STAT 9657 - Problem Set 8

You may use any results from the course notes when solving the following problems.
(i) Let $\left\{X_{n}\right\}$ be a sequence of random variables. Show that $\left\{\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}$ and $\left\{\omega \in \Omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}$ are measurable sets.
(ii) (Part of this exercise was already in Problem Set 5) Let F be a distribution function. Recall that the quantile function is defined by $F^{-1}(\omega):=\sup \{x: F(x)<\omega\}$ for all $\omega \in(0,1)$. Show that
(a) F^{-1} is increasing, left-continuous function on $(0,1)$
(b) If $x>F^{-1}(\omega)$ then $F(x) \geq \omega$
(c) If F^{-1} is continuous at ω, then $x>F^{-1}(\omega)$ implies that $F(x)>\omega$.
(d) If $F(x)>\omega$ then $x \geq F^{-1}(\omega)$
(e) If F is continuous at x, then $F(x)>\omega$ implies that $x>F^{-1}(\omega)$
(f) If $x<F^{-1}(\omega)$ then $F(x)<\omega$
(g) If $F(x)<\omega$ then $x<F^{-1}(\omega)$
(h) $F^{-1} \circ F(x) \leq x$ for all $x \in \mathbb{R}$ such that $0<F(x)<1$ (what goes wrong when $F(x)$ is 0 or 1?)
(i) $F \circ F^{-1}(\omega) \geq \omega$ for all $\omega \in(0,1)$
(j) $F \circ F^{-1} \circ F(x)=F(x)$ for all $x \in \mathbb{R}$ such that $0<F(x)<1$
(k) $F^{-1} \circ F \circ F^{-1}(\omega)=F^{-1}(\omega)$ for all $\omega \in(0,1)$. Consider the case, when $F \circ F^{-1}(\omega)=1$ separately.
(l) If F has a jump at x then F^{-1} is constant on $(F(x-), F(x)$]
(m) If F^{-1} has a jump at ω then F is constant on $\left[F^{-1}(\omega), F^{-1}(\omega+)\right)$
(n) The right limit of F^{-1} at ω is $F^{-1}(\omega+)=\inf \{t: F(t)>\omega\}$
(o) $Y(\omega):=F^{-1}(\omega)$ is a random variable on $((0,1), \mathcal{B}(0,1))$ with the Lebesgue measure. Show that $F_{Y}=F$.
(iii) For any random variables X and Y, any $x \in \mathbb{R}$ and $\epsilon>0$ we have

$$
\begin{aligned}
\{Y \leq x\} & \subseteq\{X \leq x+\epsilon\} \cup\{|Y-X|>\epsilon\} \\
\{X \leq x-\epsilon\} & \subseteq\{Y \leq x\} \cup\{|Y-X|>\epsilon\}
\end{aligned}
$$

(iv) If $X_{n} \xrightarrow{d} X$, where $X(\omega)=c$ for every $\omega \in \Omega$, then $X_{n} \xrightarrow{\mathbb{P}} X$.
(v) Suppose $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} Y$, where $Y(\omega)=c$ for every $\omega \in \Omega$. Show that
(a) $X_{n}+Y_{n} \xrightarrow{d} X+Y$;
(b) If $Z_{n}-X_{n} \xrightarrow{d} 0$ then $Z_{n} \xrightarrow{d} X$;
(c) $X_{n} Y_{n} \xrightarrow{d} X Y$. (To avoid complications, assume that $Y_{n} \geq 0$ and $c>0$.)
(vi) If the events $\left\{A_{n}\right\}_{n=1}^{\infty}$ are independent and $A_{n} \rightarrow A$ then $\mathbb{P}(A)=0$ or 1 . Recall that $A_{n} \rightarrow A$ if $\liminf A_{n}=\limsup A_{n}=A$.
(vii) If the random variables $\left\{X_{n}\right\}_{n=1}^{\infty}$ are independent and $X_{n} \xrightarrow{\text { a.s. }} 0$, then $\sum_{n=1}^{\infty} \mathbb{P}\left(\left|X_{n}\right| \geq c\right)<\infty$ for any $c>0$.
(viii) Show that for any random variable X we have

$$
\sum_{n=1}^{\infty} \mathbb{P}(|X| \geq n) \leq \mathbb{E}|X| \leq 1+\sum_{n=1}^{\infty} \mathbb{P}(|X| \geq n)
$$

(ix) Let X_{1}, X_{2}, \ldots be a sequence of i.i.d., non-negative random variables with infinite mean. Show that

$$
\mathbb{P}\left(\limsup _{n \rightarrow \infty} \frac{X_{n}}{n}=\infty\right)=1
$$

(x) Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathbb{E} X_{k}=0$ and $\operatorname{Var} X_{k}<\infty$, for all $k=1,2, \ldots$ Show that

$$
\frac{S_{n}}{n^{p}} \xrightarrow{\text { a.s. }} 0
$$

for all $p>1 / 2$.
(xi) Let X_{1}, X_{2}, \ldots be a sequence of independent, integrable, random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathbb{E} X_{k}=0$ for all $k=1,2, \ldots$ Show that

$$
\text { If } \frac{S_{n}}{n} \xrightarrow{\mathbb{P}} 0 \text { then } \frac{X_{n}}{n} \xrightarrow{\mathbb{P}} 0
$$

(xii) Let X_{1}, X_{2}, \ldots be a sequence of independent, integrable, random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathbb{E} X_{k}=0$ for all $k=1,2, \ldots$ Show that

$$
\text { If } \frac{S_{n}}{n} \xrightarrow{\text { a.s. }} 0 \text { then } \sum_{n=1}^{\infty} \mathbb{P}\left\{\left|X_{n}\right| \geq \epsilon n\right\}<\infty \quad \text { for all } \epsilon>0 \text {. }
$$

(xiii) Prove or disprove the following statement: If $\left\{X_{n}\right\}$ is a sequence of random variables such that $X_{n} \xrightarrow{\text { a.s. }} X$, then $F_{X_{n}} \xrightarrow{w} F_{X}$.
(xiv) If $X_{n} \xrightarrow{d} X$ and $X_{n} \geq 0$, then $\mathbb{E} X \leq \liminf _{n \rightarrow \infty} \mathbb{E} X_{n}$.
(xv) Let X, Y_{1}, Y_{2}, \ldots be random variables with $\mathbb{P}\left(Y_{n}=1\right)=1 / n$ and $\mathbb{P}\left(Y_{n}=0\right)=1-1 / n$. Let $Z_{n}=X+Y_{n}$. Prove that $Z_{n} \xrightarrow{d} X$.

