xrightarrow{a.s.} 0$, then $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| \ge c) < \infty$ for any c > 0.
- (viii) Show that for any random variable X we have

$$\sum_{n=1}^{\infty} \mathbb{P}(|X| \ge n) \le \mathbb{E}|X| \le 1 + \sum_{n=1}^{\infty} \mathbb{P}(|X| \ge n).$$

(ix) Let X_1, X_2, \ldots be a sequence of i.i.d., non-negative random variables with infinite mean. Show that

$$\mathbb{P}\Big(\limsup_{n \to \infty} \frac{X_n}{n} = \infty\Big) = 1.$$

(x) Let X_1, X_2, \ldots be a sequence of i.i.d. random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathbb{E}X_k = 0$ and $\operatorname{Var} X_k < \infty$, for all $k = 1, 2, \ldots$ Show that

$$\frac{S_n}{n^p} \xrightarrow{\text{a.s.}} 0$$

for all p > 1/2.

(xi) Let X_1, X_2, \ldots be a sequence of independent, integrable, random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathbb{E}X_k = 0$ for all $k = 1, 2, \ldots$ Show that

If
$$\frac{S_n}{n} \xrightarrow{\mathbb{P}} 0$$
 then $\frac{X_n}{n} \xrightarrow{\mathbb{P}} 0$

(xii) Let X_1, X_2, \ldots be a sequence of independent, integrable, random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathbb{E}X_k = 0$ for all $k = 1, 2, \ldots$ Show that

If
$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} 0$$
 then $\sum_{n=1}^{\infty} \mathbb{P}\{|X_n| \ge \epsilon n\} < \infty$ for all $\epsilon > 0$.

- (xiii) Prove or disprove the following statement: If $\{X_n\}$ is a sequence of random variables such that $X_n \xrightarrow{a.s.} X$, then $F_{X_n} \xrightarrow{w} F_X$.
- (xiv) If $X_n \xrightarrow{d} X$ and $X_n \ge 0$, then $\mathbb{E}X \le \liminf_{n \to \infty} \mathbb{E}X_n$.
- (xv) Let X, Y_1, Y_2, \ldots be random variables with $\mathbb{P}(Y_n = 1) = 1/n$ and $\mathbb{P}(Y_n = 0) = 1 1/n$. Let $Z_n = X + Y_n$. Prove that $Z_n \xrightarrow{d} X$.