STAT 9657 — Problem Set 9

You may use any results from the course notes when solving the following problems.

- (i) Calculate the following characteristic functions.
 - (a) A binomial random variable X with $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$.
 - (b) Poisson random variable X with $\mathbb{P}(X = k) = e^{-\lambda} \lambda^k / k!$.
 - (c) Normal random variable X with density $(2\pi\sigma^2)^{-1/2}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.
 - (d) Uniform random variable X on (a, b).
 - (e) Exponential random variable X with density $\lambda e^{-\lambda x}$.
- (ii) Show that if X_1, \ldots, X_n are independent and uniformly distributes on (-1, 1), then for $n \ge 2$, $X_1 + \cdots + X_n$ has density

$$f(x) = \frac{1}{\pi} \int_0^\infty (\sin(t)/t)^n \cos(tx) dt$$

- (iii) Let X_1, X_2, \ldots be independent and let $S_n := X_1 + \cdots + X_n$. Let $\phi_k(t)$ be the characteristic function of X_k . Show that if $S_n \xrightarrow{\text{a.s.}} S_\infty$, then the characteristic function of S_∞ is $\prod_{k=1}^\infty \phi_k(t)$.
- (iv) Let X_1, X_2, \ldots be independent and identically distributed and let $S_n := X_1 + \cdots + X_n$. Let $\phi(t)$ be the characteristic function of X_k . Show that if $\phi'(0) = ia$ then $S_n/n \xrightarrow{\mathbb{P}} a$.
- (v) Let (Ω, \mathcal{F}) be a measurable space and let \mathbb{P}_1 and \mathbb{P}_2 be probability measures on \mathcal{F} .
 - (a) Show that $\mathbb{P} := \frac{1}{2}\mathbb{P}_1 + \frac{1}{2}\mathbb{P}_2$ is a probability measure on \mathcal{F} .
 - (b) Let $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a measurable function integrable with respect to \mathbb{P} . Show that $\int_{\Omega} X \, d\mathbb{P} = \frac{1}{2} \int_{\Omega} X \, d\mathbb{P}_1 + \frac{1}{2} \int_{\Omega} X \, d\mathbb{P}_2$.
 - (c) Suppose $F_1, ..., F_n$ are distribution functions with characteristic functions $\phi_1, ..., \phi_n$. Let the numbers $\lambda_1, ..., \lambda_n$ be in [0, 1] with sum $\sum_{k=1}^n \lambda_k = 1$. Show that $\sum_{k=1}^n \lambda_k F_k$ is a distribution function with characteristic function $\sum_{k=1}^n \lambda_k \phi_k$.
- (vi) Let X_1, X_2, \ldots be independent and let $S_n := X_1 + \cdots + X_n$. Suppose

$$\mathbb{P}(X_m = m) = \mathbb{P}(X_m = -m) = m^{-2}/2, \text{ for } m \ge 2; \text{ and} \\ \mathbb{P}(X_m = 1) = \mathbb{P}(X_m = -1) = (1 - m^{-2})/2.$$

Show that $(\operatorname{Var} S_n)/n \to 2$ and that $S_n/\sqrt{n} \xrightarrow{d} N(0,1)$.

(vii) If the random variables $f, g: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are integrable and satisfy

$$\int_A f \, d\mathbb{P} = \int_A g \, d\mathbb{P} \quad \text{for all } A \in \mathcal{F}.$$

then f = g a.s.

(viii) Show that the Glivenko-Cantelli theorems follows from the Dvoretzky-Kiefer-Wolfowitz inequality.