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1 Background

1.1 General notation

Given a set Ω and subsets A,B ⊆ Ω, the following notation is used

intersection: A ∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B}
union: A ∪B = {ω ∈ Ω : ω ∈ A or ω ∈ B}

set-minus: A \B = {ω ∈ Ω : ω ∈ A and ω 6∈ B}
symmetric difference: A∆B = {ω ∈ Ω : ω ∈ A or ω ∈ B but ω 6∈ A ∩B}

complement: Ac = {ω ∈ Ω : ω 6∈ A}
empty set: ∅ = the set without any element

real numbers: R
natural numbers: N = {1, 2, 3, . . .}
rational numbers: Q
complex numbers: C

positive infinity: ∞
negative infinity: −∞

indicator function: 1A(x) =

{
1 if x ∈ A
0 if x 6∈ A

Operations with infinities. For any x ∈ R we have

(i) −∞ < x <∞;

(ii) ∞+ x = x+∞ =∞;

(iii) −∞+ x = x+ (−∞) = −∞;

(iv) ∞+∞ =∞; −∞+ (−∞) = −∞;

(v) ∞ · x = x · ∞ =∞ if x > 0;

(vi) (−∞) · x = x · (−∞) = −∞ if x > 0;

(vii) ∞ · x = x · ∞ = −∞ if x < 0;

(viii) (−∞) · x = x · (−∞) =∞ if x < 0;

(ix) ∞ ·∞ =∞; (−∞) · (−∞) =∞.

Note that the expressions∞+ (−∞), −∞+∞, 0 ·∞,∞·0, 0 · (−∞), (−∞) ·0 are not defined
and we will avoid them like the plague.

Given real numbers α and β, we use α ∧ β := min{α, β}.
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1.2 Bounded sets, inf, and sup

A set Ω ⊂ R is called bounded from above (resp. below) if there is a constant M such that ω ≤M
(resp. M ≤ ω ) for every ω ∈ Ω. The constant M is called an upper bound for Ω. Clearly, if
M is an upper bound for Ω and if M ′ ≥ M , then M ′ is also an upper bound for Ω. Thus, a set
bounded from above has many upper bounds. If Ω is bounded from both above and below we say
it is bounded, equivalently, there is a constant M such that |ω| ≤M for every ω ∈ Ω.

Theorem 1. If Ω ⊂ R is bounded from above (resp. below) then there is a smallest upper (resp.
largest lower) bound. That is, an upper (resp. lower) bound that is smaller (resp. larger) than or
equal to any other upper (resp. lower) bound.

The smallest upper bound of a set Ω, bounded from above, is denoted by sup Ω and read
supremum of Ω. The largest lower bound of a set Ω bounded from below is denoted by inf Ω and
read infimum of Ω. In other words, if M is an upper bound for Ω then sup Ω ≤M , and similarly, if
M is a lower bound for Ω, then M ≤ inf Ω. For example, if Ω = [0, 1] then inf Ω = 0 and sup Ω = 1.
If Ω = (0, 1) then inf Ω = 0 and sup Ω = 1, again. If Ω = {all rational numbers in (0, 1)} then
inf Ω = 0 and sup Ω = 1. Thus, the numbers inf Ω and sup Ω may or may not be elements of Ω. We
can extend the definition of inf and sup to unbounded sets. If Ω is not bounded from above then
we define sup Ω =∞ and if Ω is not bounded from below, we define inf Ω = −∞. Finally, if Ω = ∅
then any real number M is an upper bound (as well as a lower bound), thus

sup ∅ = −∞ and inf ∅ =∞.

If Ω is not empty then inf Ω ≤ sup Ω. Note that if A and B are two non-empty subsets of R and

if A ⊆ B, then inf B ≤ inf A ≤ supA ≤ supB.(1)

1.3 Finite and infinite sets

A set is finite, well, if it has finitely many elements, otherwise it is called infinite.

Lemma 2. Suppose Ω = {ω1, . . . , ωn} is a set with n elements. There are exactly 2n different
subsets (or events) of Ω.

Proof. A subset A of Ω can be specified by stating exactly which elements of Ω are in A and
which are not. Consider a 0, 1-vector (x1, . . . , xn) with n coordinates, that is xi ∈ {0, 1} for every
i = 1, 2, . . . , n. Every such vector describes a subset A of Ω. Indeed, we define ωi to be in A if
xi = 1 and ωi not to be in A if xi = 0. Conversely for any subset A of Ω there is a 0, 1-vector that
describes A in the above way. Since there are 2n different 0, 1 vectors with n coordinates, there are
2n subsets of Ω.

The set of all subsets of Ω will be denoted by 2Ω. For example, if Ω = {a, b, c} has three
elements then

2Ω = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
has 23 = 8 elements. Each element of 2Ω is a subset of Ω.

In the case when Ω has infinitely many elements, it has infinitely many subsets. Unfortunately,
some infinities are larger than other infinities. A set with infinitely many elements is called countably
infinite if its elements can be ordered in a sequence.
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Example 3. The natural numbers form a countably infinite set since we can order them in a
sequence 1, 2, 3, . . .

Example 4. The integers (positive and negative) . . . − 3,−2,−1, 0, 1, 2, 3, . . . are also countably
infinite because we can order them as

0, 1,−1, 2,−2, 3,−3, . . .

Example 5. The rational numbers (those that can be written as a ratio of two integers, say 1/2
or 345/45, or −3/4) are also countably infinite. Note that the rational numbers are dense in the
sense that every interval (a, b), no matter how small or large contains a rational number. A priori,
by looking at the real number line one cannot tell what is the next rational number after, say
1/2. Their placement on the real number line does not show immediately how to order them in
a sequence. Here is how one can order them in a sequence. We will do that only for the positive
rational numbers for added simplicity.

1 2 3 4 5 · · ·
1 1/1 1/2 1/3 1/4 1/5 · · ·
2 2/1 2/2 2/3 2/4 2/5 · · ·
3 3/1 3/2 3/3 3/4 3/5 · · ·
4 4/1 4/2 4/3 4/4 4/5 · · ·
5 5/1 5/2 5/3 5/4 5/5 · · ·
...

...
...

...
...

...
. . .

We look at the diagonals in this table that go from north-east to south-west and list the numbers
in them one diagonal after another:

1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 2/4, 3/3, 4/2, 5/1, . . .

Many numbers in this sequence are repeated, for example 1/1 = 2/2 = 3/3 = 1 or 1/2 = 2/4. We
delete all repetitions leaving only the first instance of a repeated number to obtain

1/1, 1/2, 2/1, 1/3, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 5/1, . . .

We obtained a sequence of all positive rational numbers, which is what we wanted.

Lemma 6. Union of countably many sets each one of which has countably many elements is
countably infinite.

Proof. We have countably many sets, that is we can order them in a sequence A1, A2, A3, . . .
Each set Ai has countably many elements, say A1 = {a1, a2, a3, . . .}, A2 = {b1, b2, b3, . . .}, A3 =
{c1, c2, c3, . . .}, and so on. We need to show that we can order the elements of

⋃∞
i=1Ai in a sequence

as well. We use an idea analogous to the one presented above. Place the elements of the sets Ai in
rows one after another
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1 2 3 4 5 · · ·
A1 a1 a2 a3 a4 a5 · · ·
A2 b1 b2 b3 b4 b5 · · ·
A3 c1 c2 c3 c4 c5 · · ·
A5 d1 d2 d3 d4 d5 · · ·
A6 e1 e2 e3 e4 e5 · · ·
...

...
...

...
...

...
. . .

We look at the diagonals in this table that go from north-east to south-west and list the numbers
in them one diagonal after another:

a1, a2, b1, a3, b2, c1, a4, b3, c2, d1, . . .

This sequence contains the all elements in the union
⋃∞
i=1Ai.

Definition 7. A random variable X defined on a sample space Ω is called discrete if X takes
a finitely many or countably many different values. If the random variable X takes more than
countably many different values, for example, if it takes any value in an interval (a, b), then X is
called continuous random variable.

Every real number r can be represented in a decimal form as r = a0.a1a2a3 . . . , where a0 is an
integer and a1, a2, a3, . . . are digits between 0 and 9. What this says in reality is that

r =
∞∑
i=0

ai
10i

.

It can be shown that a number r is rational if and only if its decimal representation becomes
periodic from some point on. For example, 1/2 = 0.5000 . . ., 1/3 = 0.3333 . . ., and 1/13 =
0.07692307692307692 . . . are periodic decimal representations the first with period (0), the sec-
ond with period (3), and the third with period (076923). Some rational numbers have two different
decimal representations. These are the rational numbers that have finite decimal representation
r = a0.a1a2a3 . . . ,, that is there is an index N ∈ N, such that an = 0 for all n > N . The two
representations are r = a0.a1a2 . . . an−1an000 . . . and r = a0.a1a2 . . . an−1(an− 1)999 . . .. Such is 1/2
with two representations 0.5000 . . . and 0.4999 . . .. In general, a rational number has finite decimal
representation if and only if it is of the form m/10n for some integers n and m, e.g. 1/2 = 5/10.
Two real numbers a0.a1a2a3, . . . and b0.b1b2b3, . . . are equal if ak = bk for all k = 0, 1, . . . or if they
are the two different representations of a rational number with finite decimal representation.

Example 8. The real numbers are infinitely many and are more than countable. That is, the real
numbers cannot be ordered in a sequence. Let us see that the real numbers in the interval (0, 1)
cannot be ordered in a sequence. Consider the decimal representation of the numbers in (0, 1).
Suppose the real numbers in (0, 1) can be listed in a sequence

x1 = 0.a11a12a13a14 . . .

x2 = 0.a21a22a23a24 . . .

x3 = 0.a31a32a33a34 . . .
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x4 = 0.a41a42a43a44 . . .

...

Consider a number r := 0.b1b2b3 . . . constructed in such a way that b1 is different from a11, 0, and
9, b2 is different from a22, 0, and 9, b3 is different from a33, 0 and 9, and so on. The number r does
not contain 0’s and 9’s after its decimal point. That is, it is not a rational number that has two
decimal representations. Hence, r has a unique decimal representation and it is different from all
numbers x1, x2, x3, . . . in the sequence, since it differs from the first number in the list by its first
digit after the decimal point; it differs from the second number in the list by its second digit, and
so on. This contradiction shows that our assumption that the real numbers in (0, 1) can be ordered
in a sequence is wrong. (Note that when constructing the number 0.b1b2b3 . . . we had 7 choices for
the digit b1, 7 choices for b2, and so on.)

Example 9 (The Cantor set). Start with the interval C0 := [0, 1] and remove the middle third
(1/3, 2/3). The remaining set has now two components C1 := [0, 1/3] ∪ [2/3, 1]. From each of
those components remove their middle thirds (1/9, 2/9) and (7/9, 8/9). The remaining set is C2 :=
[0, 1/9] ∪ [2/9, 1/3] ∪ [6/9, 7/9] ∪ [8/9, 1]. Again remove the middle third from each component to
obtain

C3 := [0, 1/27] ∪ [2/27, 3/27] ∪ [6/27, 7/27] ∪ [8/27, 9/27]

∪ [18/27, 19/27] ∪ [20/27, 21/27] ∪ [24/27, 25/27] ∪ [26/27, 1].

Continue in this was indefinitely at every step removing the middle third of each component. We
obtain a decreasing sequence of closed sets C0 ⊃ C1 ⊃ C2 ⊃ C3 · · · . The Cantor (ternary) set is
defined as the intersection ∩∞i=0Ci.

Being an intersection of closed sets the Cantor set is closed and non-empty, for example 0 and
1 are in it. The “length” of C is

1− 1

3
− 2

9
− 4

27
− · · · = 1− 1

3

(
1 +

2

3
+
(2

3

)2

+ · · ·
)

= 1− 1

3

1

1− 2/3
= 0.

Every number x ∈ [0, 1] has a ternary expansion of the form

x =
∞∑
i=1

xi
3i

with xi ∈ {0, 1, 2}.(2)

That is, we represent each x ∈ [0, 1] as a sequence 0.x1x2x3 . . . where xi ∈ {0, 1, 2}. Conversely,
given such a sequence, to obtain the actual number x ∈ [0, 1] one needs to calculate the sum (2).
This expansion is not unique for the numbers in [0, 1] of the form m/3n. For example, 1/3 admits
two expansions, namely 0.1000 . . . and .0222 . . .. Non-uniqueness occurs only for those x that admit
an expansion ending with an infinite sequence of 0’s. We claim (without a proof) that the numbers
in the Cantor set have a ternary expansion 0.x1x2x3 . . . in which xn 6= 1 for all n. If x ∈ [0, 1]
has two ternary expansions, then it is in the Cantor set if one of the expansions has no term equal
to 1. For example, 0.1 is in the Cantor set since it can be represented also as 0.0222 . . . and this
representation does not involve 1. Numbers such as 0.12, 0.11, 0.0101 are not in the Cantor set. To
get used to these ideas we make the following observations.
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Sequences 0.1x2x3 . . . = 1/3 + x2/9 + x3/27 + · · · correspond to the numbers in [1/3, 2/3].
Sequences 0.01x3 . . . = 0/3 + 1/9 + x3/27 + · · · correspond to the numbers in [1/9, 2/9].
Sequences 0.21x3 . . . = 2/3 + 1/9 + x3/27 + · · · correspond to the numbers in [7/9, 8/9].

Clearly, the Cantor set has infinitely many numbers in it. But the amazing fact is that mod-
ifying the argument given in Example 8, one can see that the Cantor set C is not countable. An
uncountable set with length 0!

1.4 Sequences and limits

1.4.1 Sequences

Let a1, a2, a3, . . . be a sequence of real numbers, denoted for short by {an}∞n=1, or just {an}. The
sequence {an} is called increasing if an ≤ an+1 for all n = 1, 2, 3, . . . It is called decreasing if
an ≥ an+1 for all n = 1, 2, 3, . . . It is called monotone if it is either increasing or decreasing. A
sequence a1, a2, a3, . . . is bounded (resp. above, below) if the set Ω := {a1, a2, , a3, . . .} is such. The
number ` is called a limit point of the sequence {an} if for every ε > 0 the interval (` − ε, ` + ε)
contains infinitely many elements of the sequence. Formally: ` is a limit point of the sequence {an}
if for every ε > 0 and every N ∈ N there is an index n ≥ N such that an ∈ (`− ε, `+ ε).

We need to extend the notion of a limit of a sequence to include the symbols ∞ and −∞. The
symbol ∞ is a limit point of the sequence {an} if it is unbounded from above. (Analogously, the
symbol −∞ is a limit point of the sequence {an} if it is unbounded from below.) Formally, the
symbol ∞ is a limit point of the sequence {an} if for every M ∈ R and every N ∈ N there is an
index n ≥ N such that an ≥ M . (Analogously, the symbol −∞ is a limit point of the sequence
{an} if for every M ∈ R and every N ∈ N there is an index n ≥ N such that an ≤M .

With this extension we have the following theorem.

Theorem 10. Sequence {an} always has a limit point in R∪{−∞,∞}. In particular, if a sequence
{an} is bounded, then it has a limit point ` ∈ R.

Note that a sequence {an} may have many limit points.

Definition 11. The sequence {an} is convergent if it has exactly one limit point. That limit point
is denoted by lim

n→∞
an.

Note that the notation lim
n→∞

an doesn’t make sense if the sequence {an} is not convergent.

Formally, the sequence {an} converges to ` ∈ R if for every ε > 0 the interval (`−ε, `+ε) contains
all but finitely many elements of the sequence. This implies that if a sequence {an} converges to a
limit ` ∈ R then the set {an} is bounded.

The sequence {an} converges to ∞ if for every M , the interval (M,∞) contains all but finitely
many elements of the sequence. The sequence {an} converges to −∞ if for every M , the interval
(−∞,M) contains all but finitely many elements of the sequence.

Theorem 12. The sequence {an} has a limit point ` if and only if there is a subsequence {ani}∞i=1

converging to `.
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Combining Theorems 10 and 12, we see that every sequence {an} has a converging (possibly
to infinity) subsequence.

Theorem 13. If the sequence {an} is increasing (resp. decreasing) then it is convergent to a limit
equal to sup{a1, a2, a3, . . .} (resp. inf{a1, a2, a3, . . .}).

Note that if a sequence {an} is increasing (resp. decreasing) and bounded from above (resp.
below) then its limit is in R, that is, it cannot be ∞ (resp. −∞).

Often it is important to be able to tell if a sequence {an} is convergent or not (without
explicitly knowing what its limit point might be). For this reason we define another sequence
bn := supk,p≥0 |an+k − an+p| for all n = 1, 2, . . . Note that the sequence {bn} is decreasing bn ≥ bn+1

and bounded from below bn ≥ 0. Hence {bn} is convergent to a (non-negative) limit point. This
limit point may be strictly positive or zero. We have the following criterion.

Theorem 14 (Cauchy). The sequence {an} converges to a finite number if and only if lim
n→∞

bn = 0.

Exercise 15. Give an example of a sequence {an} for which bn =∞ for all n.

1.4.2 Series

Given a sequence {an} when does it make sense to sum all its elements? That is, what does it mean
to write

∑∞
i=1 ai? Let

sn :=
n∑
i=1

ai

denote the sum of the first n elements of the sequence {an}. The sum sn is also called the n-th
partial sum of {an}. If the sequence {sn} has a unique limit, that is, if it is convergent, then we
define

∞∑
i=1

ai := lim
n→∞

sn.

According to our definition of a limit point, we allow
∑∞

i=1 ai ∈ R ∪ {−∞,∞}. From now on,
whenever we write

∑∞
i=1 ai we will understand that the sequence {sn} of partial sums is convergent

to the number
∑∞

i=1 ai. The next lemma says that the tail of a series converges to 0 if the sum of
the series is a finite number.

Lemma 16. If
∑∞

i=1 ai ∈ R, then limn→∞
∑∞

i=n ai = 0.

Proof. Let s :=
∑∞

i=1 ai and let tn :=
∑∞

i=n ai, then s = sn + tn+1. Since sn converges to s as n
approaches infinity, we must have that tn approaches 0.

1.4.3 Limit superior and limit inferior

Let {an} be an arbitrary sequence and define the sequence Ak := sup{ak, ak+1, ak+2, . . .} for k =
1, 2, 3, . . . Since {ak+1, ak+2, . . .} ⊆ {ak, ak+1, ak+2, . . .} by (1) we obtain that Ak ≥ Ak+1. That is,
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the sequence {Ak} is decreasing, hence by Theorem 13 it has a limit (possibly infinite). This limit
is denoted by anyone of the following notations

limsup
n→∞

an := lim
n→∞

an := lim
n→∞

sup
k≥n

ak := lim
k→∞

sup{ak, ak+1, ak+2, . . .} := lim
k→∞

Ak.

Analogously, let {an} be an arbitrary sequence and define the sequenceBk := inf{ak, ak+1, ak+2, . . .}
for k = 1, 2, 3, . . . Since {ak+1, ak+2, . . .} ⊆ {ak, ak+1, ak+2, . . .} by (1) we obtain that Bk ≤ Bk+1.
That is, the sequence {Bk} is increasing, hence by Theorem 13 it has a limit (possibly infinite).
This limit is denoted by anyone of the following notations

liminf
n→∞

an := lim
n→∞

an := lim
n→∞

inf
k≥n

ak := lim
k→∞

inf{ak, ak+1, ak+2, . . .} := lim
k→∞

Bk.

Cleraly from the definition, we have Bk ≤ Ak for all k = 1, 2, . . . Since {Ak} and {Bk} are convergent
sequences we can take limits from both sides and the inequality is preserved in the limit:

liminf
n→∞

an = lim
k→∞

Bk ≤ lim
k→∞

Ak = limsup
n→∞

an.

Note that the notation liminf
n→∞

an and limsup
n→∞

an always makes sense, that is limsup and liminf

of a sequence {an} always exist (but may be ∞ or −∞).

Theorem 17. Let {an} be an arbitrary sequence and let L denote the set of all its limit points.
(Note that by Theorem 10, the set L is not empty.) Then limsup

n→∞
an = supL and liminf

n→∞
an = inf L.

In addition it can be shown that the set L of all limit points of a sequence is always a closed set
and as a consequence contains the values supL and inf L. Thus, one can view limsupn→∞ an as the
largest limit point of the sequence {an} and liminfn→∞ an as its smallest limit point. That is, all
limit points of {an} are in the interval [liminfn→∞ an, limsupn→∞ an]. Suppose, ` := limsupn→∞ an
is a finite number, that is ` ∈ R. For any ε > 0, the sequence {an} does not have a limit point that
is bigger than `+ ε. Hence by Theorem 10, only finitely many elements of {an} are bigger than `+ ε
(indeed, if infinitely many elements of {an} are bigger than `+ ε than that subsequence will have a
limit point bigger than ` + ε, contradicting the fact that ` is the biggest limit point). Similarly, if
` := liminfn→∞ an is finite number, then only finitely many elements of {an} are smaller than `− ε.

We have the following corollary.

Corollary 18. A sequence {an} is convergent if and only if limsup
n→∞

an = liminf
n→∞

an and in that case

lim
n→∞

an = limsup
n→∞

an = liminf
n→∞

an.

Thus, the quantities limsupn→∞ an and liminfn→∞ an, that, as mentioned above always exist,
give us a convenient way to check if a sequence is convergent or not.

Proposition 19. Let Ω ⊂ R be a nonempty set and let ` := sup Ω. Then there is an increasing
sequence {an} with elements from Ω converging to `.
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Proof. If ` = ∞, then the set Ω is unbounded, that is for every N ∈ N there is an element an
from Ω bigger than N . Choose, a1 such that a1 > 1. Choose a2 such that a2 > max{2, a1},
and continue like that inductively. Once a1, . . . , an−1 have been chosen, choose an such that an >
max{n, a1, a2, . . . , an−1}. Clearly, the sequence {an} is increasing and converges to ∞.

Suppose now ` < ∞. If ` ∈ Ω, then we are done since the sequence {an}, where every
an := ` is increasing and converging to `. So, suppose in addition that ` 6∈ Ω. Recall that ` is
the smallest upper bound of Ω. That is, for every N ∈ N the number ` − 1/N is not an upper
bound of Ω. This means that there is an element an from Ω such that ` − 1/N ≤ an < `. When
N = 1, choose a1 such that ` − 1 ≤ a1 < `. Since max{a1, ` − 1/2} < `, there is an a2 such that
max{a1, `− 1/2} ≤ a2 < `. Once a1, . . . , an−1 have been chosen (all are less than `), choose an such
that max{a1, a2, . . . , an−1, `−1/n} ≤ an < `. Clearly, the sequence {an} is increasing and converges
to `.

Example 20. The sequence {an} = {+1,−1,+1,−1,+1,−1, . . .} is not convergent but has two
limit points +1 and −1. In addition, liminfn→∞ an = −1 and limsupn→∞ an = +1.

Exercise 21. Consider the sequence {an} on [0, 1] defined as follows: a1 = 0, a2 = 1, a3 = 1/2, a4 =
1/4, a5 = 3/4, a6 = 1/8, a7 = 3/8, a8 = 5/8, a9 = 7/8, . . . What are the limit points of {an}, limsup
and liminf?

Exercise 22. Consider the sequence {an} on [0, 1] defined as follows: a1 = 0, a2 = 1, a3 = 0, a4 =
1/2, a5 = 1, a6 = 0, a7 = 1/4, a8 = 2/4, a9 = 3/4, a10 = 1, a11 = 0, a12 = 1/8, a13 = 2/8, a14 =
3/8, a15 = 4/8, a16 = 5/8, a17 = 6/8, a18 = 7/8, a19 = 1, . . . What are the limit points of {an},
limsup and liminf?

1.5 Properties of limsup and liminf

Let {an} be a sequence.

• Let ` := limsup
n→∞

an. Since ` is one of the limit points of the sequence {an}, then there is a

subsequence {ani}∞i=1 converging to `. The situation is analogous for liminf.

• limsup
n→∞

can = c(limsup
n→∞

an) for any constant c ≥ 0.

• limsup
n→∞

(−an) = − liminf
n→∞

an.

Let {bn} be another sequence.

• limsup
n→∞

(an + bn) ≤ limsup
n→∞

an + limsup
n→∞

bn, whenever the right-hand side is not ∞ − ∞ or

−∞ +∞. Because of this property we say that limit superior is subadditive. If one of the
sequences, say {an}, converges to a limit a, then the inequality becomes equality and we can
replace limsup

n→∞
an by lim

n→∞
an = a.

11



Exercise 23. Using the above properties derive the superadditivity of limit inferior:

liminf
n→∞

(an + bn) ≥ liminf
n→∞

an + liminf
n→∞

bn.

Write similar relationships for

limsup
n→∞

(an − bn) and liminf
n→∞

(an − bn).

1.6 Limits of functions

Let f : R→ R be a function.
We say that ` ∈ R ∪ {−∞,∞} is a limit point of f(x) as x approaches x0 ∈ R ∪ {−∞,∞}

if there exists a sequence {xn}∞n=1 converging to x0, (with values different from x0) such that the
sequence of function values {f(xn)}∞n=1 converges to `. For short, we say that ` is a limit point of
f(x) at x0.

For example, any number in [−1, 1] is a limit point of cos(x) as x approaches infinity.
If f(x) has exactly one limit point, say `, as x approaches x0, then we say that ` is the limit of

f(x) at x0. Formally, this means that for every sequence {xn}∞n=1 converging to x0, the sequence of
function values {f(xn)}∞n=1 converges to `. We denote this by

lim
x→x0

f(x) = `.

Let L be the set of all limit points of f(x) at x0. (It is a fact that L is a closed set.) We define

limsup
x→x0

f(x) := supL and liminf
x→x0

f(x) := inf L.

So, limsup
x→x0

f(x) is the largest limit point of f(x) at x0 and liminf
x→x0

f(x) is the smallest limit point of

f(x) at x0. By the definition of a limit point, we get the following useful property

• Suppose limsup
x→x0

f(x) = `. Then there is a sequence {xn} converging to x0, such that

lim
n→∞

f(xn) = `. Analogously for liminf.

For example

limsup
x→∞

cos(x) = 1, liminf
x→∞

cos(x) = −1,

limsup
x→∞

x cos(x) =∞, liminf
x→∞

x cos(x) = −∞.

On the other hand

liminf
x→∞

log(x) =∞, limsup
x→∞

(− log(x)) = −∞.

12



We say that ` ∈ R∪ {−∞,∞} is the limit of f(x) as x approaches x0 ∈ R∪ {∞} from the left
if for every sequence {xn}∞n=1 converging to x0 with smaller values (that is, xn < x0 for all n), the
sequence of function values {f(xn)}∞n=1 converges to `. We denote this by

lim
x→x−0

f(x) = `.

For short, we say that ` is the left limit of f(x) at x0. If x0 =∞ then, the left limit of f(x) at ∞
is just its limit there (if it exists).

We say that ` ∈ R ∪ {−∞,∞} is the limit of f(x) as x approaches x0 ∈ R ∪ {−∞} from the
right if for every sequence {xn}∞n=1 converging to x0 with bigger values (that is, xn > x0 for all n),
the sequence of function values {f(xn)}∞n=1 converges to `. We denote this by

lim
x→x+0

f(x) = `.

For short, we say that ` is the right limit of f(x) at x0. If x0 = −∞ then, the right limit of f(x) at
−∞ is just its limit there (if it exists).

One can verify that f(x) has a limit at x0 if and only if

lim
x→x−0

f(x) = lim
x→x+0

f(x).

We say that the function f(x) is continuous at x0 if it has a limit at x0 and that limit is f(x0).
Note that a function f(x) may have a limit ` at x0 and still not be continuous at x0. This happens
when the limit ` at x0 is not equal to f(x0).

Functions that always have a left and a right limits are the monotone functions. The function
f(x) is increasing on (a, b) if f(x) ≤ f(y) for all x ≤ y in (a, b). The function f(x) is decreasing
if f(x) ≥ f(y) for all x ≤ y in (a, b). If it is either increasing or decreasing on (a, b) we say it is
monotone. If the function f(x) is monotone on (a, b), here −∞ ≤ a < b ≤ ∞, and x0 ∈ (a, b) then
it has a left and a right limit at x0. In addition, f(x) has a right limit at a and a left limit at b.

For example, suppose the function f(x) is increasing on (a, b). Then, its right limit at x0 = a
is inf{f(x) : x ∈ (a, b)} and its left limit at x0 = b is sup{f(x) : x ∈ (a, b)}. Analogously if the
function f(x) is decreasing on (a, b).

The following is a list of the most important properties of limsup and liminf.

• liminf
x→∞

f(x) ≤ limsup
x→∞

f(x) and equality holds if and only if f(x) has a limit as x approaches

infinity. In that case lim
x→∞

f(x) = liminf
x→∞

f(x) = limsup
x→∞

f(x).

• If f(x) ≤ g(x) for all x ∈ (a,∞) then

limsup
x→∞

f(x) ≤ limsup
x→∞

g(x), and

liminf
x→∞

f(x) ≤ liminf
x→∞

g(x).
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• limsup
x→∞

(cf(x)) = c(limsup
x→∞

f(x)), whenever c > 0.

• limsup
x→∞

(−f(x)) = − liminf
x→∞

f(x).

• Whenever the righthand side is not ∞−∞ or −∞+∞, we have

limsup
x→∞

(f(x) + g(x)) ≤ limsup
x→∞

f(x) + limsup
x→∞

g(x).

If g(x) has a limit as x approaches ∞, that is, lim
x→∞

g(x) =: ` then the inequality in the

previous property becomes equality

limsup
x→∞

(f(x) + g(x)) = limsup
x→∞

f(x) + `.

We conclude with another way to describe liminf and limsup of a function f(x) as x approaches
infnity. Let f(x) be arbitrary function defined on (a,∞). Define a new function f̄(x) on (a,∞) as
follows

f̄(x) := sup{f(y) : y ∈ [x,∞)}.

Check that f̄(x) is a decreasing function on (a,∞). Hence it has a limit at ∞. It is a fact, that we
are not going to prove that

lim
x→∞

f̄(x) = limsup
x→∞

f(x).

Analogously, define a new function f(x) on (a,∞) as follows

f(x) := inf{f(y) : y ∈ [x,∞)}.

Check that f(x) is a increasing function on (a,∞). Hence it has a limit at ∞. It is a fact, that we
are not going to prove that

lim
x→∞

f(x) = liminf
x→∞

f(x).

Because of this liminf and limsup of a function f(x) as x approaches infinity are sometimes denoted
by

lim
x→∞

inf
t≥x

f(t) and lim
x→∞

sup
t≥x

f(t).

Exercise 24. For any functions f(x) and g(x) defined on (a,∞) we have

limsup
x→∞

(f(x) + g(x)) ≥ limsup
x→∞

f(x) + liminf
x→∞

g(x) ≥ liminf
x→∞

(f(x) + g(x)).

Exercise 25. Let f(x) and g(x) be any functions defined on (a,∞) and suppose

liminf
x→∞

(g(x)− f(x)) ≥ 0.

Show that limsup
x→∞

f(x) ≤ limsup
x→∞

g(x) and liminf
x→∞

f(x) ≤ liminf
x→∞

g(x).
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1.7 Functions and sets

Let X and Y be two sets and let f : X → Y be a function from X to Y . For any subset A ⊆ X we
define the image of A under f to be

f(A) := {f(a) : a ∈ A}

and note that f(A) ⊆ Y . For any subset B ⊆ Y we define the preimage of B under f to be

f−1(B) := {x ∈ X : f(x) ∈ B}

and note that f−1(B) ⊆ X.
Here are several facts that are not difficult to establish and will be used repeatedly. Let Ai,

i ∈ I be a family of subsets of X where I is an index set. Let Bj, j ∈ J be a family of subsets of
Y where J is an index set.

(i) f
(⋃
i∈I

Ai

)
=
⋃
i∈I

f(Ai);

(ii) f
(⋂
i∈I

Ai

)
⊆
⋂
i∈I

f(Ai);

(iii) f−1
(⋃
j∈J

Bj

)
=
⋃
j∈J

f−1(Bj);

(iv) f−1
(⋂
j∈J

Bj

)
=
⋂
j∈J

f−1(Bj);

(v) f−1(Bc) = (f−1(B))c for all B ⊆ Y .

If g : Y → Z is another function then g ◦ f : X → Z denotes the composition (g ◦ f)(x) :=
g(f(x)). Let A ⊆ X, B ⊆ Y , and C ⊆ Z be three subsets. One can show that

(i) (f−1 ◦ f)(A) ⊇ A;

(ii) (f ◦ f−1)(B) ⊆ B;

(iii) (g ◦ f)−1(C) = f−1(g−1(C)).

1.8 Stolz, Cesaro, Kronecker

The following theorem can be viewed as a l’Hôpital’s rule for sequences.

Theorem 26 (Stolz). Let {an}∞n=1 and {bn}∞n=1 be sequences of real numbers and let {bn}∞n=1 be
strictly increasing and converging to infinity. If

lim
n→∞

an+1 − an
bn+1 − bn

= `,

where ` ∈ R ∪ {−∞,∞}. Then

lim
n→∞

an
bn

= `.
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A corollary of Stolz’ theorem is a result for the so-called Cesaro means that will be useful later.
The proof is left as an exercise.

Corollary 27 (Cesaro means). Let {xn} be a convergent sequence of real numbers with limn→∞ xn =
x. Define yn := 1

n

∑n
i=1 xi for n = 1, 2, 3, . . . Show that limn→∞ yn = x.

Corollary 28 (Kronecker lemma). Let lim
n→∞

n∑
k=1

xk = s ∈ R and {bn}∞n=1 be an increasing sequence

of real numbers converging to infinity, then lim
n→∞

1

bn

n∑
k=1

bkxk = 0.

Proof. Define for convenience b0 := 0. Let sn :=
∑n

k=1 xk with s0 := 0. Then, lim
n→∞

sn = s and

1

bn

n∑
k=1

bkxk =
1

bn

n∑
k=1

bk(sk − sk−1) = sn −
1

bn

n∑
k=1

(bk − bk−1)sk−1.

Let an :=
∑n

k=1(bk − bk−1)sk−1 and apply Stolz theorem:

lim
n→∞

an+1 − an
bn+1 − bn

= lim
n→∞

(bn+1 − bn)sn
bn+1 − bn

= lim
n→∞

sn = s.

This shows that lim
n→∞

an
bn

= lim
n→∞

1

bn

n∑
k=1

(bk − bk−1)sk−1 = s and the result follows.

2 Measure spaces

A measure space is the triple (Ω,F ,P). We proceed to define and illustrate the constituent compo-
nents of a probability space.

(1) Ω is a non-empty set of elementary events, or outcomes of an experiment, or states. Those
elementary events are denoted ω.

Example 29. (a) If we roll a die, then all possible outcomes are the numbers between 1 and 6.
That means that the possible elementary events of the experiment are Ω = {1, 2, 3, 4, 5, 6}. (b) If we
flip a coin, then the possible outcomes are either ‘head’ (H) or ‘tail’ (T), that means that possible
elementary events are Ω = {H,T}. If we flip two coins, then Ω = {(H,H), (H,T ), (T,H), (T, T )}
is the set of all elementary outcomes. (c) If we measure the lifetime of a lightbulb in hours then we
can theoretically choose Ω = [0,∞).

The set F is called a σ-algebra (definition coming soon). This is the collection of observable
subsets A ⊆ Ω also called events. The interpretation is that one can usually not decide whether a
system is in the particular state ω ∈ Ω, but one can decide whether A contains the unknown state
ω or not. In the light bulb example above, we can never determine (due to the fact that we cannot
measure time with infinite precision), whether a light bulb that just burned out, lasted exactly
π = 3.14159 . . . hours, but we can determine if it lasted between, say, 3 and 3.2 hours. That is, if
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ω is the exact life span of the bulb, we can determine whether or not ω ∈ [3, 3.2].

The last component of a measure space is a function P, defined on F with values in [0,∞).
The function P is called a measure. That is, for every set A ∈ F the value P(A) is a non-negative
number.

The pair (Ω,F) is called measurable space. One may have many different measures on the same
measurable space.

2.1 σ-algebras

The σ-algebra is a basic tool in probability theory. It is the set the probability measures are defined
on. Without this notion it would be impossible to consider the fundamental Lebesgue measure on
the interval [0, 1] or to consider Gaussian measures, without which many parts of mathematics can
not live.

Definition 30 (algebra). Let Ω be a non-empty set. A collection F of subsets A ⊆ Ω is called an
algebra on Ω if

(i) ∅ ∈ F ,

(ii) A ∈ F implies that Ac ∈ F , and

(iii) A,B ∈ F implies that A ∪B ∈ F .

By simple induction, the third condition implies that for any finite number of sets A1, . . . , An ∈
F we have

⋃n
i=1 Ai ∈ F .

Definition 31 (σ-algebra). Let Ω be a non-empty set. A collection F of subsets A ⊆ Ω is called
an σ-algebra on Ω if

(i) ∅ ∈ F ,

(ii) A ∈ F implies that Ac ∈ F , and

(iii) A1, A2, . . . ∈ F implies that
⋃∞
i=1 Ai ∈ F .

The only difference between algebra and σ-algebra is that the σ-algebra is “closed” under
countable union of sets from it. Often algebra and σ-algebra are called field and σ-field respectively.
Clearly every σ-algebra is also an algebra, but the opposite is not true, see example below. Clearly,
if an algebra contains only a finite number of sets, then it is a σ-algebra. If Ω = {ω1, . . . , ωn}
(finitely many elementary events) then any algebra on Ω is automatically a σ-algebra.

Given two σ-algebras F1 and F2 on Ω we say that F2 is larger than F1 if A ∈ F1 implies
A ∈ F2. That is, if F1 ⊆ F2, in other words, F2 contains more events and that is why we may say
that it is finer than F1.
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Example 32. Let Ω be a non-empty set.
(a) Let F := 2Ω—the collection of all possible subsets of Ω including the emptyset. This

is clearly a σ-algebra and it contains any other σ-algebra on Ω. That is why this is the largest
σ-algebra on Ω.

(b) Let F := {∅,Ω}. This is the smallest σ-algebra on Ω. It is contained in every other
σ-algebra on Ω.

(c) Fix a subset A ⊆ Ω, then F := {∅, A,Ac,Ω} is a σ-algebra.

Exercise 33 (De Morgan’s Laws). For any sets A1, A2, . . . ⊆ Ω we have( ∞⋃
i=1

Ai

)c
=
∞⋂
i=1

Aci and
( ∞⋂
i=1

Ai

)c
=
∞⋃
i=1

Aci .

Exercise 34 (Restricting a σ-algebra). Suppose F is a σ-algebra on Ω. Let Ω̄ ⊆ Ω. Show that the
collection of sets F̄ := {Ω̄ ∩ A : A ∈ F} is a σ-algebra on Ω̄.

Immediate properties of a σ-algebra.
(a) Ω ∈ F . Indeed, since ∅ ∈ F the second rule of Definition 31 says that Ω = ∅c ∈ F .
(b) A1, A2, . . . ∈ F implies that

⋂∞
i=1Ai ∈ F . Indeed, the second rule of Definition 31 says that Aci ∈

F for all i so by the third rule
⋃∞
i=1 A

c
i ∈ F . Then, by the above lemma,

⋂∞
i=1Ai =

(⋃∞
i=1 A

c
i

)c
∈ F ,

where we used the second rule again.
(c) If A,B ∈ F then A \B ∈ F . Indeed, A \B = A ∩Bc ∈ F .

Example 35 (algebra which is not a σ-algebra). Let F be the collection of all subsets A ⊆ R such
that either A contains only finitely many elements or Ac contains only finitely many elements.

Example 36 (algebra which is not a σ-algebra). Let F be the collection of all subsets A ⊆ R∪{∞}
that can be written as

A = (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (an, bn],

where −∞ ≤ a1 ≤ b1 ≤ · · · ≤ an ≤ bn ≤ ∞ with the convention (a, a] = ∅. Then, F is an algebra
that is not a σ-algebra (why?).

Unfortunately, most of the important σ-algebra can not be constructed explicitly. Surprisingly,
one can work practically with them nevertheless. In the following we describe a simple procedure
which generates σ-algebras. We start with the fundamental fact that intersection of σ-algebras is a
σ-algebra. The proof is very easy, but important.

Proposition 37. Let Fi, i ∈ I, I 6= ∅, be a family of σ-algebras on a nonempty set Ω, where I is
an arbitrary index set. Then

F :=
⋂
i∈I

Fi

is a σ-algebra as well.

Proof. Notice first that ∅ ∈ Fi for all i ∈ I so ∅ ∈
⋂
i∈I Fi. Next, let A,A1, A2, . . . ∈

⋂
i∈I Fi. Hence

A,A1, A2, . . . ∈ Fi for all i ∈ I, which since Fi is a σ-algebra implies that Ac ∈ Fi and
⋃∞
j=1 Aj ∈ Fi

for all i ∈ I. Consequently Ac ∈
⋂
i∈I Fi and

⋃∞
j=1Aj ∈

⋂
i∈I Fi.
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The next proposition explains how an arbitrary collection of sets determines a unique σ-algebra.

Proposition 38. Let F be a arbitrary collection of subsets of Ω. Then, there is a unique smallest
σ-algebra, denoted by σ(F), on Ω such that F ⊆ σ(F).

Proof. Let J be the set of all σ-algebras on Ω that contain the sets in F , such σ-algebras exist (i.e.
the set J is not empty) since the σ-algebra 2Ω contains the sets in F . Define

σ(F) :=
⋂
C∈J

C

to be the intersection of all σ-algebras in J . By Proposition 37, σ(F) is a σ-algebra. To show that
σ(F) is smallest σ-algebra containing the sets in F . Indeed, assume that G is a σ-algebra containing
the sets in F , then by definition G ∈ J so that σ(F) :=

⋂
C∈J C ⊆ G.

Finally, suppose there is another smallest σ-algebra containing the sets in F . Call it F ′. Since
F ′ ∈ J , we get σ(F) ⊆ F ′. Since F ′ is smaller than any other σ-algebra containing the sets in F ,
we get F ′ ⊆ C for all C ∈ J . Hence, F ′ ⊆ σ(F). Therefore F ′ = σ(F).

We say that the σ-algebra σ(F) is generated by the collection of sets F . The construction
follows a “top-down” approach. It is elegant but the disadvantage is that there is no explicit
formula for the elements of σ(F). If F is a finite collection of sets, then σ(F) has finitely many sets
and it is possible to describe them explicitly, as the next exercise shows.

Exercise 39. (a) What is the σ-algebra generated by ∅?
(b) Fix a subset A ⊆ Ω. What is the σ-algebra generated by A?
(c) Fix two subsets A,B ⊆ Ω. What is the σ-algebra generated by {A,B}?

The next exercise shows that the smallest algebra (defined in an analogous way) generated by
a collection of sets can be constructed explicitly from the “bottom-up”.

Exercise 40. Let M be a collection of subsets of Ω. Define

M′ := {∅,Ω} ∪
(
∪A∈M {A,Ac}

)
.

Next, define M′′ to be the set of all finite unions of finite intersections of sets from M′. That is

M′′ =
{
∪ni=1 ∩mj=1Aij : Aij ∈M′ for all i = 1, . . . , n and j = 1, . . . ,m, where n,m ∈ N

}
.

(a) Show that M′′ is an algebra.
(b) Show that M′′ is the smallest algebra containing M.

Exercise 41. Suppose that M1 and M2 are collections of subsets of Ω and F is a σ-algebra.
Show that
(a) If M1 ⊆M2, then σ(M1) ⊆ σ(M2).
(b) If M1 ⊆ F , then σ(M1) ⊆ F .

Exercise 42. Suppose that Ω1 and Ω2 are two sets and f : Ω1 → Ω2 is a function between them.
Let M be a collection of subsets of Ω2 and let F be a σ-algebra on Ω2. Show that
(a) f−1(F) is a σ-algebra on Ω1.
(b) f−1(σ(M)) = σ(f−1(M)).

19



2.1.1 The Borel σ-algebra on R

We now turn to one of the most important examples, the Borel σ-algebra on R. To do this we need
the notion of open and closed sets.

Definition 43 (open and closed sets). (i) A subset A ⊆ R is called open, if for each x ∈ A there
is an ε > 0 such that (x− ε, x+ ε) ⊂ A.

(ii) A subset B ⊆ R is called closed, if A := R \B is open.

Note that R and ∅ are the only subsets of R that are both open and closed. Note that some
sets are neither open nor closed, for example (a, b] for a < b. The open subsets of R have a simple
description. It is a fact that we are not going to prove, that every open subset of R is a finite or
countable union of disjoint open intervals of the type (a, b). Countable union means that the sets
that are being united can be ordered in a sequence. That is, every open subset A of R can be
represented as

A =
∞⋃
n=1

(ai, bi)

for some −∞ ≤ ai ≤ bi ≤ ∞, i = 1, 2, . . ., such that the intervals {(ai, bi) : i = 1, 2, . . .} are disjoint.
In this representation, we allow some of the intervals to be unbounded, that is (−∞, b) or (a,∞).

The structure of the closed subsets of R could be quite complicated as the Cantor set shows.

Proposition 44 (Borel σ-algebra on R). Let
F0 be the collection of all open subsets or R,
F1 be the collection of all closed subsets or R,
F2 be the collection of all intervals (−∞, b] for b ∈ R,
F3 be the collection of all intervals (−∞, b) for b ∈ R,
F4 be the collection of all intervals (a, b] for −∞ < a < b <∞,
F5 be the collection of all intervals (a, b) for −∞ < a < b <∞.
Then σ(F0) = σ(F1) = σ(F2) = σ(F3) = σ(F4) = σ(F5).

Proof. Since F3 ⊂ F0 we have
σ(F3) ⊆ σ(F0).

Next, we look at F5. For −∞ < a < b <∞ we have that

(a, b) =
∞⋃
n=N

[a+ 1/n, b) =
∞⋃
n=N

(
(−∞, b) \ (−∞, a+ 1/n)

)
∈ σ(F3),

where in the first union we have chosen N to be big enough. The second union shows that F5 ⊆
σ(F3) and thus

σ(F5) ⊆ σ(F3).

Now, let A ⊆ R be a non-empty open set. By the structure facts about open sets, mentioned above,

A =
∞⋃
n=1

(ai, bi)
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for some −∞ ≤ ai < bi ≤ ∞, i = 1, 2, . . . (If there are infinite intervals, (−∞, b) or (a,∞), in
the representation of A, note that they are already in σ(F5) as a union of countably many finite
intervals.) This shows that F0 ⊆ σ(F5) and hence

σ(F0) ⊆ σ(F5)

Combining the inclusions, we established that

σ(F0) ⊆ σ(F5) ⊆ σ(F3) ⊆ σ(F0)

showing that
σ(F0) = σ(F5) = σ(F3).

Next, since A ∈ F0 implies Ac ∈ F1 ⊆ σ(F1), we get that A = (Ac)c ∈ σ(F1). Hence F0 ⊆ σ(F1)
and σ(F0) ⊆ σ(F1). The inclusion σ(F1) ⊆ σ(F0) can be shown in a similar way. Thus

σ(F0) = σ(F1).

The rest of the proof is left as an exercise.

Definition 45. The σ-algebra constructed in Proposition 44 is called the Borel σ-algebra on R and
is denoted by B(R).

Example 46. An interesting Borel set is the Cantor set C, described in Example 8. Indeed, there
we started from the Borel set [0, 1] and removed from it a countably many open intervals (also Borel
sets). Thus, the result must be in the Borel σ-algebra B(R).

It is a fact that not every subset of R is a Borel set. That is, there are subsets of R that are
not Borel sets. The proof of this fact is beyond our goals and will not be given.

2.1.2 Constructing σ(F) from the bottom-up (optional)

A set X is called totally ordered if a binary relation is defined on it, denoted ≤, that satisfies the
following properties for all a, b, c ∈ X.

(i) If a ≤ b and b ≤ a, then a = b (antisymmetry);

(ii) If a ≤ b and b ≤ c, then a ≤ c (transitivity);

(iii) Either a ≤ b or b ≤ a.

If in addition, it satisfies the property

(iv) Any non-empty subset A ⊆ X contains an element a, such that a ≤ x for all x ∈ A,

then X is called totally well-ordered or well-ordered for short. This axiom says that every subset of
X has a smallest element, which, by the other three axioms, has to be unique. For example, the
set {0, 1, 2, . . .} is well-ordered, while the set [0, 1] is totally ordered but not well-ordered, since the
subset (1/2, 3/4) does not contain a smallest element. If a ≤ b and a is not equal to b, than we say
that a is strictly smaller than b, denoted a < b. An equivalent way to express axiom (iv) is to say
that X does not have a strictly decreasing sequence. The Zermelo’s Well-Ordering Theorem states
that any set X can be well-ordered, possibly in many different ways. Two well-ordered sets X and
Y are isomorphic (equivalent) if there is a one-to-one and onto map f from X to Y that preserves
the order: if a ≤ b in X, then f(a) ≤ f(b) in Y .
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Definition 47. A well-ordered set λ is called an ordinal number if every element of λ is also a
subset of λ: if a ∈ λ then a ⊂ λ.

In other words, the elements of an ordinal number λ are sets themselves and λ contains all
their elements as well. Moreover, it can be shown, that the order of the set λ is the one generated
by set inclusion: for every a, b ∈ λ, we have a ≤ b if and only if a ⊆ b. Another striking fact is
that every well-ordered set X is isomorphic to an ordinal number λ. Since we are not going to
distinguish between isomorphic well-ordered sets, one can think of every well-ordered set X as an
ordinal number and two well-ordered sets X and Y represent the same ordinal number if and only
if they are isomorphic.

The ordinal numbers extend the natural numbers. That is why the word ‘number’ appears in
the name. To see that, represent 0 as ∅ and

• 1 := {∅}

• 2 := {∅, {∅}}

• 3 := {∅, {∅}, {∅, {∅}}}

• 4 := {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},

and continue like that for every natural number. The sets on the right-hand side, whose elements
are well-ordered according to set inclusion, are ordinal numbers. For example, the set for 4, contains
the element {∅, {∅}, {∅, {∅}}}, which represents 3, and it also contains all the elements of 3, namely
∅, {∅}, {∅, {∅}}. In this way, one can use the funny notation 3 ∈ 4.

As another example, the set ω := {0, 1, 2, . . .} is well-ordered, hence it is an ordinal number.
Note that this set is infinite but countable. There are ordinals that are not countable, just any
well-order on [0, 1] will turn it into an uncountable ordinal.

We now state the properties of ordinal numbers that are important to us.

1. Every element of an ordinal number is a well-ordered set, hence an ordinal number itself, for
example 5 ∈ ω.

2. If λ and µ are ordinal numbers, then exactly one of the following situations holds: (a) λ is
isomorphic to an element of µ, or (b) µ is isomorphic to an element of λ, or (c) λ is isomorphic
to µ. This allows one to define an order between the ordinal numbers: λ ≤ µ if (a) holds, or
µ ≤ λ if (b) holds, or λ = µ if (c) holds. Thus, any set of ordinal numbers is totally ordered.

For example n < ω for all natural numbers n. As another example, take any a ∈ λ. Since a is
an ordinal number isomorphic to itself, we conclude that a ≤ λ. Moreover, a cannot be equal
to λ (no set contains itself), hence a < λ. To emphasize: the notation µ ≤ λ means that µ is
isomorphic either to λ or to an element of λ. In the fist case we have µ = λ, while in the second
(since we do not distinguish between isomorphic sets) µ ∈ λ. This shows, that λ = {a : a < λ},
or using funny notation λ = [0, λ).

3. Any collection of ordinal numbers has a unique smallest element. This implies that, any set
of ordinal numbers is well-ordered, hence (isomorphic to) an ordinal number. For example,
{1, 3} = {{∅}, {∅, {∅}, {∅, {∅}}}} is isomorphic to {∅, {∅}} = 2.
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Given an ordinal number λ, the successor of λ, denoted by λ + 1, is defined to be the set
λ ∪ {λ}. That is, the elements of λ + 1 are those of λ and λ itself, or using the funny notation
λ+1 = [0, λ]. Since λ is an element of λ+1, we have λ < λ+1. For example ω+1 = {0, 1, 2, . . . , ω},
ω + 2 = {0, 1, 2, . . . , ω, ω + 1}, and repeating, we obtain

ω + ω = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . .} =: 2ω.

We can continue {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , 2ω, 2ω + 1, 2ω + 2, . . .} =: 3ω and if we add three
more dots (think of what that means) one obtains

{0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , 2ω, 2ω + 1, 2ω + 2, . . . , . . .} =: ωω,

which is still a countable set, since it is a countable union of countable sets. One can continue like

that until their head explodes (for example, when trying to come to terms with the set ωω
ω
..
.

, which
is still a countable ordinal).

If an ordinal is not the successor of any other ordinal, then it is called a limit ordinal. Thus,
there are two types of ordinals: successors and limit ordinals. For example, ω and ωω are limit
ordinals, while 5 is a successor since 4 + 1 = 5.

The collection of all uncountable ordinals has a smallest element, denoted by ω1. It is not
difficult to show that λ is a countable ordinal if and only if λ ∈ ω1, that is, ω1 is the set of all
countable ordinals. To see that ω1 is a limit ordinal (i.e. not a successor), suppose that ω1 = λ+ 1
for some λ. Such λ must satisfy λ < ω1, so it is countable. But then λ + 1 is countable (just one
element was added to λ), contradicting the fact that ω1 is uncountable.

Lemma 48. Let λ1, λ2, . . . be a sequence of countable ordinals. Then, there is a countable ordinal
µ∗, such that λi < µ∗ for all i = 1, 2, . . .

Proof. The set ω1\
((
∪∞i=1λi

)
∪{λ1, λ2, . . .}

)
is not empty, since from an uncountable set we subtract

a countable one. Let µ∗ be an element in the difference. Since µ∗ ∈ ω1, it is a countable ordinal.
Clearly, µ∗ 6= λi for all i. Also, one cannot have µ∗ < λi, since then µ∗ ∈ λi, contradicting the
choice of µ∗. Hence, λi < µ∗ for all i = 1, 2, . . .

Exercise 49. If λ is a limit ordinal, then λ =
⋃
µ<λ µ.

The usefulness of the ordinal numbers is that they themselves are well-ordered. So, just like
one can do inductive arguments over the natural numbers, one can do inductive arguments (or
definitions) over the ordinal numbers.

Lemma 50 (Transfinite induction). Consider a property P(λ) that depends on the ordinals. Suppose
that P(0) is true. If one can show that P(λ) is true, whenever P(µ) is true for every µ < λ, then
P(λ) is true for every ordinal λ.

Proof. Suppose that the property is not true for every ordinal number. Then, the collection of
ordinals, for which the property is not true, is not empty. It has a smallest element, call it µ∗.
(We have µ∗ > 0, since P(0) is true.) That is, P(µ) is true for every µ < µ∗. But then, by the
hypothesis, one can show that P(µ∗) is true as well, a contradiction.
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When making the induction step, one usually considers two cases: a successor and a limit case,
corresponding to the two different types of ordinal numbers. (Every natural number is a successor,
that is why the ordinary induction has only a successor case.) We are now ready to define the sigma
algebra σ(F). Let F be a collection of subsets from Ω.

Base case: Let σ0 := F ∪ {∅,Ω}.

Successor case: Suppose σλ has been defined, then let

σλ+1 := σλ
⋃
{∪∞i=1Ai : Ai ∈ σλ}

⋃
{(∪∞i=1Ai)

c : Ai ∈ σλ}.

Limit case: Suppose λ is a limit ordinal and that σµ has been defined for all µ < λ. Then, let

σλ :=
⋃
µ<λ

σµ.

In this way, one can construct a collection of sets σλ for any ordinal λ. Procedure like that for
constructing objects is called transfinite recursion. In this case, the procedure implies that if µ < λ,
then σµ ⊆ σλ.

Theorem 51. The collection of sets σω1 is the smallest σ-algebra containing F , that is

σ(F) = σω1 .

Proof. Since ω1 is a limit ordinal, we have σω1 = ∪µ<ω1σµ. Let us see first that σω1 is a σ-algebra
containing F . Since 0 < ω1, the limit case of the definition, says that σ0 ⊆ σω1 . So, ∅,Ω ∈ σω1 and
F ⊆ σω1 .

If A ∈ σω1 , then the limit case of the definition, says that A ∈ σµ for some µ < ω1. Then, the
successor case implies that Ac ∈ σµ+1, and since µ + 1 < ω1, the limit case of the definition again
implies Ac ∈ σω1 .

Now let Ai ∈ σω1 for all i = 1, 2, . . . The limit case of the definition implies that for every
i = 1, 2, . . ., there is an ordinal µi < ω1, such that Ai ∈ σµi . Necessarily, µi is countable ordinal for
each i. By Lemma 48, there is a countable µ∗, such that µi ≤ µ∗. Hence, Ai ∈ σµi ⊆ σµ∗ . Thus, by
the successor case ∪∞i=1Ai ∈ σµ∗+1 ⊂ σω1 , since µ∗ + 1 < ω1.

This shows that σ(F) ⊆ σω1 . To show the opposite inclusion, we use the principle of transfinite
induction.

As a base case, note that σ0 ⊆ σ(F). Consider and ordinal λ and suppose that σµ ⊆ σ(F)
for all µ < λ. We need to show that σλ ⊆ σ(F). Consider two cases. If λ is a successor, that is
λ = µ + 1 for some µ < λ, then we are done by the successor case of the definition. If λ is a limit
ordinal, then we are done by the limit case of the definition. This shows σλ ⊆ σ(F) for all ordinals
λ. In particular σω1 ⊆ σ(F).

Exercise 52. Use the above ideas to show that f−1(σ(M)) = σ(f−1(M)), where f and M are as
in Exercise 42.
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2.2 Measures

A collection of subsets {Ai}i∈I of Ω is called disjoint if Ai ∩ Aj = ∅ for all i, j ∈ I with i 6= j.

Definition 53. Suppose F is a σ-algebra.
A map P : F → R ∪ {∞} is called a measure on the σ-algebra F if
1) P(∅) = 0
2) P(A) ≥ 0 for all A ∈ F ; and
3) For any sequence of disjoint sets A1, A2, . . . ∈ F we have

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).(3)

The triplet (Ω,F ,P) is called measure space. The basic properties of a measure are collected below.

Proposition 54. Let (Ω,F ,P) be a measure space. Then the following properties hold

(i) If A1, . . . , An ∈ F are disjoint sets then P
(⋃n

i=1 Ai

)
=
∑n

i=1 P(Ai);

(ii) If A,B ∈ F then P(A \B) = P(A)− P(A ∩B);

(iii) If A,B ∈ F and B ⊆ A then P(B) ≤ P(A);

(iv) If A1, A2, . . . ∈ F is a sequence of any sets then P
(⋃∞

i=1Ai

)
≤
∑∞

i=1 P(Ai);

(v) Continuity from below: If A1, A2, A3, . . . ∈ F are such that A1 ⊆ A2 ⊆ A3 ⊆ · · · then

lim
n→∞

P(An) = P
( ∞⋃
i=1

Ai

)
;

(vi) Continuity from above: If A1, A2, A3, . . . ∈ F are such that A1 ⊇ A2 ⊇ A3 ⊇ · · · and
P(A1) <∞, then

lim
n→∞

P(An) = P
( ∞⋂
i=1

Ai

)
.

Proof. (i) Let An+1 = An+2 = · · · = ∅ so that

P
( n⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai) =
n∑
i=1

P(Ai),

because P(∅) = 0.

(ii) Since (A ∩B) ∩ (A \B) = ∅, we get

P(A ∩B) + P(A \B) = P((A ∩B) ∪ (A \B)) = P(A).

(iii) Immediate from the previous part since P(A \B) ≥ 0 and A ∩B = B.

25



(iv) Let B1 := A1 and Bi := Ac1 ∩ Ac2 ∩ · · · ∩ Aci−1 ∩ Ai for i = 2, 3, . . . Since Bi ⊆ Ai we get
P(Bi) ≤ P(Ai) for all i. Note that the sets B1, B2, . . . are disjoint and

⋃∞
i=1Ai =

⋃∞
i=1Bi.

Hence

P
( ∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Bi

)
=
∞∑
i=1

P(Bi) ≤
∞∑
i=1

P(Ai).

(v) Let B1 := A1 and B2 := A2 \ A1, B3 := A3 \ A2, . . . Then, we have that the sets B1, B2, . . .
are disjoint and

∞⋃
i=1

Bi =
∞⋃
i=1

Ai and
n⋃
i=1

Bi = An.

Consequently

P
( ∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Bi

)
=
∞∑
i=1

P(Bi) = lim
n→∞

n∑
i=1

P(Bi) = lim
n→∞

P
( n⋃
i=1

Bi

)
= lim

n→∞
P(An).

(vi) This part is left as an exercise. (Where do you use the requirement that P(A1) <∞?)

The third property in Proposition 54 implies that for any A ∈ F we have 0 ≤ P(A) ≤ P(Ω).
Indeed, since ∅ ⊆ A ⊆ Ω, then 0 = P(∅) ≤ P(A) ≤ P (Ω).

• If P(Ω) = 1 then the measure P is called probability measure and the triplet (Ω,F ,P) is called
probability space. In that case 0 ≤ P(A) ≤ 1 for all A ∈ F .

• If P(Ω) <∞ then the measure P is called finite.

• A measure P is called σ-finite if there is a sequence of sets Ω1 ⊆ Ω2 ⊆ Ω3 ⊆ · · · such that
Ω =

⋃∞
n=1 Ωn and P(Ωn) <∞ for all n = 1, 2, . . .

Thus, probability measures are a special type of finite measures and both are special type of
σ-finite measures.

Note that P is just a map that assigns non-negative numbers to the sets in F . Nothing in the
properties of the map P does not prevent it from assigning 0 (or any other number) to some of the
sets in F . The fact that P(A) = 0 does not imply that A is the empty set. A set A ∈ F such that
P(A) = 0 is called a null set.

Exercise 55. Let (Ω,F ,P) be a measure space. Show that
(1) If A1, A2, . . . ∈ F are null sets, then so is

⋃∞
n=1An.

(2) If A,B ∈ F and A is a null set, then P(A ∪B) = P(B).
(2) If A,B ∈ F and A is a null set, then P(A ∩B) = 0.

Exercise 56. Let (Ω,F ,P) be a measure space and let A1, A2, . . . ∈ F be any sets. Show that

(1) P
(⋃∞

n=1An

)
= limm→∞ P

(⋃m
n=1An

)
.

(2) If P(A1) <∞ then P
(⋂∞

n=1 An

)
= limm→∞ P

(⋂m
n=1An

)
.
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Consider a sequence of subsets A1, A2, . . . of Ω. It is trivial to see that the set

∞⋃
n=1

An

consists of those ω’s from Ω that are in at least one of the sets {An}. Similarly, the set

∞⋂
n=1

An

consists of those ω’s from Ω that are in all of the sets {An}.
Now, let liminfAn be the set of those ω’s from Ω that are in all but finitely many of the sets

{An}. Let limsupAn be the set of those ω’s from Ω that are in infinitely many of the sets {An}.
Clearly, if ω is in all but finitely many of the sets {An}, then it is in infinitely many of them, so

liminfAn ⊆ limsupAn.

We have the following representations.

Proposition 57. For any sequence of subsets A1, A2, . . . of Ω we have the representations

liminfAn :=
∞⋃
n=1

∞⋂
k=n

Ak and limsupAn :=
∞⋂
n=1

∞⋃
k=n

Ak.

Proof. We show the first equality. The second is left as an exercise.
Let ω ∈ liminfAn. Then ω is in all but finitely many of the sets A1, A2, . . .. So, for some n

large enough, ω is in every set in An, An+1, . . ., consequently ω ∈
⋂∞
k=nAk. Thus, ω ∈

⋃∞
n=1

⋂∞
k=nAk.

This shows that liminfAn ⊆
⋃∞
n=1

⋂∞
k=nAk.

Conversely, if ω ∈
⋃∞
n=1

⋂∞
k=nAk, then ω ∈

⋂∞
k=nAk for some n. The last inclusion says that

ω is in every one of the sets An, An+1, . . .. So, ω may not be in the sets A1, . . . , An−1. These are
finitely many, so ω ∈ liminfAn.

Putting the two inclusions together, shows the equality.

Note that if the setsA1, A2, . . . are in a σ-algebra F , then so are the sets liminfAn and limsupAn.
We do not use the notation liminf

n→∞
An in order to emphasize the fact that liminfAn is a set and not a

limit of some sorts. The reason why this set is given such a weird name is explained by Exercise 93.

Proposition 58 (Fatou lemma: special case). Let (Ω,F ,P) be a probability space, P(Ω) = 1 and
let A1, A2, . . . ∈ F . Then

P
(
liminfAn) ≤ liminf

n→∞
P(An) ≤ limsup

n→∞
P(An) ≤ P

(
limsupAn).

Proof. Later we will present a theorem from which this proposition is a simple corollary.

A sequence of sets {An} is called convergent if liminfAn = limsupAn =: A. In that case, by
the special case of the Fatou lemma, we have

liminf
n→∞

P(An) = limsup
n→∞

P(An) = lim
n→∞

P(An) = P(A).
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Exercise 59. Let A1, A2, . . . , An be n events in Ω. Consider the sequence

A1, A2, . . . , An, A1, A2, . . . , An, A1, A2, . . . , An, . . .

What is liminf and limsup of that sequence? When is this sequence convergent?

Exercise 60. Let A1, A2, . . . , An be n events in Ω. Consider the sequence

A1, A2, . . . , An, ∅, ∅, ∅, . . .

What is liminf and limsup of that sequence?

Exercise 61. a) Let A1 ⊆ A2 ⊆ A3 ⊆ · · · be an increasing sequence of events in Ω. What is liminf
and limsup of that sequence?
b) Let A1 ⊇ A2 ⊇ A3 ⊇ · · · be a decreasing sequence of events in Ω. What is liminf and limsup of
that sequence?

Definition 62. Let (Ω,F ,P) be a probability space. The events {Ai}i∈I ⊆ F , where I is an index
set, are called independent, if for any choice of distinct indexes i1, . . . , in ∈ I, we have

P(Ai1 ∩ Ai2 ∩ · · · ∩ Ain) = P(Ai1)P(Ai2) · · ·P(Ain).(4)

Note that in the above definition, equality (4) has to hold for any n ∈ N and any distinct indexes
i1, . . . , in ∈ I. Two events A,B ∈ F are independent if and only if P(A ∩ B) = P(A)P(B). While,
three events {A,B,C} are independent if P(A ∩B ∩ C) = P(A)P(B)P(C), P(A ∩B) = P(A)P(B),
P(A ∩ C) = P(A)P(C), and P(B ∩ C) = P(B)P(C).

The following lemma is stated without a proof, since soon we will prove a more general result
from which this lemma is a particular case.

Lemma 63. If the events {Ai}i∈I ⊆ F , where I is an index set, are independent, then so are their
complements {Aci}i∈I ⊆ F .

Definition 64. Let (Ω,F ,P)be a probability space and let B ∈ F with P(B) > 0. Then

P(A|B) :=
P(A ∩B)

P(B)
, for A ∈ F

is called the conditional probability of A given B.

Definition 65. We say that the subsets A1, A2, . . . , An of Ω form a partition of Ω if they are disjoint
and Ω = ∪ni=1Ai.

The following formula is well-known from undergraduate classes.

Theorem 66 (Bayes’ formula). Let (Ω,F ,P) be a probability space and suppose A1, A2, . . . , An
form a partition of Ω. Then for any set B ∈ F we have

P(Ak|B) =
P(B|Ak)P(Ak)∑n
i=1 P(B|Ai)P(Ai)

,

where we also need to require that P(B) > 0, and P(Ai) > 0 for all i = 1, 2, . . . , n.

28



In the Bayes’ theorem, an event Ak is called hypothesis and the probabilities P(Ak) are called
prior probabilities. The probabilities P(Ak|B) are called posterior probabilities of Ak.

Next, we present the fundamental Lemma of Borel-Cantelli.

Proposition 67 (Borel-Cantelli lemma). Let (Ω,F ,P)be a probability space and A1, A2, . . . ∈ F .

(1) If
∑∞

n=1 P(An) <∞, then P(limsupAn) = 0.

(2) If
∑∞

n=1 P(An) =∞ and {An}∞n=1 are independent, then P(limsupAn) = 1.

Proof. (1) By definition we have limsupAn :=
⋂∞
n=1

⋃∞
k=nAk =

⋂∞
n=1 Bn, where we define Bn :=⋃∞

k=nAk. Clearly, Bn+1 ⊆ Bn for all n and by the continuity of P from above, Proposition 54,
part (vi), we get

P(limsupAn) = P
( ∞⋂
n=1

∞⋃
k=n

Ak

)
= P

( ∞⋂
n=1

Bn

)
= lim

n→∞
P(Bn) = lim

n→∞
P
( ∞⋃
k=n

Ak

)
≤ lim

n→∞

∞∑
k=n

P(Ak) = 0,

where the third equality follows from Exercise 56 and the last inequality follows again by Proposi-
tion (vi).

(2) Showing that P(limsupAn) = 1 is equivalent to showing that P((limsupAn)c) = 0. Now

(limsupAn)c =
( ∞⋂
n=1

∞⋃
k=n

Ak

)c
=
∞⋃
n=1

( ∞⋃
k=n

Ak

)c
=
∞⋃
n=1

∞⋂
k=n

Ack = liminfAcn,

where we used twice Lemma 33. Letting Bn := ∩∞k=nA
c
k we get an increasing sequence B1 ⊆ B2 ⊆

B3 ⊆ · · · , implying, by the continuity below of P, that

P((limsupAn)c) = P
( ∞⋃
n=1

∞⋂
k=n

Ack

)
= P

( ∞⋃
n=1

Bn

)
= lim

n→∞
P(Bn),

where the last equality follows from Proposition 54, part (v). The proof will be done if we show
that P(Bn) = 0. So fix an n ∈ N. By Lemma 63, since A1, A2, . . . are independent, then so are their
complements Ac1, A

c
2, . . .. By Exercise 56, and by the independence, we have

P(Bn) = P
( ∞⋂
k=n

Ack

)
= lim

m→∞
P
( m⋂
k=n

Ack

)
= lim

m→∞

(
P(Acn)P(Acn+1) · · ·P(Acm)

)
= lim

m→∞

(
(1− P(An))(1− P(An+1)) · · · (1− P(Am))

)
≤ lim

m→∞

(
e−P(An)e−P(An+1) · · · e−P(Am)

)
= lim

m→∞
e−

∑m
k=n P(Ak)

= e−
∑∞
k=n P(Ak)

= e−∞

= 0,

where we used the inequality 1− x ≤ e−x valid for every x ∈ R.

29



2.2.1 How to construct measures?

In general, it is difficult to construct measures on a σ-algebra explicitly, since we do not have explicit
formula for the sets in the σ-algebra. Instead, we construct measures on algebras and use the next
theorem, which we state without proof, to extend it to σ-algebras. Informally speaking, algebras
are simpler than σ-algebras, and contain “fewer” sets, thus it should be easier to construct measures
on algebras. First we need a definition.

Definition 68. Suppose F is a algebra.
A map P0 : F → R ∪ {∞} is called a measure on the algebra F if
1) P0(∅) = 0
2) P0(A) ≥ 0 for all A ∈ F ; and
3) For any sequence of disjoint events A1, A2, . . . ∈ F , such that

⋃∞
i=1Ai ∈ F , we have

P0

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P0(Ai).(5)

Notice the very small difference between a measure on a σ-algebra and a measure on an algebra.
We know that, if F is an algebra then the union of a sequence of sets from F may not be in F .

Thus, in order for the value P0

(⋃∞
i=1Ai

)
to be defined, we need to require that

⋃∞
i=1 Ai ∈ F .

• If P0(Ω) <∞ then the measure P0 is called finite.
• The measure P0 is called σ-finite if there is a sequence of sets Ω1 ⊆ Ω2 ⊆ Ω3 ⊆ · · · such that

Ω =
⋃∞
n=1 Ωn and P0(Ωn) <∞ for all n = 1, 2, 3 . . .

Theorem 69 (Carathéodory’s extension theorem). Let P0 be a finite (resp. σ-finite) measure on
an algebra F . Then P0 has a unique extension to a finite (resp. σ-finite) measure P on σ(F), the
σ-algebra generated by F . That is, for all A ∈ F we have

P(A) = P0(A).(6)

Note that if P0(Ω) = 1, then its extension P is a probability measure: just replace A by Ω in (6).

Exercise 70. Let {ai,j : i = 1, 2, . . . , j = 1, 2, . . .} be an array of positive numbers, such that
ai,j ≤ ai+1,j for all i, j. Show

lim
i→∞

( ∞∑
j=1

ai,j

)
=
∞∑
j=1

(
lim
i→∞

ai,j
)
.

Exercise 71. Let {ai,j : i = 1, 2, . . . , j = 1, 2, . . .} be an array of positive numbers.
(a) Suppose that limj→∞ ai,j exists for every i = 1, 2, . . . and suppose that ai,j ≤ ai+1,j for all

i, j = 1, 2, . . . Show that
liminf
j→∞

( lim
i→∞

ai,j) ≥ lim
i→∞

( lim
j→∞

ai,j).

(b) Suppose that ai,j ≤ ai+1,j and that ai,j ≤ ai,j+1 for all i, j. That is, for every j the sequence
{ai,j}∞i=1 is increasing and for every i the sequence {ai,j}∞j=1 is increasing. Then

lim
i→∞

(
lim
j→∞

ai,j
)

= lim
j→∞

(
lim
i→∞

ai,j
)
.
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Let F : R → R be a function with the following properties: (1) F is increasing, and (2) F is
right continuous, that is limy→x+ F (y) = F (x) for all x ∈ R.

We are going to use the Carathéodory extension theorem to see how such a function F defines
a measure on the Borel sets of R. Consider the collection F of all sets A ⊆ R ∪ {∞} that can be
written as

A = (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (an, bn],

where −∞ ≤ a1 ≤ b1 ≤ · · · ≤ an ≤ bn ≤ ∞ with the convention (a, a] = ∅. Example 36 shows that
F is an algebra. Define the function

P0 : F → R ∪ {∞}

that assigns to every set A ∈ F of the form

A = (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (an, bn],

for some −∞ ≤ a1 ≤ b1 ≤ · · · ≤ an ≤ bn ≤ ∞, the number

P0(A) :=
n∑
i=1

(
F (bi)− F (ai)

)
.(7)

(Think about the fact that the number P0(A) does not depend on how you represent a set A as a
disjoint union of intervals (a, b].) If the interval (a, b] is infinite, we define

P0((−∞, b]) := F (b)− lim
x→−∞

F (x),

P0((a,∞]) := lim
x→∞

F (x)− F (a), and

P0((−∞,∞]) := lim
x→∞

F (x)− lim
x→−∞

F (x).

In order to use the Carathéodory theorem, we have to show that P0 is a measure on the algebra F .
That is, we need to check that the three conditions in Definition 68 hold.

1) P0(∅) = P0((a, a]) = F (a)− F (a) = 0.
2) The fact that P0(A) ≥ 0 for all A ∈ F , follows immediately from definition (7) and the fact

that F is increasing function, that is F (bi)− F (ai) ≥ 0 since ai ≤ bi for all i = 1, 2, . . . , n.
The verification of the third condition is more involved and is the content of the next two

lemmas. The first lemma considers a special case while the second one tackles the general one.

Lemma 72. Let (ci, di], i = 1, 2, . . . be disjoint intervals such that

(a, b] =
∞⋃
i=1

(ci, di],

where −∞ ≤ a ≤ b ≤ ∞. Then,

P0((a, b]) =
∞∑
i=1

P0((ci, di]).(8)
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Proof. If a = b then (a, b] is the empty set and so all sets (ci, di] have to be empty, i.e. ci = di for
all i, and there is nothing to show. So assume that a < b. We consider two cases, based on whether
or not the interval (a, b] is finite or not.

Case 1. Suppose the interval (a, b] is finite. The right continuity of F implies that for any
ε > 0 there is a δ > 0 so that

F (a+ δ) < F (a) + ε.(9)

Similarly, for any i = 1, 2, 3, . . . (replace now ε by ε/2i) there is an ηi > 0 such that

F (di + ηi) < F (di) +
ε

2i
.(10)

Observe now that

[a+ δ, b] ⊆
∞⋃
i=1

(ci, di + ηi).

That is the closed and bounded interval [a+ δ, b] is covered by open intervals. By a theorem in real
analysis,1 which we will not discuss, [a+ δ, b] is also covered by a finite number of these intervals.
Suppose for simplicity of notation, that [a+ δ, b] is covered by the first n open intervals, that is

[a+ δ, b] ⊆
n⋃
i=1

(ci, di + ηi).

Thus, using (10) and the fact that F is increasing, we obtain

F (b)− F (a+ δ) ≤
n∑
i=1

(
F (di + ηi)− F (ci)

)
<

n∑
i=1

(
F (di)− F (ci) +

ε

2i

)
<

n∑
i=1

(
F (di)− F (ci)

)
+ ε ≤

∞∑
i=1

(
F (di)− F (ci)

)
+ ε

=
∞∑
i=1

P0((ci, di]) + ε.

Finally, using (9) and combining with the above, we obtain

P0((a, b]) = F (b)− F (a) < F (b)− F (a+ δ) + ε <
∞∑
i=1

P0((ci, di]) + 2ε.

This shows, that for every ε > 0 we have P0((a, b]) ≤
∑∞

i=1 P0((ci, di]) + 2ε, which is equivalent to

P0((a, b]) ≤
∞∑
i=1

P0((ci, di]).(11)

1The theorem says that if a closed and bounded set is covered by open sets, then only a finite number of the open
sets also cover it.
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To show the opposite inequality, we observe that for any N we have ∪Ni=1(ci, di] ⊆ (a, b]. Using the
fact that F is increasing function and that the intervals {(ci, di]}∞i=1 are disjoint, we obtain

P0((a, b]) = F (b)− F (a) ≥
N∑
i=1

F (di)− F (ci) =
N∑
i=1

P0((ci, di]).

(Note that to obtain the last inequality, we cannot use the properties of a measure, because we have
not proved that P0 is a measure yet.) Letting N approach infinity we get

P0((a, b]) ≥
∞∑
i=1

P0((ci, di]).

Combine this with (11) to establish (14).
Case 2. Suppose that (a, b] is infinite.

For any n ∈ N, we have

(a, b] ∩ (−n, n] =
( ∞⋃
i=1

(ci, di]
)
∩ (−n, n] =

∞⋃
i=1

(
(ci, di] ∩ (−n, n]).

Note that sets in the union on the right are disjoint, that all intersections such as (a, b] ∩ (−n, n]
are half-open bounded intervals. So by the first case, we obtain

P0((a, b] ∩ (−n, n]) =
∞∑
i=1

P0((ci, di] ∩ (−n, n])

for all n = 1, 2, 3, . . . Let n approach infinity to obtain2

P0((a, b]) = lim
n→∞

P0((a, b] ∩ (−n, n]) = lim
n→∞

∞∑
i=1

P0((ci, di] ∩ (−n, n])

=
∞∑
i=1

lim
n→∞

P0((ci, di] ∩ (−n, n])

=
∞∑
i=1

P0((ci, di]).

The justification for exchanging the limit with the infinite sum is given in Exercise 70. That
establishes (14) in the second case.

2Caution is needed when establishing the first equality. One cannot use the property continuity from below since
we have not established that P0 is a measure yet. Suppose the interval (a, b] is of the form (−∞, b], where b is a finite
number. Then for n larger than b, we have (a, b] ∩ (−n, n] = (−n, b], and we obtain

lim
n→∞

P0((a, b] ∩ (−n, n]) = lim
n→∞

P0((−n, b]) = lim
n→∞

(F (b)− F (−n)) = F (b)− lim
n→∞

F (−n)

= F (b)− lim
x→−∞

F (x) = P0((−∞, b]) = P0((a, b]).

Similar considerations are needed in order to establish limn→∞ P0((ci, di] ∩ (−n, n]) = P0((ci, di]).

33



We now verify that the third condition of Definition 68 holds.

Lemma 73. For any sequence of disjoint events A1, A2, . . . ∈ F , such that
⋃∞
i=1 Ai ∈ F , we have

P0

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P0(Ai).(12)

Proof. Let

A :=
∞⋃
i=1

Ai.

On the one hand, since A ∈ F , the set A is a union of finitely many half-open disjoint intervals

A = (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (an, bn].

On the other hand, since Ai ∈ F , the set Ai is a union of finitely many (possibly different) half-open
disjoint intervals

Ai = (ai1, b
i
1] ∪ (ai2, b

i
2] ∪ · · · ∪ (aini , b

i
ni

], i = 1, 2, 3, . . .(13)

(Note that the number ni of half-open intervals that constitute Ai may vary for different sets in the
sequence A1, A2, . . .) Consider the collection C of all half-open intervals that participate in (13) and
note that they are all disjoint since the sets A1, A2, . . . ∈ F are disjoint. Since

A =
∞⋃
i=1

Ai =
⋃

(c,d]∈C

(c, d],

we can partition the intervals in C into n groups, C1, . . . , Cn such that the union of the intervals in
the first group is (a1, b1], the union of the intervals in the second group is (a2, b2] and so on.

Suppose the intervals in the first group are C1 = {(ci, di] : i = 1, 2, 3, . . .}. Since their union is

(a1, b1] =
∞⋃
i=1

(ci, di],

by Lemma 72 we have

P0((a1, b1]) =
n∑
i=1

P0((ci, di]).(14)

Similarly for the intervals in all n groups. We get

P0(A) =
n∑
i=1

P0((ai, bi]) =
n∑
i=1

∑
(c,d]∈Ci

P0((c, d]) =
∞∑
i=1

ni∑
j=1

P0((aij, b
i
j]) =

∞∑
i=1

P0(Ai),

where the third inequality holds because the two double sums go over all the intervals in the
collection C in two different ways. The fourth inequality holds since

ni∑
j=1

P0((aij, b
i
j]) = P0(Ai)

by definition of P0.

34



This concludes the proof that P0 is a measure on F . Now, notice that this measure is always
finite or σ-finite (why?). Thus, the Carathéodory’s extension theorem now allows us to extend the
measure P0 on F , in a unique way, to a measure P on σ(F) = B(R). We formulate this in the next
theorem.

Theorem 74. For any increasing, right-continuous function F : R→ R, there is a unique measure
P : B(R)→ R such that

P((a, b]) = F (b)− F (a)

for all −∞ < a ≤ b <∞.

The next exercise summarizes how to calculate the measure of various different Borel subsets
of R. Recall that an increasing function has left limit at every point (which may not be equal to
the value of the function at that point). For any b ∈ R, denote that left limit by

F (b−) := lim
x→b−

F (x).

Exercise 75. Let P be the measure in Theorem 74. Show that

(i) P((−∞, b)) = F (b−)− lim
x→−∞

F (x);

(ii) P((a, b)) = F (b−)− F (a);

(iii) P({a}) = F (a)− F (a−);

(iv) P([a, b)) = F (b−)− F (a−);

(v) P([a, b]) = F (b)− F (a−).

(vi) P((a,∞)) = lim
x→∞

F (x)− F (a);

(vii) P([a,∞)) = lim
x→∞

F (x)− F (a−);

(viii) If, in addition, the function F is continuous, then

(a) P((−∞, b]) = P((−∞, b)) = F (b)− lim
x→−∞

F (x);

(b) P((a, b)) = P([a, b)) = P((a, b]) = P([a, b]) = F (b)− F (a);

(c) P({a}) = 0.

(ix) If lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1, show that P is a probability measure.

The next exercise shows that all finite measures on B(R) are obtained from an increasing,
right-continuous function F as described in Theorem 74.

Exercise 76. Let Q be a finite measure on B(R). Define the function F (x) := Q((−∞, x]). Show
that F is increasing, right-continuous, and Q((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞.

Example 77 (Lebesgue measure). Let F : R→ R be the identity function F (x) = x. It is clearly
increasing and continuous. The unique measure P on B(R), satisfying

P((a, b]) = b− a

is called the Lebesgue measure on R. It is a σ-finite measure.

35



2.2.2 Product measure

Let (Ω1,F1,P1) and (Ω2,F2,P2) be two measure spaces (either both finite or both σ-finite). We
construct the product space

(Ω1 × Ω2,F1 ⊗F2,P1 × P2)

as follows.

(1) Ω1×Ω2 := {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}. Thus, Ω1×Ω2 is the set of all ordered pairs of elements
from Ω1 and Ω2 much like R2 is the set of all ordered pairs (x, y) of numbers from R and R.

(2) Consider the collection of subsets of Ω1 × Ω2 of the form

A×B := {(ω1, ω2) : ω1 ∈ A, ω2 ∈ B} with A ∈ F1, B ∈ F2.

The set A×B is called a rectangle in Ω1 × Ω2 with sides A and B (much like the rectangles in R2

with sides parallel to the coordinate axis). Denote by F1 ⊗F2 the σ-algebra on Ω1 ×Ω2 generated
by this collection of subsets.

(3) Let G be the collection of all subsets of Ω1 × Ω2 that can be represented as a finite, disjoint
union of rectangles:

(A1 ×B1) ∪ (A2 ×B2) ∪ · · · ∪ (An ×Bn),

where Ai ∈ F1, Bi ∈ F2, and (Ai × Bi) ∩ (Aj × Bj) = ∅ for all i 6= j. Finally, define the function
P0 : G → [0,∞] by

P0((A1 ×B1) ∪ (A2 ×B2) ∪ · · · ∪ (An ×Bn)) :=
n∑
i=1

P1(Ai)P2(Bi).

The next proposition introduces the properties of G and P0.

Proposition 78. The collection of sets G is algebra. The map P0 : G → [0,∞] is a measure on G.

Note that if both P1 and P2 are finite measures then so is P0 since by its definition P0(Ω1 × Ω2) =
P1(Ω1)P2(Ω2) <∞.

If both P1 and P2 are σ-finite measures then so is P0. Indeed, let Ω1
i ⊆ Ω2

i ⊆ Ω3
i ⊆ · · · be such that

Pi(Ωk
i ) <∞ and Ωi = ∪∞k=1Ωk

i for i = 1, 2. Then

Ω1
1 × Ω1

2 ⊆ Ω2
1 × Ω2

2 ⊆ Ω3
1 × Ω3

2 ⊆ · · · ,

Ω1 × Ω2 =
∞⋃
k=1

Ωk
1 × Ωk

2,

and for all k = 1, 2, 3 . . ., by definition, we have P0(Ωk
1 × Ωk

2) = P1(Ωk
1)P2(Ωk

2) <∞.

Let (Ω1,F1,P1) and (Ω2,F2,P2) be two finite (resp. σ-finite) measure spaces. By the Carathéodory
extension theorem, there is a unique finite (resp. σ-finite) measure extending P0 to the σ-algebra
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generated by G. That measure is denoted by P1 × P2 and is called product measure. The measure
space (Ω1×Ω2,F1⊗F2,P1×P2) is the product measure space. In other words, P1×P2 is the unique
measure on F1 ⊗F2 satisfying

(P1 × P2)(A×B) = P1(A)P2(B) for all A ∈ F1 and B ∈ F2.

Given a third measure space (Ω3,F3,P3), it can be shown that

(F1 ⊗F2)⊗F3 = F1 ⊗ (F2 ⊗F3) and (P1 × P2)× P3 = P1 × (P2 × P3).

That is, the product between measure spaces (Ωi,Fi,Pi), i = 1, 2, 3 is associative. We may first
multiply (Ω1,F1,P1) and (Ω2,F2,P2) and then multiply the result (Ω1 × Ω2,F1 ⊗ F2,P1 × P2) by
(Ω3,F3,P3) or we may first multiply (Ω2,F2,P2) and (Ω3,F3,P3) and then multiply (Ω1,F1,P1) by
the result (Ω2 × Ω3,F2 ⊗F3,P2 × P3). Thus, we denote the final result by

(Ω1 × Ω2 × Ω3,F1 ⊗F2 ⊗F3,P1 × P2 × P3).

Iterating this procedure, we can define finite products

(Ω1 × Ω2 × · · · × Ωn,F1 ⊗F2 ⊗ · · · ⊗ Fn,P1 × P2 × · · · × Pn).

This allows us to define the Borel σ-algebra on Rn by

B(Rn) = B(R)⊗ B(R)⊗ · · · ⊗ B(R), n times.

Proposition 79. Let (Ω1,F1) and (Ω2,F2) be two measurable spaces. Let G1 be a collection of
subsets of Ω1 that generates F1, that is σ(G1) = F1. Let G2 be a collection of subsets of Ω2 that
generates F2, that is σ(G2) = F2. Then, the collection of rectangles

{A×B : A ∈ G1, B ∈ G2}

generates the σ-algebra F1 ⊗F2.

Proposition 79 has a natural analogue for the product of finitely many σ-algebras. Thus, using
Proposition 44 we obtain different collections of sets with the property that each collection generates
B(Rn). For example,

B(Rn) = σ
(
{(a1, b1)× · · · × (an, bn) : −∞ < ai < bi <∞ for all i = 1, 2, . . . , n}

)
,

B(Rn) = σ
(
{(−∞, b1)× · · · × (−∞, bn) : −∞ < bi <∞ for all i = 1, 2, . . . , n}

)
.

It is a fact that every open set in Rn is a countable union of n-dimensional open rectangles (a1, b1)×
· · · × (an, bn), hence the Borel σ-algebra on Rn contains (and is generated by) all open sets in Rn.

2.2.3 Atomic measures (optional)

Let (Ω,F ,P) be a measure space. A set A ∈ F is called an atom if P(A) > 0 and for any subset
B ⊆ A, B ∈ F , with P(A) > P(B), one has P(B) = 0.
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Example 80. Consider the set Ω = {1, 2, . . . , n} with F = 2Ω and P(A) = |A| for all A ∈ F . Then,
each set A = {k}, with one element, is an atom.

Consider the set Ω = R with F = B(R) and P = the Lebesgue measure. This measure space
has no atoms.

Consider the set Ω = R with P = the Lebesgue measure. Let A ∈ B(R) be such that P(A) > 0.
Consider the sigma algebra F = {∅, A,Ac,Ω}. Then, the measure space (Ω,F ,P) has atoms (both
A and Ac).

A measure space (Ω,F ,P) is non-atomic if it has no atoms. In other words, a measure space
is non-atomic if for any set A ∈ F with P(A) > 0, there exists a subset B ⊆ A, B ∈ F such that
P(A) > P(B) > 0.

The examples show that the existence of atoms depends not only on the measure but also on
the sigma algebra. The goal of this section is to present the following theorem.

Theorem 81 (Sierpiński). Suppose (Ω,F ,P) is non-atomic measure space. Chose A ∈ F with
P(A) > 0 and let a := P(A). The, for any t ∈ [0, a] there is a set At ∈ F such that

(i) A0 = ∅ and Aa = A;

(ii) At1 ⊆ At2 for all 0 ≤ t1 ≤ t2 ≤ a; and

(iii) P(At) = t for all 0 ≤ t ≤ a.

3 Random variables

Given a measurable space (Ω,F), a subset A ⊆ Ω is called measurable if A ∈ F . Clearly, every
subset of Ω is measurable if and only if F = 2Ω. Otherwise, there are subsets of Ω that are not
measurable.

Definition 82. Let (Ω,F) and (S,S) be two measurable spaces. The function X : Ω→ S is called
measurable if

X−1(B) ∈ F for all B ∈ S.(15)

If (S,S) = (R,B(R)) then X is called a random variable.

Thus, X : Ω → S is a measurable function if the preimage of every measurable subset of
S is a measurable subset of Ω. A random variable is simply a measurable function into the real
numbers with the Borel σ-algebra. Note that we do not need a measure on F (or on S) to define
a random variable. Sometimes, instead of X : Ω→ S we write X : (Ω,F)→ (S,S) when we want
to emphasize the σ-algebras. When (S,S) = (R,B(R)) we just say that X is a random variable on
(Ω,F).

Example 83. (a) The function X(ω) = 2 for all ω ∈ Ω is a random variable.

(b) If A ∈ F , then the function

X(ω) :=

{
5 if ω ∈ A,
2 if ω 6∈ A
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is a random variable.

(c) If A ∈ F , then the function

X(ω) :=

{
1 if ω ∈ A,
0 if ω 6∈ A

is a random variable. This special case of example (b), preceding it, is called indicator random
variable or the indicator of A. It is denoted by 1A(ω).

(d) If A,B ∈ F , then the function

X(ω) :=


5 if ω ∈ A \B,
3 if ω ∈ A ∩B,
2 if ω ∈ B \ A,
1 if ω 6∈ A ∪B

is a random variable. Note that this random variable can be expressed as a linear combination of
indicator random variables:

X(ω) = 5 · 1A\B(ω) + 3 · 1A∩B(ω) + 2 · 1B\A(ω) + 1(A∪B)c(ω).

Of course, this representation may not be unique, for example we also have

X(ω) = 1Ω(ω) + 1A(ω) + 1B(ω) + 3 · 1A\B(ω).

The richness of the collection of random variables on (Ω,F) very much depends on the richness
of the σ-algebra F . If F contains a few sets, then there are only a “few” random variables on
(Ω,F), and vice versa.

Example 84. What are the random variables on (Ω,F) when F = {∅,Ω}? Let X be a random
variable on (Ω,F). Suppose X takes two different values, say a and b. Then, X−1({a}) is a proper
subset of Ω and hence not in F . (Proper subset means that it is not ∅ nor Ω.) This contradiction
shows that X is a constant function.

What are the random variables on (Ω,F) when F = {∅, A,Ac,Ω}? Suppose X takes two
different values, say a and b. Then, X−1({a}) is a proper subset of Ω and has to be in F , so without
loss of generality, it is A and then X−1({b}) = Ac. One can see that X cannot take a third value,
different from a and b. So

X = a1A + b1Ac .

Checking condition (15) looks daunting since there may be many sets B in S. The next
proposition simplifies the task.

Proposition 85. If the collection of sets S0 generates S (that is, σ(S0) = S), then X : Ω → S is
measurable if and only if

X−1(B) ∈ F for all B ∈ S0.(16)
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Proof. Clearly, if X is a measurable function then it satisfies (16). Suppose on the opposite that
X satisfies (16). We need to show that is satisfies (15). Let M be the collections of all sets B ∈ S
such that X−1(B) ∈ F . By (16) we have S0 ⊆M . We show now that M is a σ-algebra. This would
imply S = σ(S0) ⊆M , showing (15).

Since X−1(∅) = ∅ ∈ F we get ∅ ∈ M . Recall the properties in Subsection 1.7. If B ∈ M , then
X−1(Bc) = (X−1(B))c ∈ F , since F is a σ-algebra, hence Bc ∈ M . If B1, B2, . . . ∈ M , then
X−1

(⋃∞
j=1Bj

)
=
⋃∞
j=1 X

−1(Bj) ∈ F , since F is a σ-algebra, we have
⋃∞
j=1Bj ∈M .

Combining Proposition 44 and Proposition 85, we see that in order to check that X : Ω → R
is a random variable we need to check that X−1((a, b)) ∈ F for every −∞ < a ≤ b < ∞. Or, we
need to check only that X−1((−∞, b]) ∈ F for every b ∈ R.

Proposition 86. If X : (Ω,F) → (S,S), and Y : (S,S) → (T, T ) are measurable functions then
the composition Y ◦X : (Ω,F)→ (T, T ) is a measurable function.

Proof. Exercise.

Proposition 87. If X1, X2, . . . , Xn are random variables on (Ω,F), then the map (X1, X2, . . . , Xn) :
(Ω,F)→ (Rn,B(Rn)) is measurable.

Proof. The Borel σ-algebra on Rn is generated by the rectangles A1 × A2 × · · · × An where Ai
is a Borel set on R. Then, in view of Proposition 85, we need to check that the preimage of
A1 × A2 × · · · × An under (X1, X2, . . . , Xn) is in F . Indeed,

{ω ∈ Ω : (X1(ω), X2(ω), . . . , Xn(ω)) ∈ A1 × A2 × · · · × An} =
n⋂
i=1

{ω ∈ Ω : Xi(ω) ∈ Ai}

=
n⋂
i=1

X−1
i (Ai) ∈ F ,

since Xi are measurable and F is a σ-algebra.

Corollary 88. If X1, X2, . . . , Xn are random variables on (Ω,F) and if f : (Rn,B(Rn))→ (R,B(R))
is measurable, then f(X1, X2, . . . , Xn) : (Ω,F)→ (R,B(R)) is a random variable.

Proof. Note that f(X1, X2, . . . , Xn) : (Ω,F) → (R,B(R)) is the composition of the measurable
map (X1, X2, . . . , Xn) : (Ω,F) → (Rn,B(Rn)) with the measurable function f : (Rn,B(Rn)) →
(R,B(R)). Apply Proposition 86.

Corollary 89. If X1, X2, . . . , Xn are random variables on (Ω,F) then so is X1 +X2 + · · ·+Xn.

Proof. The function f : (Rn,B(Rn))→ (R,B(R)) defined by f(x1, x2, . . . , xn) := x1 + x2 + · · ·+ xn
is measurable. Indeed, the sets (−∞, b), b ∈ R generate the Borel σ-algebra on R. Then, in view of
Proposition 85, we need to check that the preimage f−1((−∞, b)) = {x ∈ Rn : x1 +x2 +· · ·+xn < b}
is in B(Rn). But the last set is open and B(Rn) contains all open sets in Rn, so we are done.
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It is a fact, that we are not going to prove, that if a function f : (Rn,B(Rn)) → (R,B(R)) is
continuous then the preimage of every open set in R is an open set in Rn. Hence, every continuous
function is measurable. This together with Proposition 86 shows that if X is a random variable,
then so is cX for all c ∈ R, X2, sin(X), and so on.

Exercise 90. If X and Y are random variables on (Ω,F), then so are XY , X/Y provided that
Y 6= 0, and |X|.

We say that the sequence of functions {Xn} is increasing if Xn(ω) ≤ Xn+1(ω) for all n = 1, 2, . . .
and all ω ∈ Ω. Similarly, {Xn} is decreasing if Xn(ω) ≥ Xn+1(ω) for all n = 1, 2, . . . and all
ω ∈ Ω. Let X : Ω → R be another function. By Xn ↑ X we denote that {Xn} is increasing and
limn→∞Xn(ω) = X(ω) for all ω ∈ Ω. Similarly, Xn ↓ X denotes that the sequence of functions
{Xn} is decreasing and {Xn(ω)} converges to X(ω) for all ω ∈ Ω.

Let X1, X2, . . . be a sequence of functions defined on the set Ω with values in R. Define the
following functions

inf
n
Xn : Ω→ R by inf

n
Xn(ω) := inf{X1(ω), X2(ω), . . .},

sup
n
Xn : Ω→ R by sup

n
Xn(ω) := sup{X1(ω), X2(ω), . . .},

liminf
n→∞

Xn : Ω→ R by liminf
n→∞

Xn(ω) := lim
n→∞

inf
k≥n

Xk(ω),

limsup
n→∞

Xn : Ω→ R by limsup
n→∞

Xn(ω) := lim
n→∞

sup
k≥n

Xk(ω).

Proposition 91. If X1, X2, . . . is a sequence of random variables on (Ω,F), then so are the functions

inf
n
Xn, sup

n
Xn, liminf

n→∞
Xn, and liminf

n→∞
Xn.

Proof. The infimum of a sequence is strictly less than a if and only if some term of the sequence is
strictly less than a. Then, we have

(
inf
n
Xn

)−1
((−∞, a)) = {ω ∈ Ω : inf

n
Xn(ω) < a} =

∞⋃
n=1

{ω ∈ Ω : Xn(ω) < a}

=
∞⋃
n=1

X−1
n ((−∞, a)) ∈ F ,

Since the intervals (−∞, a), a ∈ R generate B(R), by Proposition 85, infnXn is measurable. The
argument for supnXn is similar. Next, note that

liminf
n→∞

Xn(ω) = lim
n→∞

inf
k≥n

Xk(ω) = sup
n

(
inf
m≥n

Xm(ω)
)
,

where for the last equality, we used the fact that Yn := infm≥nXm forms increasing sequence of
functions so the limit is the same as the supremum. By the first part Yn is a random variable and
again by the first part, so is supn Yn. The argument for liminf

n→∞
Xn is similar.

41



Remark 92. Taking inf, sup, liminf, and limsup of a sequence of random variables, may have a
side effect. For example, there may be ω ∈ Ω such that

sup
n
Xn(ω) = sup{X1(ω), X2(ω), . . .} =∞.

Let us see that the set of those ω’s is also measurable. Indeed

{ω ∈ Ω : sup
n
Xn(ω) =∞} =

∞⋂
k=1

{ω ∈ Ω : sup
n
Xn(ω) ≥ k} =

( ∞⋃
k=1

{ω ∈ Ω : sup
n
Xn(ω) < k}

)c
=
( ∞⋃
k=1

(
sup
n
Xn

)−1
((−∞, k))

)c
∈ F ,

since all of the sets involved in the last union are in F (see the proof of Proposition 91). In an
analogous way, one can show that the sets

{ω ∈ Ω : inf
n
Xn(ω) = −∞},

{ω ∈ Ω : limsup
n→∞

Xn(ω) =∞}, {ω ∈ Ω : limsup
n→∞

Xn(ω) = −∞},

{ω ∈ Ω : liminf
n→∞

Xn(ω) =∞}, {ω ∈ Ω : liminf
n→∞

Xn(ω) = −∞}

are measurable.

Exercise 93. Let A1, A2, . . . ∈ F be a sequence of sets. Show that

liminf
n→∞

1An = 1liminfAn .

Formulate similar equality for limsup.

The most elementary random variables are the step-functions.

Definition 94. A function X : (Ω,F)→ (R,B(R)) is called a step-function if it can be represented
as

X(ω) =
n∑
i=1

αi1Ai(ω)

for some α1, . . . , αn ∈ R and A1, . . . , An ∈ F .

Particular examples of step-functions are

1Ω ≡ 1,

1∅ ≡ 0,

1A + 1Ac = 1,

1A∩B = 1A1B,

1A∪B = 1A + 1B − 1A∩B.
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Exercise 95. Show that step-functions are measurable. Hint: use the fact that by taking all possible
intersections of the sets Ai and by adding appropriate complements, we can find a collection of sets
C1, . . . , CN ∈ F such that

(i) Cj ∩ Ck = ∅ for j 6= k;

(ii) ∪Nj=1Cj = ∪ni=1Ai; and

(iii) for every set Ai there is an index set Ii ⊆ {1, 2, . . . , N} such that Ai = ∪j∈IiCj.

Proposition 96. A measurable function X : (Ω,F) → (R,B(R)) is a step-function if and only if
it takes finitely many values.

Proof. If X is a step function then it can be represented as X(ω) =
∑n

i=1 αi1Ai(ω) for some
α1, . . . , αn ∈ R and A1, . . . , An ∈ F . So, clearly X takes only finitely many values. (These values
maybe difficult to list explicitly since the sets A1, . . . , An may intersect.)

Conversely, ifX is measurable and takes only the values α1,. . . ,αn then the set Ak := X−1({αk})
is in F (since {αk} is a Borel subset of R) for all k = 1, 2, . . . , n. The sets A1, . . . , An are disjoint
and we have X(ω) =

∑n
i=1 αi1Ai(ω).

Corollary 97. If X, Y : Ω → R are two step functions, then so are X + Y , XY , min{X, Y },
max{X, Y }, and so on.

Given a random variable X on (Ω,F) and a set A ⊂ R, often for brevity, the set

{ω ∈ Ω : X(ω) ∈ A} is going to be denoted as X−1(A) or {X ∈ A}.

For example, when A = (a, b), the set {ω ∈ Ω : a < X(ω) < b} will be denoted by {a < X < b}.

Theorem 98. The function X : (Ω,F) → (R,B(R)) is a random variable if and only if there is a
sequence {Xn} of step-functions Xn : (Ω,F)→ (R,B(R)) such that

X(ω) = lim
n→∞

Xn(ω) for all ω ∈ Ω.

Proof. If there is a sequence {Xn} of step-functions Xn : (Ω,F)→ (R,B(R)) such that

X(ω) = lim
n→∞

Xn(ω) for all ω ∈ Ω,

then X is a random variable by Exercise 95 and Proposition 91.

Suppose now that X is a random variable. Define the step-functions

Xn(ω) :=
4n−1∑
k=−4n

k

2n
1{ k

2n
≤X< k+1

2n
}(ω).

We are going to show that X(ω) = lim
n→∞

Xn(ω) for all ω ∈ Ω. First of all, notice that Xn(ω) is

indeed a step-function, since the sets { k
2n
≤ X < k+1

2n
} are in F . This is where it is used that X is

a random variable. Second, the reason why the sets { k
2n
≤ X < k+1

2n
} are defined with one ‘≤’ and
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one ‘<’ is so that they are disjoint. Fix an ω ∈ Ω. For any n the finite sequence of numbers (there
are 2 · 4n + 1 of them)

−4n

2n
,−4n − 1

2n
,−4n − 2

2n
, . . . ,− 1

2n
,

0

2n
,

1

2n
, . . . ,

4n − 1

2n
,
4n

2n

divides R into 2 · 4n + 2 intervals: the left-most and the right-most of which are infinite and the rest
are finite. Only the finite intervals take part in the definition of Xn. When n increases two things
happen: (1) The interval

[−4n

2n
, 4n

2n

)
, between the smallest and the largest number in the sequence,

becomes wider with both endpoints approaching infinity; and (2) The numbers in the sequence
get closer together, since the difference between any two consecutive numbers is 1/2n. Fix ω ∈ Ω
and suppose that n is large enough so that X(ω) ∈

[−4n

2n
, 4n

2n

)
, then there is a unique kn, such that

X(ω) ∈
[
kn
2n
, kn+1

2n

)
and as n approach infinity the lower bound of the interval kn

2n
approaches X(ω).

But Xn(ω) = kn
2n

, so Xn(ω) approaches X(ω). To see the last part better, let us calculate the value
of Xn+1(ω). Keep in mind that X(ω) is fixed. When we go from n to n + 1, all existing finite
intervals are split in half (and new are added, but we are not interested in them at the moment):[kn

2n
,
kn + 1

2n

)
=
[ 2kn

2n+1
,
2kn + 1

2n+1

)
∪
[2kn + 1

2n+1
,
2kn + 2

2n+1

)
.

So, if Xn(ω) = kn
2n

, then for n+ 1 we have

Xn+1(ω) =


2kn

2n+1 if X(ω) ∈
[

2kn
2n+1 ,

2kn+1
2n+1

)
,

2kn+1
2n+1 if X(ω) ∈

[
2kn+1
2n+1 ,

2kn+2
2n+1

)
.

This shows that |Xn(ω)−X(ω)| ≤ 1/2n, for all n. Therefore, we can conclude that Xn(ω) converges
to X(ω) for all ω ∈ Ω.

Exercise 99. Let the function X : (Ω,F) → (R,B(R)) be a random variable with X ≥ 0. Show
that there is a sequence {Xn} of step-functions Xn : (Ω,F) → (R,B(R)) such that 0 ≤ X1(ω) ≤
X2(ω) ≤ · · · ≤ X(ω) and X(ω) = limn→∞Xn(ω) for all ω ∈ Ω.

Exercise 100. Let the function X : (Ω,F)→ (R,B(R)) be a random variable with X ≥ 0. Define
the step-functions

Xn(ω) :=
( n2∑
k=1

k − 1

n
1{ k−1

n
≤X< k

n
}(ω)

)
+ n1{n≤X}

for all n = 1, 2, . . . . Now try to show that Exercise 99 works with these step-functions. What goes
wrong?

Exercise 101. Let the function X : (Ω,F) → (R,B(R)) be a random variable. Show that there
is a sequence {Xn} of step-functions Xn : (Ω,F) → (R,B(R)) such that 0 ≤ |X1(ω)| ≤ |X2(ω)| ≤
· · · ≤ |X(ω)| and X(ω) = limn→∞Xn(ω) for all ω ∈ Ω.

Exercise 102. Let X : Ω → S be a function between the sets Ω and S. Let S be a σ-algebra on
S. Show that
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(i) The collection of subsets σ(X) := {X−1(A) : A ∈ S} is a σ-algebra on Ω. This σ-algebra is
called the σ-algebra generated by X.

(ii) If F is a σ-algebra on Ω such that X : (Ω,F)→ (S,S) is measurable, then σ(X) ⊆ F . Hence
σ(X) is the smallest σ-algebra such that X : (Ω, σ(X))→ (S,S) is measurable.

(iii) Let X : (Ω,F) → (R,B(R)) be a random variable. Let S0 := {(−∞, x] : x ∈ R}. Show that
σ(X) is generated by {X−1(A) : A ∈ S0}.

So far the discussion about random variables and measurable functions did not involve any
measure. We now include a measure.

Exercise 103. Assume that (Ω,F ,P) is a measure space and let (S,S) be a measurable space. Let
X : (Ω,F)→ (S,S) be a measurable function. For every set B ∈ S define

PX(B) := P({ω ∈ Ω : X(ω) ∈ B}) = P(X−1(B)).

Show that PX is a measure on S. If P is a probability measure, show that PX is also a probability
measure. The measure PX is called the image of P under X or the law of X.

In particular, Exercise 103 says that if (S,S) = (R,B(R)) then any random variable X on a
probability space (Ω,F ,P) defines a probability space (R,B(R),PX).

The law of a random variable is completely characterized, see Proposition 106 below, by its
cumulative distribution function which we introduce now.

Definition 104 (Cumulative distribution function). Any random variable X on a probability space
(Ω,F ,P) defines a function FX : R→ [0, 1] by

FX(x) := P({ω ∈ Ω : X(ω) ≤ x})

called cumulative distribution function (c.d.f.) of X.

Proposition 105 (Properties of c.d.f.). LetX be a random variable on a probability space (Ω,F ,P).
The cumulative distribution function, FX : R → [0, 1] of X is (a) increasing; (b) right continuous;
and (c) lim

x→−∞
FX(x) = 0, lim

x→∞
FX(x) = 1.

Proof. (a) FX is increasing since for any x1 ≤ x2 we have {X ≤ x1} ⊆ {X ≤ x2}. Hence
FX(x1) = P({X ≤ x1}) ≤ P({X ≤ x2}) = FX(x2).

(b) Let x ∈ R and let {xn} be a decreasing sequence converging to x from the right. Then, since
the sets An := {ω ∈ Ω : X(ω) ≤ xn} form a decreasing sequence, by Proposition 54, part (vi), we
have

F (x) = P({X ≤ x}) = P
( ∞⋂
n=1

{ω ∈ Ω : X(ω) ≤ xn}
)

= lim
n→∞

P({ω ∈ Ω : X(ω) ≤ xn}) = lim
n→∞

FX(xn).

(c) Exercise.
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The cumulative distribution function FX of a random variable X satisfies the conditions in
Theorem 74 and hence defines a probability measure on B(R). On the other hand, the second part
of Exercise 103 shows that the law of X, PX , is also a measure on B(R). The next proposition
shows that these two measures are the same.

Proposition 106. Let X be a random variable on a probability space (Ω,F ,P). Then the law of
X and the measure determined by the cumulative distribution function FX on the σ-algebra B(R)
are equal.

Proof. Consider the algebra F in Example 36. For any A := (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (an, bn] ∈ F
we have

PX(A) = P({X ∈ A}) =
n∑
i=1

P({ai < X ≤ bi}) =
n∑
i=1

(FX(bi)− FX(ai)).

The last sum is equal to the measure of A under the measure determined by FX , see Theorem 74.
Thus, the two measures coincide on the algebra F that generates B(R). Hence, by the uniqueness
of the extension in the Carathéodory’s extension theorem they must coincide on B(R).

Exercise 107. Let P1 and P2 be two probability measures on B(R). Show that P1 = P2 if and only
if P1((−∞, x]) = P2((−∞, x]) for all x ∈ R.

Definition 108 (Distribution function). A function F : R → R is called a distribution function if
it is (a) increasing; (b) right continuous; and (c) lim

x→−∞
F (x) = 0, lim

x→∞
F (x) = 1.

Exercise 109. Show that there are at most countably many x ∈ R where a distribution function
F is not continuous.

Lemma 110. If F : R → R is a distribution function, then there is a random variable X with
cumulative distribution function FX = F .

Proof. Let Ω := (0, 1), F := B(0, 1) the Borel sets on (0, 1), and P := the Lebesgue measure on
(0, 1) (that is, P((a, b]) = b− a). If ω ∈ (0, 1) let

X(ω) := sup{y : F (y) < ω}.

We need to show two things: 1) that X is a random variable, and 2) that FX = F . For 1) it suffices
to show the inclusion in

X−1((−∞, x]) = {ω ∈ (0, 1) : X(ω) ≤ x} ∈ F .

For 2), we need to show the second equality in

FX(x) = P({ω ∈ (0, 1) : X(ω) ≤ x}) = F (x).

We can kill the two birds with one stone if we showed that

{ω ∈ (0, 1) : X(ω) ≤ x} = {ω ∈ (0, 1) : ω ≤ F (x)} for all x ∈ R.(17)
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This is indeed the case since

P({ω ∈ (0, 1] : ω ≤ F (x)}) = P({ω ∈ (0, 1) : ω ≤ F (x)}) = F (x).

We now focus on showing (17). Fix x ∈ R.
Let ω ∈ (0, 1) be a point in the left-hand side of (17), that is, X(ω) ≤ x. But X(ω) = sup{y :

F (y) < ω}, so for every ε > 0, x + ε is not in the set {y : F (y) < ω}, hence F (x + ε) ≥ ω. Since
F is right-continuous letting ε approach 0, we get F (x) ≥ ω, showing that ω is in the set on the
right-hand side.

If ω ∈ (0, 1) is such that ω ≤ F (x) then x is not in the set {y : F (y) < ω}. Since F is
increasing, that set cannot contain a number bigger than x. That is, x is an upper bound for the
set {y : F (y) < ω}. Hence X(ω) = sup{y : F (y) < ω} ≤ x, showing that x is in the set on the
left-hand side of (17).

The random variable X defined in the above lemma is sometimes denoted by

F−1(ω) := sup{y : F (y) < ω} for all ω ∈ (0, 1)(18)

and called the quantile function. (The notation F−1 is suggestive, it does not mean that F has an
inverse. Still, we will see later that F−1 shares some properties with an inverse function.) Thus, the
quantile function F−1(ω) can be viewed as a random variable on the probability space (Ω,F ,P),
where Ω := (0, 1), F := B(0, 1) the Borel sets on (0, 1), and P := the Lebesgue measure on (0, 1).

Theorem 111 (Helly’s selection theorem). Let {Fn} be a sequence of distribution functions. Then
there is a subsequence {Fni}∞i=1 and an increasing, right continuous function F so that lim

i→∞
Fni(y) =

F (y) for every y that is a point of continuity of F .

3.1 Simple classification of random variables

Suppose (Ω,F ,P) is a probability space and X is a random variable on it.

Definition 112. A random variable X that takes on finite or at most a countable number of
different values is said to be discrete. The probability mass function p(a) of X is defined by

p(a) := P(X = a) := P({ω ∈ Ω : X(ω) = a}).

So, p(a) is just the probability that X takes the value a. If X takes only the values x1, x2, . . .,
then p(xi) ≥ 0 for all i = 1, 2, . . . and p(x) = 0 for all other x’s. Since X must take on one of the
values xi, we have

∞∑
i=1

p(xi) = 1.

The cumulative distribution function of a discrete random variable X with values x1, x2, . . . is

FX(x) =
∑
i:xi≤x

p(xi).

Being a cumulative distribution function, FX(x) is increasing and right-continuous. It is a fact that
this FX(x) has a jump at every xi and the size of the jump is

FX(xi)− FX(xi−) = p(xi).
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Example 113. Consider a measure space (Ω,F ,P) with the following random variable X on it.
Let x1, x2, . . . be the set of all rational numbers in R enumerated in any way. Suppose

P(X = xi) = 1/2i for i = 1, 2, . . .

Then, the cumulative distribution function of X is

FX(x) =
∑
i:xi≤x

1/2i.

It is right-continuous everywhere, and has a jump at every rational number. That is one jumpy
function!

Note that if Ω is finite or countably infinite set, then any random variable X on Ω is necessarily
discrete.

Proposition 114. If X and Y are two discrete random variables, then so is X + Y .

Proof. Let {x1, x2, . . .} be all the values that X takes. We can order them in a sequences (possibly
finite one) since X is discrete random variable. Let {y1, y2, . . .} be all the values that Y takes.
Then, the values that X + Y takes are given in the interior of the following table

x1 x2 x3 x4 x5 · · ·
y1 x1 + y1 x2 + y1 x3 + y1 x4 + y1 x5 + y1 · · ·
y2 x1 + y2 x2 + y2 x3 + y2 x4 + y2 x5 + y2 · · ·
y3 x1 + y3 x2 + y3 x3 + y3 x4 + y3 x5 + y3 · · ·
y4 x1 + y4 x2 + y4 x3 + y4 x4 + y4 x5 + y4 · · ·
y5 x1 + y5 x2 + y5 x3 + y5 x4 + y5 x5 + y5 · · ·
...

...
...

...
...

...
. . .

See Example 5 to find out how to order all values xi + yj in a sequence. Then, you may want to
remove duplicate values, if any. This shows that X + Y is a discrete random variable.

Definition 115. A random variable X that takes uncountably many different values, for example,
if it takes any value in an interval (a, b), is called continuous random variable.

Continuous random variables fall into two classes: those that have density and those that do
not.

Definition 116 (Density). A random variable X is called absolutely continuous if its cumulative
distribution function FX(x) can be represented as

FX(x) =

∫ x

−∞
f(y) dy(19)

for some function f(y) ≥ 0. The function f(x) is called a (probability) density function of X. In
this case, we also say that FX(x) is absolutely continuous function.
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If X is absolutely continuous with density f(x), then

PX((a, b]) = P(a < X ≤ b) = P({ω ∈ Ω : X(ω) ≤ b} \ {ω ∈ Ω : X(ω) ≤ a})
= P({ω ∈ Ω : X(ω) ≤ b})− P({ω ∈ Ω : X(ω) ≤ a}) = FX(b)− FX(a)

=

∫ b

a

f(y) dy.

Definition 117. A function f : R→ R is called a density function if

1.) f(x) ≥ 0 for all x, and

2.)
∫∞
−∞ f(x) dx = 1.

Even though the cumulative density FX(x) is uniquely determined by X, the density function
is not. You can change a density function at finitely many points (in fact, on a set with Lebesgue
measure zero) without changing the integral (19). For example the following three functions give
the same integrals

f(x) =

{
e−x x > 0,
0 x ≤ 0;

f(x) =

{
e−x x ≥ 0,
0 x < 0;

f(x) =


e−x x ≥ 0, x 6= 4,
−10 x = 4,
0 x < 0;

The first two examples show two different density functions, the last function is, by definition, not
a density function since it takes a negative value.

Clearly, every function f(x) that satisfies the conditions in Definition 117 is a density of a
random variable. Indeed, the function defined by (19) is increasing and continuous, hence, by
Lemma 110, it is the cumulative distribution function of a random variable, having density f(x).
Note that the function f(x), itself, does not have to be continuous, all that is required from it is
that it is non-negative and integrable to 1.

Example 118. For any p ∈ (0, 1) let
(1) Ω := {0, 1, 2, . . . , n}.
(2) F := 2Ω (the collection of all subsets of Ω).
(3) For any A ∈ F define P(A) :=

∑
k∈A

(
n
k

)
pk(1− p)n−k.

Then, the triple (Ω,F ,P) is a probability space.

Interpretation: A sequence of n identical and independent experiments. Each experiment
results in success with probability p and failure with probability 1−p. Then, P({k}) is the probability
of exactly k successes in the n experiments. Notice that there is no random variable defined in
Example 118. To say that a random variable has a binomial distribution, we need the following
definition.

Definition 119. A discrete random variable X defined on a (abstract) probability space (Ω,F ,P)
has binomial distribution with parameters n and p, if X has probability mass function

P(X = k) =

(
n

k

)
pk(1− p)n−k for all k = 0, 1, 2, . . . , n,

where n is a positive integer and p ∈ (0, 1).
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Consider the probability space (Ω,F ,P) described in Example 118. What would be a binomially
distributed random variable on that space? Simple, let X : (Ω,F ,P) → (R,B(R)) be defined by
X(k) = k for all k = 0, 1, . . . , n. Then, X has a binomial distribution.

Example 120. For any λ > 0 let
(1) Ω := {0, 1, 2, 3, . . .}.
(2) F := 2Ω (the collection of all subsets of Ω).

(3) For any A ∈ F define P(A) :=
∑

k∈A
e−λλk

k!
.

Then, the triple (Ω,F ,P) is a probability space.

The Poisson distribution is used, for example, to model stochastic processes with a continuous
time parameter and jumps: the probability that the process jumps k times between the time-points
s and t with 0 ≤ s < t <∞ is equal to P({k}).

Definition 121. A discrete random variable X defined on a (abstract) probability space (Ω,F ,P)
has Poisson distribution with parameter λ > 0, if X has probability mass function

P(X = k) =
e−λλk

k!
for all k = 0, 1, 2, . . .

Definition 122. We say that a continuous random variable X is uniformly distributed in the interval
[a, b] if it has probability density function

f(x) =

{
1/(b− a) if x ∈ [a, b],
0 otherwise.

Definition 123. We say that a continuous random variable X is normally distributed with param-
eters µ ∈ R and σ > 0 if it has probability density function

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

It is clearly increasing and continuous.

Definition 124. We say that a continuous random variable X is exponentially distributed with
parameter λ > 0 if it has probability density function

f(x) =

{
λe−λx if x ≥ 0,

0 if x < 0.

If a random variable X has density, then by (19), its cumulative distribution function FX(x) is
continuous. So, looking at the cumulative distribution function, if it has jumps, then the random
variable cannot be absolutely continuous.

If a random variable has density, then it must be continuous random variable, but the opposite
is not true. The next example shows a concrete continuous random variable that is not absolutely
continuous.
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Example 125. Consider a random variable X whose values are the outcomes of the following ex-
periment. Throw a fair coin. If the outcome is H then pick a random number uniformly distributed
in [0, 1]. If the outcome is T then pick a random number from the set {2, 3} with probabilities
2/3, 1/3, respectively. This random variable is continuous since it can take uncountably many
values, namely any value in [0, 1] ∪ {2, 3} but it is not absolutely continuous as we will now see.

Let Y be a random variable representing the coin flip, that is Y takes values H and T with
probabilities 1/2, 1/2 respectively. Let Z be a random variable uniformly distributed in [0, 1] and
let T be a random variable taking values {2, 3} with probabilities 2/3, 1/3, respectively. We consider
several cases.

1) Let x < 0, then F (x) = P (X ≤ x) = 0 since the r.v. X never takes values smaller than 0.
2) Let 0 ≤ x ≤ 1, then {X ≤ x} = {Y = H} ∩ {Z ≤ x} where the last two events are

independent. Hence

F (x) = P (X ≤ x) = P ({Y = H} ∩ {Z ≤ x}) = P (Y = H)P (Z ≤ x) =
1

2

x− 0

1− 0
=
x

2
.

3) Let 1 ≤ x < 2, then {X ≤ x} = {X ≤ 1} and F (x) = P (X ≤ x) = P (X ≤ 1) = F (1) = 1/2,
where F (1) was computed in case 1.

4) Let 2 ≤ x < 3, then

{X ≤ x} = {X ≤ 2} = {X ≤ 1} ∪ {1 < X ≤ 2} = {X ≤ 1} ∪ {X = 2},

where the union is disjoint. Hence, F (x) = P ({X ≤ 1} ∪ {X = 2}) = P ({X ≤ 1}) + P ({X =
2}) = 1/2 + P ({X = 2}). Now, {X = 2} = {Y = T} ∩ {T = 2}, where the last two events are
independent, implying that P (X = 2) = P (Y = T )P (T = 2) = (1/2)(2/3) = 1/3. Thus, in this
case F (x) = 1/2 + 1/3 = 5/6.

5) Let 3 ≤ x, then

{X ≤ x} = {X ≤ 3} = {X ≤ 1} ∪ {1 < X ≤ 2} ∪ {2 < X ≤ 3} = {X ≤ 1} ∪ {X = 2} ∪ {X = 3}.

But we do not need the last union at all. Since X can takes only values that are always less-than-
or-equal to 3, we have F (x) = P (X ≤ 3) = 1.

We summarize all cases in

F (x) =


0 if x < 0,
x/2 if 0 ≤ x < 1,
1/2 if 1 ≤ x < 2,
5/6 if 2 ≤ x < 3,
1 if 3 ≤ x.

Since F (x) is not continuous (note that it always has to be right-continuous), we conclude that X
does not have a probability density function. So this is an example of a continuous random variable
that is not absolutely continuous.

Suppose X is absolutely continuous random variable, that is, X has a probability density
function f(x). So how can we obtain f(x) if we know FX(x)? The answer lies in the integral
representation (19) of FX(x) and the fundamental theorem of calculus.
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Theorem 126 (The fundamental theorem of calculus). If f(x) is an integrable function, continuous
at x0, then the function

F (x) =

∫ x

−∞
f(y) dy

is differentiable at x0 and F ′(x0) = f(x0).

In particular, if f(x) is continuous for all x, then F ′(x) = f(x) for all x.

3.2 Full classification of random variables (optional)

For a detailed discussion of the results in this section refer to [4]. For any sequence of points
x1, x2, . . . and corresponding values h1, h2, . . ., define the function

j(x) :=
∑
i:xi≤x

hi.

A function that can be represented in this way is called a jump function. Note that the two sequences
may be finite, in which case, j(x) will have finitely many jumps.

A function s(x) : R → R is called singular if it is continuous, has bounded variation, and has
a derivative equal to zero, almost everywhere.

Finally, a function φ(x) : R → R is called absolutely continuous if it can be represented as an
integral

φ(x) =

∫ x

−∞
ψ(t) dt.

Theorem 127 (Lebesgue decomposition). Any distribution function F (x) can be decomposed in
a unique way (up to adding or subtracting constants) as a sum

F (x) = φ(x) + j(x) + s(x),

for some absolutely continuous function φ(x), a jump function j(x), and a singular function s(x).

Now, let X be a random variable with cumulative distribution function FX(x). Let

FX(x) = φX(x) + jX(x) + sX(x),

be the Lebesgue decomposition of FX(x).

• If φX(x) = 0 and sX(x) = 0, then X is a discrete random variable.

• If jX(x) = 0 and sX(x) = 0, then X is an absolutely continuous random variable.

• If φX(x) = 0 and jX(x) = 0, then X is called singular random variable.

• If φX(x) 6= 0 or sX(x) 6= 0, then X is continuous random variable (but may not be absolutely
continuous).

Singular random variables, are a bizarre bunch. They are characterized by the following prop-
erty. Singular random variable X is such that P(X = a) = 0 for all a ∈ R, but there is a Borel set
A ∈ B(R) with Lebesgue measure 0, such that P(X ∈ A) = 1.
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Example 128. Recall the description of the Cantor set C given in Example 9. Consider now an
infinite sequence of independent tosses of a fair coin. If the i-th toss results in tails, record xi = 0;
if it results in heads, record xi = 2. Use the xi’s to form a number x,

x =
∞∑
i=1

xi
3i
.

This defines a random variable X, whose range is the set C. The probability law of this random
variable is therefore concentrated on the “zero-length” set C. At the same time, P (X = x) = 0 for
every x, because any particular sequence of heads and tails has zero probability. For the explanation
why C is a Borel set, see Example 46.

3.3 Expected value of a random variable

Given a probability space (Ω,F ,P) and a random variable X on it, in this section, we define the
expected value of X denoted by

EX =

∫
Ω

X dP =

∫
Ω

X(ω) dP(ω)

and study its basic properties. The definition of the expected value is done in three steps.
Step 1. IfX is a step-function with representationX(ω) =

∑n
i=1 αi1Ai(ω) for some α1, . . . , αn ∈

R and A1, . . . , An ∈ F , then we define

EX =

∫
Ω

X dP :=
n∑
i=1

αiP(Ai).

We have to check that the definition is correct, since it might be that different representations
of X give different expected values EX. However, this is not the case as shown by the next lemma.

Lemma 129. If X =
∑n

i=1 αi1Ai =
∑m

j=1 βj1Bj then
∑n

i=1 αiP(Ai) =
∑m

j=1 βjP(Bj).

Proof. By subtracting the right-hand side from the left-hand one, in both equations, we only need
to show that

if
N∑
i=1

αi1Ai = 0 then
N∑
i=1

αiP(Ai) = 0.

Taking all possible intersections of the sets Ai and by adding appropriate complements, we can find
a collection of sets C1, . . . , CM ∈ F such that

(i) Cj ∩ Ck = ∅ for j 6= k;

(ii) for every set Ai there is an index set Ii ⊆ {1, 2, . . . ,M} such that Ai = ∪j∈IiCj.

After these preparations, we have

0 =
N∑
i=1

αi1Ai =
N∑
i=1

αi

(∑
j∈Ii

1Cj

)
=

N∑
i=1

∑
j∈Ii

αi1Cj =
M∑
j=1

( ∑
i:j∈Ii

αi

)
1Cj .
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Since the sets C1, . . . , CM are disjoint we conclude that either
∑

i:j∈Ii αi = 0 or Cj = ∅ for all
j = 1, . . . ,M . From this, we get

N∑
i=1

αiP(Ai) =
N∑
i=1

αi

(∑
j∈Ii

P(Cj)
)

=
N∑
i=1

∑
j∈Ii

αiP(Cj) =
M∑
j=1

( ∑
i:j∈Ii

αi

)
P(Cj) = 0.

This is what we had to show.

Exercise 130. Imitating the proof of Lemma 129, show that if X and Y are step functions with
X ≤ Y , then EX ≤ EY .

Corollary 131. If X and Y are step functions then E(aX + bY ) = aEX + bEY for all a, b ∈ R

Proof. Suppose X =
∑n

i=1 αi1Ai and Y =
∑m

j=1 βj1Bj . Then

E(aX + bY ) = E
( n∑
i=1

aαi1Ai +
m∑
j=1

bβj1Bj

)
=

n∑
i=1

aαiP(Ai) +
m∑
j=1

bβjP(Bj) = aEX + bEY,

where in the second equality we used Lemma 129 saying that the expectation of the step function
X + Y is the same, no matter what is the representation of X + Y .

Example 132. Let (Ω,F ,P) be a probability space and let X be a random variable on Ω taking
the finitely many distinct values {x1, x2, . . . , xn} with probabilities p1, p2, . . . , pn, (where pi ∈ [0, 1]
and

∑n
i=1 pi = 1). Define the subsets Ai := X−1({xi}) for i = 1, . . . , n. Observe that the sets

A1, . . . , An are disjoint and that ∪ni=1Ai = Ω (indeed, for every ω ∈ Ω, we have that X(ω) is equal
to exactly one xi, hence ω ∈ Ai.) Thus, X can be represented as

X(ω) =
n∑
k=1

xk1Ak(ω)

and

EX =

∫
Ω

X dP =

∫
Ω

n∑
k=1

xk1Ak(ω) dP =
n∑
i=1

xiP(Ai) =
n∑
i=1

xipi.

Step 2. If the random variable X : Ω→ R is non-negative, X(ω) ≥ 0 for all ω ∈ Ω, then define

EX =

∫
Ω

X dP := sup{EZ : 0 ≤ Z(ω) ≤ X(ω) for all ω ∈ Ω and Z is a step function}.(20)

Note that it is possible to end up with EX =∞ in this definition.

Exercise 133. Using Exercise 130, show that Step 2 is “backwards” compatible with Step 1. That
is, if X is a non-negative step function, then EX = sup{EZ : 0 ≤ Z(ω) ≤ X(ω) for all ω ∈
Ω; Z is a step function}.
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In order to describe the third and last step on the definition of the expected value we need to
define

X+(ω) := max{X(ω), 0} ≥ 0 and X−(ω) := −min{X(ω), 0} ≥ 0

and observe that
X(ω) = X+(ω)−X−(ω).

By Proposition 91, X+(ω) and X−(ω) are non-negative random variables (that is, they are mea-
surable functions from (Ω,F) into (R,B(R))) hence the expectations EX+ and EX− are defined in
Step 2.

Step 3. If EX+ < ∞ or EX− < ∞ then we say that the expected value EX of X exists and we
define

EX := EX+ − EX− ∈ R ∪ {−∞,∞}.

The random variable X is called integrable if EX+ < ∞ and EX− < ∞, that is, if EX ∈ R. If
EX+ =∞ and EX− <∞, then EX =∞. If EX+ <∞ and EX− =∞, then EX = −∞.

If A ∈ F then we define the integral over A by∫
A

X dP :=

∫
Ω

X1A dP :=

∫
Ω

X(ω)1A(ω) dP(ω).

Before we can give more elaborate examples of integration we need to investigate the properties
of the integral.

3.4 Properties of the expected value

We say that a property P(ω), depending on ω, holds P-almost surely or almost surely (a.s.) if the
set {ω ∈ Ω : P(ω) holds} is in F and has measure one. For example, we say that X = 0 a.s. if the
set {ω ∈ Ω : X(ω) = 0} is in F and has measure one. We say that the sequence of functions {Xn},
defined on Ω, is increasing a.s. if the set of all ω ∈ Ω for which X1(ω) ≤ X2(ω) ≤ . . . is in F and
has measure one. We say that the sequence {Xn} converges to X a.s. if the set of all ω ∈ Ω for
which limn→∞Xn(ω) = X(ω) is in F and has measure one.

Below we summarize basic properties of the expected value.

Proposition 134. Let (Ω,F ,P) be a probability space and let X, Y : Ω → R be two random
variables.

(i) If 0 ≤ X(ω) ≤ Y (ω), then 0 ≤ EX ≤ EY .

(ii) If X = 0 a.s. then EX = 0.

(iii) If X ≥ 0 a.s. and EX = 0, then X = 0 a.s.

Proof. (i) Using definition (20) in Step 2, since 0 ≤ X(ω) ≤ Y (ω) we get the set inclusion

{EZ : 0 ≤ Z(ω) ≤ X(ω) for all ω ∈ Ω and Z is a step function}
⊆ {EZ : 0 ≤ Z(ω) ≤ Y (ω) for all ω ∈ Ω and Z is a step function}.

Hence the supremum of the first set, giving EX, is smaller that the supremum of the second
set, giving EY .
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(ii) Case 1. Suppose that X is a step function. Represent it as X =
∑n

k=1 αk1Ak using disjoint
sets A1, . . . , An. Since X = 0 a.s., we have that αk 6= 0 implies that P(Ak) = 0, hence EX = 0.

Case 2. Suppose thatX is non-negative. If Z is a step function with 0 ≤ Z(ω) ≤ X(ω) for all ω ∈
Ω, then Z = 0 a.s. Hence, by Case 1, EZ = 0. Thus by (20) we have EX = 0.

Case 3. Suppose that X is arbitrary. Represent it as X = X+ −X−. Since X = 0 a.s. then
X+ = 0 a.s. and X− = 0 a.s. By Case 2, we have EX+ = 0 and EX− = 0, implying that
EX = EX+ − EX− = 0.

(iii) Exercise.

Lemma 135. Let (Ω,F ,P) be a probability space and let X,X1, X2, . . . : Ω→ R be step functions
with 0 ≤ Xn ↑ X(ω). Then

lim
n→∞

EXn = EX.

Proof. We prove the lemma in the case when X is an indicator function, that is X(ω) = 1A(ω) for
some A ∈ F . Let ε ∈ (0, 1), define the set

Bn
ε := {ω ∈ A : 1− ε ≤ Xn(ω)}

and observe that (1− ε)1Bnε (ω) ≤ Xn(ω) ≤ 1A(ω). Hence

(1− ε)P(Bn
ε ) = E

(
(1− ε)1Bnε (ω)

)
≤ EXn ≤ E(1A) = P(A).

Since Bn
ε ⊆ Bn+1

ε and ∪∞n=1B
n
ε = A we get, by the continuity of the measure from below, that

limn→∞ P(Bn
ε ) = P(A). Taking the limit as n approaches infinity, we obtain

(1− ε)P(A) ≤ lim
n→∞

EXn ≤ P(A).

Since ε was arbitrary, we have P(A) ≤ lim
n→∞

EXn ≤ P(A) showing that lim
n→∞

EXn = P(A) = EX.
The general case when X is an arbitrary step function is left as an exercise.

Lemma 136. Let (Ω,F ,P) be a probability space and let X : Ω → R be a random variable with
X ≥ 0. There is a sequence of step functions {Yn} such that 0 ≤ Yn ↑ X and

lim
n→∞

EYn = EX.

Proof. Recall that (20) defines EX as a supremum of a subset of R. By Proposition 19, there is a
sequence of step functions 0 ≤ Zn ≤ X such that the sequence EZn is increasing and converging to
EX. The problem is that the sequence of functions Zn may not be increasing nor we know if Zn(ω)
converges to X(ω) for every ω ∈ Ω.

In order to remedy these deficiencies, let {Xn} be a sequence of non-negative step-functions
such that Xn ↑ X(ω). Such a sequence exists by Exercise 99.

Finally, we define
Yn := max{Xn, Z1, Z2, . . . , Zn},
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and note that as a maximum of step functions, Yn is a step function for every n and Yn ≥ 0. Note also
that Y1 ≤ Y2 ≤ . . .. Since Xn(ω) ≤ Yn(ω) ≤ X(ω) for all ω ∈ Ω and since limn→∞Xn(ω) = X(ω)
we obtain that limn→∞ Yn(ω) = X(ω). Since Zn(ω) ≤ Yn(ω) ≤ X(ω) by Proposition 134, we
get EZn ≤ EYn ≤ EX. Finally, from limn→∞ EZn = EX and the last inequality, we obtain
limn→∞ EYn = EX. Thus, sequence {Yn} has all the required properties.

The next lemma shows that instead of evaluating the expectation EX of a positive random
variable by formula (20), we can instead take an increasing sequence of step functions converging
to X (see Exercise 99), and evaluate the limit of their expectations.

Lemma 137. Let (Ω,F ,P) be a probability space and let X : Ω → R be a random variable with
X ≥ 0. For any sequence {Xn} of step functions such that 0 ≤ Xn ↑ X, we have

lim
n→∞

EXn = EX.

Proof. Let {Xn} be a sequence of step functions such that 0 ≤ Xn ↑ X, we have to show that
EX = limn→∞ EXn. Let {Yn} be the sequence of step functions from Lemma 136 and define the
step functions

Wk,n := min{Xk, Yn}.

First, note that for any fixed k, the sequence {Wk,n}∞n=1 is increasing and that for any fixed n, the se-
quence {Wk,n}∞k=1 is increasing. Second, observe that for any fixed k we have lim

n→∞
Wk,n(ω) = Xk(ω)

and for any fixed n we have lim
k→∞

Wk,n(ω) = Yn(ω). Hence, by Lemma 135 we have lim
n→∞

EWk,n = EXk

and lim
k→∞

EWk,n = EYn. Finally, we get

EX = lim
n→∞

EYn = lim
n→∞

( lim
k→∞

EWk,n) = lim
k→∞

( lim
n→∞

EWk,n) = lim
k→∞

EXk,

where in the third equality we used Exercise 71.

We are now ready to establish more properties of the expected value.

Proposition 138. Let (Ω,F ,P) be a probability space and let X, Y : Ω → R be two random
variables.

(i) If X ≥ 0 and Y ≥ 0, then E(X + Y ) = EX + EY .

(ii) X is integrable if and only if |X| is and in that case we have |EX| ≤ E|X|.

(iii) If EX exists and c ∈ R then E(cX) exists and E(cX) = cEX.

(iv) If X ≤ Y and both EX, EY exist, then EX ≤ EY .

(v) If X = Y a.s. and the expectation of one of them exists, then so does the expectation of the
other and EX = EY .

(vi) If X and Y are integrable then aX + bY is integrable and E(aX + bY ) = aEX + bEY for all
a, b ∈ R.
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Proof. We are only going to establish the first two properties. The rest are intuitively clear and/or
follow similarly.

(i) Let X ≥ 0 and Y ≥ 0, then there are increasing sequences of non-negative step functions {Xn}
and {Yn} converging to X and Y respectively. Hence, {Xn + Yn} is an increasing sequence of
non-negative step functions converging to X + Y and

E(X + Y ) = lim
n→∞

E(Xn + Yn) = lim
n→∞

(EXn + EYn) = lim
n→∞

EXn + lim
n→∞

EYn = EX + EY,

where in the second equality we used Corollary 131.

(ii) By definition X is integrable if and only if EX+ <∞ and EX− <∞. Since |X| = X+ +X−,
by the previous property, E|X| = EX+ + EX−. Hence, |X| is integrable if and only if
EX+ + EX− < ∞ which happens if and only if EX+ < ∞ and EX− < ∞. To show the
inequality, observe that

|EX| = |EX+ − EX−| ≤ |EX+|+ |EX−| = EX+ + EX− = E|X|.

The reader may have noticed the increasing generality in Lemma 135 and Lemma 137. In
Lemma 135 the increasing sequence and its limit are step functions. In Lemma 137 the increasing
sequence is of step functions but its limit is a positive random variable. Now we are ready to state
the most general version, in which the increasing sequence is of positive random variables and its
limit is a positive random variable. We increase the generality a bit more by requiring that the
sequence is increasing almost surely and converges to its limit almost surely. We begin with a
lemma.

Lemma 139. Let (Ω,F ,P) be a probability space and let X,X1, X2, . . . : Ω → R be random
variables such that 0 ≤ Xn ↑ X. Then, there is a sequence {Yn} of step functions, such that
0 ≤ Yn ↑ X and

Yn ≤ Xn for every n = 1, 2, . . .

Proof. For each Xn take a sequence of step functions {Xn,k}∞k=1 such that 0 ≤ Xn,k ↑ Xn as k →∞
(see Exercise 99). Define the step functions

YN := max
1≤n,k≤N

Xn,k

and observe that YN−1 ≤ YN ≤ max
1≤n≤N

Xn = XN . Let Y := lim
N→∞

YN . For 1 ≤ n ≤ N we have that

Xn,N ≤ YN ≤ XN

so, taking N →∞ we obtain Xn ≤ Y ≤ X and hence

X = lim
n→∞

Xn ≤ Y ≤ X,

showing that Y = X. Thus, for the step functions {YN} we have 0 ≤ YN ↑ X.
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Theorem 140 (Monotone convergence). Let (Ω,F ,P) be a probability space and let X,X1, X2, . . . :
Ω→ R be random variables. If 0 ≤ Xn ↑ X a.s., then

lim
n→∞

EXn = EX.

Proof. Suppose first that 0 ≤ Xn(ω) ↑ X(ω) for all ω ∈ Ω. Let {Yn} be a sequence of step functions
with properties as in Lemma 139. Then, Lemma 137 implies that lim

n→∞
EYn = EX. On the one

hand, Yn ≤ Xn implies that EYn ≤ EXn and taking limit infimum from both sides gives

EX = liminf
n→∞

EYn ≤ liminf
n→∞

EXn,

where the equality comes from the fact that {EYn} is a convergent sequence with limit EX. On
the other hand, Xn ≤ X implies that EXn ≤ EX and taking limit superior from both sides (the
right-hand side is a constant) gives

limsup
n→∞

EXn ≤ EX.

Combining the last two displayed lines shows that

EX ≤ liminf
n→∞

EXn ≤ limsup
n→∞

EXn ≤ EX.

Hence, we must have equality throughout, showing that the sequence {EXn} is convergent with
limit EX.

Suppose now that 0 ≤ Xn ↑ X a.s.. By definition, this means that there is a set A of measure 1
such that 0 ≤ Xn(ω) ↑ X(ω) for all ω ∈ A. Hence, 0 ≤ Xn(ω)1A(ω) ↑ X(ω)1A(ω) for all ω ∈ Ω.
By the first part of the proof we have

lim
n→∞

E(Xn1A) = E(X1A).

Since Xn1A = Xn a.s. and X1A = X a.s., by Proposition 138 we get E(Xn1A) = EXn and
E(X1A) = EX. We are done.

Exercise 141. Let (Ω,F ,P) be a probability space and let X,X1, X2, . . . : Ω → R be random
variables. If 0 ≥ Xn ↓ X a.s., then

lim
n→∞

EXn = EX.

Theorem 142 (Fatou lemma). Let (Ω,F ,P) be a probability space and let X1, X2, . . . : Ω→ R be
random variables with Xn ≥ 0. Then

liminf
n→∞

EXn ≥ E
(

liminf
n→∞

Xn

)
.

Proof. Define Yn := infm≥nXm and Y := limn→∞ Yn. By the definition of limit infimum we know
that Y = liminfn→∞Xn. On the one hand, since 0 ≤ Yn ↑ Y , then by the Monotone Convergence
Theorem we obtain

lim
n→∞

EYn = EY = E
(

liminf
n→∞

Xn

)
.
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On the other hand, since Xn ≥ Yn, then EXn ≥ EYn and taking limit infimum from both sides gives

liminf
n→∞

EXn ≥ liminf
n→∞

EYn = EY,

since the sequence {EYn} converges to EY . Combining the two displayed lines concludes the
proof.

Theorem 143 (Lebesgue’s dominated convergence theorem). Let (Ω,F ,P) be a probability space
and let Y,X,X1, X2, . . . : Ω→ R be random variables. If limn→∞Xn = X a.s., |Xn| ≤ Y , and Y is
integrable, then X is integrable and

lim
n→∞

EXn = EX.

Proof. To show that X is integrable, we apply Fatou’s lemma to the sequence {|Xn|}∞n=1 of positive
random variables:

∞ > EY ≥ liminf
n→∞

E|Xn| ≥ E
(

liminf
n→∞

|Xn|
)

= E|X|.

This means that |X| is integrable, which is equivalent to X being integrable.
Next, note that |Xn| ≤ Y and the integrability of Y implies that |Xn| is integrable and so is

Xn. Also, |Xn| ≤ Y implies that Xn + Y ≥ 0, so by Fatou’s lemma we get

EY + liminf
n→∞

EXn = liminf
n→∞

(
EY + EXn

)
= liminf

n→∞
E(Y +Xn)

≥ E
(

liminf
n→∞

(Y +Xn)
)

= E(Y +X) = EY + EX.

Subtracting EY from both sides we obtain

liminf
n→∞

EXn ≥ EX.(21)

Now, |Xn| ≤ Y also implies that −Xn + Y ≥ 0, so repeating the above argument with −Xn we
obtain

liminf
n→∞

E(−Xn) ≥ E(−X),

equivalently
− limsup

n→∞
EXn ≥ −EX,

or equivalently

limsup
n→∞

EXn ≤ EX.(22)

Combining (21) with (22) we get

EX ≤ liminf
n→∞

E(Xn) ≤ limsup
n→∞

EXn ≤ EX.

There are equalities throughout, showing that {EXn} is a convergent sequence with limit EX.
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Example 144. Let (Ω,F ,P) be a probability space and let A1, A2, . . . be a sequence of disjoint
subsets of Ω. If X is an integrable random variable, then∫

A

X dP =
∞∑
i=1

∫
Ai

X dP,

where A := ∪∞i=1Ai. Indeed, by definition∫
A

X dP =

∫
Ω

X1A dP =

∫
Ω

∞∑
i=1

X1Ai dP.

Define the sequence of random variables Xn :=
∑n

i=1X1Ai . Clearly, limn→∞Xn = X1A and
|Xn| ≤ |X|. But X is integrable and so |X| is integrable. Then, by the Dominated Convergence
Theorem we have∫

A

X dP = E(X1A) = lim
n→∞

EXn = lim
n→∞

E
( n∑
i=1

X1Ai

)
= lim

n→∞

n∑
i=1

E(X1Ai)

= lim
n→∞

n∑
i=1

∫
Ai

X dP =
∞∑
i=1

∫
Ai

X dP.

Exercise 145. Let X1, X2, . . . be positive random variables defined on (Ω,F ,P). Show that

∞∑
k=1

EXk = E
( ∞∑
k=1

Xk

)
.

Example 146. Let (Ω,F ,P) be a probability space and let X be a random variable on Ω taking the
distinct values {x1, x2, . . .} with probabilities p1, p2, . . ., (where naturally pi ∈ [0, 1] and

∑∞
i=1 pi = 1).

Define the subsets Ai := X−1(xi) := {ω ∈ Ω : X(ω) = xi}. Observe that the sets A1, A2, . . . are
disjoint and that ∪∞i=1Ai = Ω (indeed, for every ω ∈ Ω, we have that X(ω) is in {x1, x2, . . .} and
hence ω is in one of the sets {An}. Thus, using the previous example, we have

EX =

∫
Ω

X dP =
∞∑
i=1

∫
Ai

X dP =
∞∑
i=1

∫
Ω

X1Ai dP =
∞∑
i=1

∫
Ω

X(ω)1Ai(ω) dP(ω)

=
∞∑
i=1

∫
Ω

xi1Ai(ω) dP(ω) =
∞∑
i=1

xiP(Ai) =
∞∑
i=1

xipi.

A random variable X that takes finitely many values, as in Example 132, or countably infinitely
many, as in Example 146 is called a discrete random variable. The expectation of a discrete random
variable calculated in these examples is given by a familiar formula.
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Example 147. Consider the probability space (Ω,F ,P) where Ω = [0, 1], F :=the Borel sets on
[0, 1] and P := the Lebesgue measure on [0, 1]. Define the random variable

X(ω) :=


0 if ω ∈

[
1/2, 1

)
,

2n+1/n if ω ∈
[
1/2n+1, 3/2n+2

)
,

−2n+1/n if ω ∈
[
3/2n+2, 1/2n

)
,

where n = 1, 2, . . . Thus, P(X = 0) = 1/2, P(X = 2n+1/n) = 3/2n+2 − 1/2n+1 = 1/2n+2, and
P(X = −2n+1/n) = 1/2n − 3/2n+2 = 1/2n+2. We have

X+(ω) =


0 if ω ∈

[
1/2, 1

)
,

2n+1/n if ω ∈
[
1/2n+1, 3/2n+2

)
,

0 if ω ∈
[
3/2n+2, 1/2n

)
,

and X−(ω) =


0 if ω ∈

[
1/2, 1

)
,

0 if ω ∈
[
1/2n+1, 3/2n+2

)
,

2n+1/n if ω ∈
[
3/2n+2, 1/2n

)
,

Hence, EX+ =
∑∞

n=1
2n+1

n

(
1

2n+2

)
= 1

2

∑∞
n=1

1
n

=∞. Similarly, one sees that EX− =∞. Thus, EX
does not exist.

3.4.1 Poisson’s Theorem (optional)

Before we show the main theorem of this section, we need a fact from Calculus.

Lemma 148. For all x ∈ R with |x| < 1 we have

log(1 + x) = x+ o(x),

where o(x) is a function such that limx→0 o(x)/x = 0.

The following lemma is a standard fact from Calculus as well, which we include with its proof.

Lemma 149. If lim
n→∞

an = a ∈ R then lim
n→∞

(
1 +

an
n

)n
= ea.

Proof. Since the logarithm function is invertible and continuous on (0,∞), we can take logarithms

and try to prove the equivalent limit lim
n→∞

n log
(

1+
an
n

)
= a. Let bn := an

n
and note that lim

n→∞
nbn =

a. Since lim
n→∞

bn = 0, replacing x by bn in Lemma 148 we obtain

lim
n→∞

n log(1 + bn) = lim
n→∞

n(bn + o(bn)) = lim
n→∞

(
nbn + nbn

o(bn)

bn

)
= a,

where we used that lim
n→∞

o(bn)

bn
= 0.

Theorem 150 (Poisson’s theorem). Let λ > 0 and let pn ∈ (0, 1) for all n = 1, 2, . . . If lim
n→∞

npn = λ,

then

lim
n→∞

(
n

k

)
pkn(1− pn)n−k = e−λ

λk

k!
for all k = 0, 1, 2, . . .
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Proof. Fix an integer k ≥ 0. Then(
n

k

)
pkn(1− pn)n−k =

n(n− 1) · · · (n− k + 1)

k!
pkn(1− pn)n−k

=
1

k!

n(n− 1) · · · (n− k + 1)

nk
(npn)k(1− pn)n−k.

Note that lim
n→∞

(npn)k = λk and lim
n→∞

n(n− 1) · · · (n− k + 1)

nk
= 1 so all that is left to show is

lim
n→∞

(1−pn)n−k = e−λ. Using lim
n→∞

npn = λ we conclude that limn→∞ pn = 0, hence lim
n→∞

(1−pn)−k =

1 and we are left with proving that lim
n→∞

(1 − pn)n = e−λ. The last limit follows from Lemma 149

applied with an := −npn and after noting that (1− pn)n =
(

1 + −npn
n

)n
.

Poisson theorem seems to have nothing to do with probability. But a deeper look reveals the
following interpretation.

Corollary 151. Let Xn be a binomial random variable with parameters (n, pn) and let Y be a
Poisson random variable with parameter λ > 0. If lim

n→∞
npn = λ, then

lim
n→∞

P(Xn = k) = P(Y = k) for all k = 0, 1, 2, . . .

In the corollary, the random variables Xn and Y may not be defined on the same probability
space. Since EXn = npn and EY = λ, the condition lim

n→∞
npn = λ can be re-written as

lim
n→∞

EXn = EY.

4 Advanced topics

4.1 Inequalities for random variables

Proposition 152 (Chebyshev’s inequality). Let (Ω,F ,P) be a probability space and let X ≥ 0 be
a random variable on Ω. Then, for all λ > 0 we have

P(X ≥ λ) ≤ EX
λ
.

Proof. Recall that P(X ≥ λ) is a short-hand notation for P({ω ∈ Ω : X(ω) ≥ λ}). We simply have

λP({ω ∈ Ω : X(ω) ≥ λ}) = λE(1{ω∈Ω:X(ω)≥λ}) = E(λ1{ω∈Ω:X(ω)≥λ})

≤ E(X1{ω∈Ω:X(ω)≥λ}) ≤ EX.

Definition 153. A function f : R→ R, defined on an open set D ⊂ R is convex on D if and only
if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all α ∈ [0, 1] and all x, y ∈ D.
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For the inequality in the definition to make sense, it is necessary that the point αx+(1−α)y is
in D all α ∈ [0, 1] and all x, y ∈ D. That is, the domain D of a convex function has to be a convex
set. It is a calculus fact that if f(x) is twice continuously differentiable, then f(x) is convex on D
if and only if f ′′(x) ≥ 0 for all x ∈ D.

Convex functions are a very good tool for proving inequalities.

Example 154. For any x, y ≥ 0 and any positive numbers a, b with a+b = 1 we have the inequality

xayb ≤ ax+ by.(23)

Indeed, if x = 0 or y = 0 the inequality holds trivially. So assume now that x, y > 0. The function
f(x) := − log(x) is convex on (0,∞) (since f ′′(x) = 1/x2 ≥ 0 for all x ∈ (0,∞)), hence

− log(ax+by) ≤ a(− log(x))+b(− log(y)) = −(a log(x)+b log(y)) = −(log(xa)+log(yb)) = − log(xayb).

The inequality follows.

Example 155. For any x, y ≥ 0 and any p ≥ 1 we have the inequality

(x+ y)p ≤ 2p−1(xp + yp).(24)

The inequality is trivial if x = 0 or y = 0. So, suppose x, y > 0. Since the function f(x) = xp is
convex on (0,∞), we have(x+ y

2

)p
= f((1/2)x+ (1/2)y) ≤ (1/2)(f(x) + f(y)) =

xp + yp

2
.

Multiplying the beginning and the end by 2p gives (24).

It is a fact that every convex function f : R → R is continuous and thus measurable as a
function from (R,B(R)) to (R,B(R)). It is a fact that f : R→ R is convex if and only if for every
x0 ∈ R there is a supporting line to the graph of f(x) at the point (x0, f(x0)). That means, for
every x0 ∈ R there are constants a, b ∈ R such that ax+ b ≤ f(x) for all x ∈ R and ax0 + b = f(x0).

If X is a random variable on a probability space (Ω,F ,P), taking only two values x and y with
probabilities α and (1− α) respectively, then by the definition of convexity we have

f(EX) = f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) = Ef(X).

Turns out this holds in general.

Proposition 156 (Jensen’s inequality). If f : R → R is a convex function and X is a random
variable on (Ω,F ,P) with E|X| <∞, then

f(EX) ≤ Ef(X),

where the expected value on the right-hand side maybe infinity.

Proof. Let x0 := EX. Let ax + b be the supporting line at the point (x0, f(x0)) on the graph of
f(x). That is, ax+b ≤ f(x) for all x ∈ R and ax0 +b = f(x0). It follows that aX(ω)+b ≤ f(X(ω))
for all ω ∈ Ω and hence f(EX) = aEX + b = E(aX + b) ≤ E(f(X)).
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Exercise 157 (Jensen generalized). If f : Rn → R is a convex function and X1, . . . , Xn are
random variables. Show that f(EX1, . . . ,EXn) ≤ Ef(X1, . . . , Xn) provided that E|Xi| < ∞ for
all i = 1, . . . , n. Hint: use the fact that at every x0 = (x0,1, . . . , x0,n) ∈ Rn there is a supporting
hyperplane to the graph of f(x) at the point (x0, f(x0)). That means, that there is a vector
a ∈ Rn and a number b ∈ R such that a1x1 + · · · + anxn + b ≤ f(x1, . . . , xn) for every vector
x = (x1, . . . , xn) ∈ Rn and a1x0,1 + · · ·+ anx0,n + b = f(x0,1, . . . , x0,n).

Example 158. (i) The function f(x) = |x| is convex, so for every integrable random variable X
we have |EX| ≤ E|X|.

(ii) For any p ∈ [1,∞) the function f(x) = |x|p is convex, so for any integrable random variable
X, applying Jensen’s inequality to |X| we obtain

(E|X|)p ≤ E(|X|p).

The second example above is a particular case of the following more general inequality.

Proposition 159 (Hölder’s inequality). Let (Ω,F ,P) be a probability space and let X, Y be two
random variables. If p, q ∈ (1,∞) with 1

p
+ 1

q
= 1 then

E|XY | ≤ (E|X|p)
1
p (E|Y |q)

1
q ,

provided that the product on the right-hand side is not 0 · ∞ or ∞ · 0.

Proof. If E|X|p = 0 then |X|p = 0 a.s. and so XY = 0 a.s. implying that E|XY | = 0. Thus, in
this case the inequality holds trivially. Similarly if E|Y |q = 0. So assume now that E|X|p > 0 and
E|Y |q > 0. If E|X|p =∞ or E|Y |q =∞ then the inequality holds trivially since the right hand side
is infinity. So suppose now that E|X|p,E|Y |q ∈ (0,∞). Define new random variables

X̃ :=
X

(E|X|p)
1
p

and Ỹ :=
Y

(E|Y |q)
1
q

.

Setting x := |X̃|p, y := |Ỹ |q, a := 1
p
, and b := 1

q
and substituting those values in inequality (23) we

get

|X̃Ỹ | = xayb ≤ ax+ by =
1

p
|X̃|p +

1

q
|Ỹ |q

and taking expectations we obtain

E|X̃Ỹ | ≤ 1

p
E|X̃|p +

1

q
E|Ỹ |q =

1

p
+

1

q
= 1.

On the other side, we have

E|X̃Ỹ | = E|XY |
(E|X|p)

1
p (E|Y |q)

1
q

.

Combining the two displayed lines we establish the required inequality.

Exercise 160. For 0 < p < q <∞ we have that (E|X|p)1/p ≤ (E|X|q)1/q
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Exercise 160 shows that the function t 7→ (E|X|t)1/t is increasing for t ∈ (0,∞), thus it has a
limit at infinity, denoted by

‖X‖∞ := lim
t→∞

(E|X|t)1/t.(25)

Exercise 161. Show that ‖X‖∞ = inf{x ∈ R : P(|X| > x) = 0}. The number on the right-hand
side is called the essential supremum of X.

With definition (25), one can take the limit as q approaches infinity in Hölder’s inequality to
see that it holds when p = 1 and q = ∞ (resp. p = ∞ and q = 1) provided that in the limit the
product on the right-hand side is not 0 · ∞ (resp. ∞ · 0).

Corollary 162. Let {an} and {bn} be sequences of real numbers. If p, q ∈ (1,∞) with 1
p

+ 1
q

= 1
then

∞∑
n=1

|anbn| ≤
( ∞∑
n=1

|an|p
) 1
p
( ∞∑
n=1

|bn|q
) 1
q
,

provided that the product on the right-hand side is not 0 · ∞ or ∞ · 0.

Proof. Consider the first N elements of the sequences {an} and {bn}. Let Ω = {1, 2, . . . , N},
F = 2Ω, and P({k}) = 1/N . Then the functions X, Y : Ω → R defined by X(k) := ak and
Y (k) = bk are (discrete) random variables. By Hölder’s inequality we get

1

N

N∑
n=1

|anbn| ≤
( 1

N

N∑
n=1

|an|p
) 1
p
( 1

N

N∑
n=1

|bn|q
) 1
q
.

Multiplying both sides by N and letting N approach infinity proves the result.

Corollary 163. Let {an} and {bn} be sequences of real numbers. Let {pn} be a sequence of
non-negative numbers with

∑∞
n=1 pn = 1. If p, q ∈ (1,∞) with 1

p
+ 1

q
= 1 then

∞∑
n=1

pn|anbn| ≤
( ∞∑
n=1

pn|an|p
) 1
p
( ∞∑
n=1

pn|bn|q
) 1
q
,

provided that the product on the right-hand side is not 0 · ∞ or ∞ · 0.

Proof. Let Ω = {1, 2, . . .}, F = 2Ω, and P({k}) = pk. Then the functions X, Y : Ω→ R defined by
X(k) := ak and Y (k) = bk are (discrete) random variables. By Example 146 and Hölder’s inequality
we get the reslt.

Theorem 164 (Minkowski’s inequality). Let (Ω,F ,P) be a probability space and let X, Y be two
random variables. If p ∈ [1,∞), then(

E|X + Y |p
) 1
p ≤ (E|X|p)

1
p + (E|Y |p)

1
p .
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Proof. If E|X|p =∞ or E|Y |p =∞, then the inequality holds trivially with infinity right-hand side,
so assume that E|X|p <∞ and E|Y |p <∞.

When p = 1 the inequality follows from |X + Y | ≤ |X|+ |Y |. So, assume that p ∈ (1,∞) and
take a q ∈ (1,∞) such that 1

p
+ 1

q
= 1. That is q = p

p−1
, and continue:

E|X + Y |p = E(|X + Y ||X + Y |p−1) ≤ E
(
(|X|+ |Y |)|X + Y |p−1

)
= E(|X||X + Y |p−1) + E(|Y ||X + Y |p−1)

≤ (E|X|p)
1
p
(
E|X + Y |(p−1)q

) 1
q + (E|Y |p)

1
p
(
E|X + Y |(p−1)q

) 1
q ,

where for the last inequality, we used the Hölder’s inequality. Finally, since (p− 1)q = p, dividing

both sides by (E|X + Y |p)
1
q concludes the proof.

But why can we divide by (E|X + Y |p)
1
q ? What if it is 0 or ∞? If E|X + Y |p = 0 then

Minkowski’s inequality holds trivially. If E|X + Y |p = ∞ then we need to prove Minkowski’s
inequality by different means. Indeed, by (24), we get

|X + Y |p ≤ (|X|+ |Y |)p ≤ 2p−1(|X|p + |Y |p)

and taking expectations of both sides

E|X + Y |p ≤ 2p−1(E|X|p + E|Y |p)

shows that E|X|p + E|Y |p = ∞ which in its turn implies that (E|X|p)
1
p + (E|Y |p)

1
p = ∞. So,

Minkowski’s inequality holds again with both sides equal to infinity.

4.2 Change of variables and Fubini’s theorem

In this section we prove a change of variable formula of the integral EX =
∫

Ω
X dP. In many cases,

this is the only formula that allows us to explicitly compute the expected value EX. This formula
allows us to convert any integral of the form

∫
Ω
X dP into an integral over the real line R of the

form
∫
R x dF (x). It is important that the reader recalls Exercise 103.

Theorem 165. Assume that (Ω,F ,P) is a probability space and let (S,S) be a measurable space.
Let X : (Ω,F) → (S,S) be a measurable function and let g : (S,S) → (R,B(R)) be a measurable
function such that either g ≥ 0 or E|g(X)| <∞. Then, we have∫

Ω

g(X(ω)) dP(ω) =

∫
S

g(s) dPX(s).(26)

If one of the integrals exists then the other exists and their values are equal.

Before we prove the proposition, let us look at a particular case.

Example 166. If we take (S,S) = (R,B(R)), that is, if X is a random variable, then∫
Ω

g(X(ω)) dP(ω) =

∫
R
g(s) dPX(s),

where by Proposition 106, the law of X, denoted PX(s), is equal to the measure determined by the
c.d.f. of X, denoted FX(x). The last integral

∫
R g(s) dPX(s) is often written as

∫
R g(s) dFX(s).

Hence, computing the expectation Eg(X) reduces to calculating an integral over the real line R with
a measure on the Borel sets determined by the c.d.f., FX(s) of X.
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Proof of Theorem 165. (1) Suppose first that g(s) ≥ 0 for all s ∈ S. Let gn be a sequence of
step functions on S such that 0 ≤ gn ↑ g. Such a sequence exists by Exercise 99. It should be clear
that then 0 ≤ gn(X(ω)) ↑ g(X(ω)) for all ω ∈ Ω and by Proposition 96 gn(X(ω)) is a step function
on Ω for all n = 1, 2, . . . Thus, if we show that∫

Ω

gn(X(ω)) dP(ω) =

∫
S

gn(s) dPX(s) for all n = 1, 2, . . .,

then by Lemma 137, taking limits of both sides as n approaches infinity, we obtain (26). It is enough
to check the last equality for gn(s) = 1A(s) for some A ∈ S. (Indeed, then one can multiply 1A(s)
by a real number α and take sums to obtain the equality for general step function

∑k
i=1 αi1Ai(s).)

Then, we obtain∫
Ω

gn(X(ω)) dP(ω) =

∫
Ω

1A(X(ω)) dP(ω) =

∫
Ω

1X−1(A)(ω) dP(ω) = P(X−1(A)) = PX(A)

=

∫
S

1A(s) dPX(s) =

∫
S

gn(s) dPX(s).

(2) Suppose now that g(s) is arbitrary, then note that g(X(ω)) = g+(X(ω))−g−(X(ω)). Repeating
the above arguments for the non-negative functions g+(s) and g−(s) and using the additivity of the
integral, we conclude the proof. The fact that E|g(X)| < ∞ is used to ensure that Eg+(X) < ∞
and Eg−(X) <∞.

The following proposition is stated without proof. It must look familiar from elementary
probability courses.

Proposition 167. Assume that (Ω,F ,P) is a probability space. Let X : (Ω,F)→ (R,B(R)) be a
random variable and let g : (R,B(R))→ (R,B(R)) be a measurable function such that either g ≥ 0
or E|g(X)| <∞. If the c.d.f. of X has density, that is

FX(x) =

∫ x

−∞
f(s) ds,

then, we have ∫
Ω

g(X(ω)) dP(ω) =

∫
R
g(x)f(x) dx.(27)

If one of the integrals exists then the other exists and their values are equal.

The proof of Proposition 167 follows along the same lines as the proof of Theorem 165, only
that this time a few extra steps are required since the integral on the right-hand side of (27) is not
over a probability space and its formal definition requires a few extra steps. Yet, we can work with
the result, since in the majority of cases, the integral on the right-hand side of (27) is a Riemann
integral.

What Proposition 167 says is that when the c.d.f. FX has density f(s) then∫
R
g(s) dFX(s) =

∫
R
g(s)f(s) ds.(28)
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Informally, we write dFX(s) = f(s)ds.

Let (Ω1,F1,P1) and (Ω2,F2,P2) be two measurable spaces (finite or σ-finite) and recall the
product space (Ω1 × Ω2,F1 ⊗F2,P1 × P2).

Theorem 168 (Fubini’s theorem). Let X : Ω1×Ω2 → R be a measurable function such that either
X ≥ 0 or ∫

Ω1×Ω2

|X(ω1, ω2)| d(P1 × P2)(ω1, ω2) <∞

then

(i) There are Pi-measurable, non-negative (resp. integrable) functions hi(ωi), i = 1, 2, such that

h1(ω1) =

∫
Ω2

X(ω1, ω2) dP2(ω2) P1-almost surely and

h2(ω2) =

∫
Ω1

X(ω1, ω2) dP1(ω1) P2-almost surely

(ii) Integrals with respect to the product measure P1 × P2 can be evaluated iteratively:∫
Ω1×Ω2

X(ω1, ω2) d(P1 × P2)(ω1, ω2) =

∫
Ω2

(∫
Ω1

X(ω1, ω2) dP1(ω1)
)
dP2(ω2)

=

∫
Ω1

(∫
Ω2

X(ω1, ω2) dP2(ω2)
)
dP1(ω1).

Corollary 169. Let X ≥ 0 be a random variable on a probability space (Ω,F ,P), then

EX =

∫
Ω

X(ω) dP (ω) =

∫
Ω

∫ ∞
0

1[0,X(ω))(x) dx dP (ω)

=

∫ ∞
0

∫
Ω

1[0,X(ω))(x) dP (ω) dx =

∫ ∞
0

∫
Ω

1{ω∈Ω:X(ω)>x}(ω) dP (ω) dx

=

∫ ∞
0

P({ω ∈ Ω : X(ω) > x}) dx =

∫ ∞
0

P(X > x) dx =

∫ ∞
0

(1− FX(x)) dx.

Exercise 170. Let X ≥ 0 be a random variable on (Ω,F ,P) and let p > 0, then

EXp =

∫ ∞
0

pxp−1P(X > x) dx.

4.3 Independence

Recal Definition 62. The collections of sets {Fi}i∈I from F , where I is an index set, are independent
if for any n ∈ N, any distinct indexes i1, . . . , in ∈ I, and any Aik ∈ Fik , k = 1, 2, . . . , n, we have

P(Ai1 ∩ Ai2 ∩ · · · ∩ Ain) = P(Ai1)P(Ai2) · · ·P(Ain).(29)
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This definition simplifies when the index set I = {1, . . . , N} is finite and when Fi contains Ω for all
i = 1, . . . , N . Then, the collections {Fi}Ni=1 are independent if and only if

P(A1 ∩ A2 ∩ · · · ∩ AN) = P(A1)P(A2) · · ·P(AN)(30)

for any Ai ∈ Fi, i = 1, . . . , N . That is because in (30) we can let some of the sets Ai := Ω and since
P(Ω) = 1, we can obtain (29) for any distinct indexes i1, . . . , in ∈ {1, . . . , N}.

The random variables {Xi}i∈I on a probability space (Ω,F ,P) are independent if for any n ∈ N,
any distinct indexes i1, . . . , in ∈ I, and any Ak ∈ B(R), k = 1, 2, . . . , n, we have

P(Xi1 ∈ A1, Xi2 ∈ A2, . . . , Xin ∈ An) = P(Xi1 ∈ A1)P(Xi2 ∈ A2) · · ·P(Xin ∈ An).

At first glance these two definitions are quite different. In order to reconcile them, recall Exer-
cise 102, explaining how every random variable X on a probability space (Ω,F ,P) generates a
σ-algebra σ(X), contained in F .

Exercise 171. Show that random variables {Xi}i∈I are independent if and only if the collection of
σ-algebras {σ(X)}i∈I are independent.

We are going to use the next theorem without a proof.

Theorem 172. Suppose the collection of sets F1, . . . ,Fn are independent and suppose every Fi
contains Ω and is closed under intersection (that means: for every A,B ∈ Fi we have A∩B ∈ Fi).
Then σ(F1),. . . ,σ(Fn) are independent.

Definition 173. If X1, . . . , Xn are random variables on a probability space (Ω,F ,P) then the
function F : Rn → R defined by

F (x1, . . . , xn) := P(X1 ≤ x1, . . . , Xn ≤ xn)

is called the joint cumulative distribution function of X1, . . . , Xn.

Theorem 174. Random variables X1, . . . , Xn are independent if and only if

F (x1, . . . , xn) = FX1(x1) · · ·FXn(xn)

for all x1, . . . , xn ∈ (−∞,∞].

Proof. If X1, . . . Xn are independent then the equality clearly holds. For the opposite direction,
suppose that the equality holds

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) · · ·P(Xn ≤ xn).

This means that the collections of sets Fi :=
{
{Xi ≤ x} : x ∈ R ∪ {∞}

}
, i = 1, . . . , n are

independent. Note that each Fi contains Ω and since

{Xi ≤ x} ∩ {Xi ≤ y} = {Xi ≤ min{x, y}} ∈ Fi

we see that each Fi is closed under intersection. By Theorem 172, we see that σ(F1), . . . , σ(Fn) are
independent.

By Exercise 102, the sets Fi =
{
{Xi ≤ x} : x ∈ R ∪ {∞}

}
generate the σ-algebra σ(Xi), that

is σ(Fi) = σ(Xi). Hence, the σ-algebras σ(X1),. . . ,σ(Xn) are independent, and that is equivalent
to X1, . . . , Xn being independent, according to Exercise 171.
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Exercise 175. Let X1, . . . , Xn be random variables on a probability space (Ω,F ,P). Suppose the
joint cumulative distribution function F (x1, . . . , xn) can be expressed as

F (x1, . . . , xn) =

∫ xn

−∞
· · ·
∫ x1

−∞
f(s1, . . . , sn) ds1 · · · dsn,

for some measurable function f : Rs → [0,∞). Such an f is called joint density of X1, . . . , Xn.
Show that X1, . . . , Xn are independent if and only if f(x1, . . . , xn) = g1(x1) · · · gn(xn), for some

measurable functions gi ≥ 0, i = 1, . . . , n. In such case, show that up to a multiplicative constant,
gi is the density of Xi.

Given n random variables X1, . . . , Xn on a probability space (Ω,F ,P) we obtain n probability
spaces (R,B(R),PXi), i = 1, . . . , n. Their product, see Subsection 2.2.2, is the probability space

(Rn,B(Rn),PX1 × · · · × PXn).(31)

On the other hand, again applying Exercise 103, but this time to the measurable function (X1, . . . , Xn) :
(Ω,F ,P)→ (Rn,B(Rn)), defines the probability space

(Rn,B(Rn),P(X1,...,Xn)),(32)

where
P(X1,...,Xn)(B) = P

(
(X1, . . . , Xn) ∈ B

)
for all B ∈ B(Rn)

is the image of P under the map (X1, . . . , Xn), or the law of (X1, . . . , Xn).
The probability spaces (31) and (32) differ only by their measures, which, in general are not

equal, unless the random variables X1, . . . , Xn are independent.

Remark 176. Theorem 74 describes the measure on (R,B(R)) defined by the c.d.f FX of X and
Proposition 106 shows that it is equal to PX , the law of X. Analogously, the joint cumulative distri-
bution function of X1, . . . , Xn given in Definition 173 defines a probability measure on (Rn,B(Rn)).
The details are beyond the scope of these notes, but it suffices to say that, in the general case, this
measure is equal to P(X1,...,Xn), the law of (X1, . . . , Xn).

For example, when n = 2, let F (x1, x2) be the joint c.d.f. of X1, X2. One can define a measure
P on (R2,B(R2)) such that on rectangles (a1, b1]× (a2, b2] its value is

P((a1, b1]× (a2, b2]) = F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2)

and it can be shown that this measure is exactly P(X1,X2), the law of (X1, X2).

Theorem 177. If the random variables X1, . . . , Xn are independent then the measures PX1 ×· · ·×
PXn and P(X1,...,Xn) are equal on B(Rn).

Proof. Let us show first that the measures are equal on the rectangles A1×· · ·×An, where Ai ∈ B(R)
for all i = 1, . . . , n. Indeed

P(X1,...,Xn)(A1 × · · · × An) := P
(
(X1, . . . , Xn) ∈ A1 × · · · × An

)
= P(X1 ∈ A1, . . . , Xn ∈ An)

= P(X1 ∈ A1) · · ·P(Xn ∈ An) = PX1(A1) · · ·PXn(An)
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= (PX1 × · · · × PXn)(A1 × · · · × An),

where we used the fact that X1, . . . , Xn are independent. This shows that the two measures coincide
on all sets in B(Rn) that are finite union of disjoint rectangles. But those sets form an algebra which
generates B(Rn), hence by the uniqueness of extension in the Carathéodory extension theorem, the
two measures must coinside everywhere on B(Rn).

The last theorem which appears unnecessarily theoretical, allows us to compute expectations
of functions of several independent random variables by computing consecutively several integrals.

Theorem 178. Suppose X and Y are independent random variables with laws PX and PY . If
h : R2 → R is a measurable function such that either h ≥ 0 or E|h(X, Y )| <∞, then

Eh(X, Y ) =

∫
R

∫
R
h(x, y) dPX(x) dPY (y).(33)

Proof. Consider the measurable functions (X, Y ) : (Ω,F ,P) → (R2,B(R2)) and h : (R2,B(R2)) →
(R,B(R)). The conditions of Proposition 165 are satisfied and we obtain from it

Eh(X, Y ) =

∫
Ω

h(X, Y ) dP =

∫
R2

h(x, y) dP(X,Y ).

By Theorem 177, the independence of X and Y imply that P(X,Y ) = PX × PY so we get

Eh(X, Y ) =

∫
R2

h(x, y) d(PX × PY )(x, y).

Now we are in the realm of the Fubini’s theorem which gives

Eh(X, Y ) =

∫
R2

h(x, y) d(PX × PY )(x, y) =

∫
R

∫
R
h(x, y) dPX(x) dPY (y).

Remark 179. Another notation for the integral (33) is

Eh(X, Y ) =

∫
R

(∫
R
h(x, y) dFX(x)

)
dFY (y),

where FX and FY are the c.d.f.’s of X and Y respectively. In particular, if FX and FY have densities:

FX(s) =

∫ s

−∞
f(x) dx and FY (s) =

∫ s

−∞
g(y) dy

then consulting with (28) we get

Eh(X, Y ) =

∫
R

(∫
R
h(x, y)f(x)g(y) dx

)
dy,

which must be a well-known formula from elementary probability courses.
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Remark 180. Note the first three lines in the proof of Theorem 178. They do not use the fact
that X and Y are independent. Thus, in the case when X and Y are not independent, the only
way to calculate the expectation Eh(X, Y ) is

Eh(X, Y ) =

∫
R2

h(x, y) dP(X,Y ) =

∫
R2

h(x, y) dF (x, y),

where in the last integral F (x, y) is the joint c.d.f. of X, Y and dF (x, y) denotes the measure that
it defines on R2, which we know is the same as the measure P(X,Y ). In particular, if the joint c.d.f.
F (x, y) has density

F (x, y) =

∫ x

−∞

∫ y

−∞
f(x, y) dx dy,

then

Eh(X, Y ) =

∫
R2

h(x, y)f(x, y) dx dy.

The last formula requires a proof but we will not do that here.

Exercise 181 (Jensen reloaded). Suppose f : Rn → R is a function convex in each variable
separately, that is

f(x1, . . . , αyi + (1− α)zi, . . . , xn) ≤ αf(x1, . . . , yi, . . . , xn) + (1− α)f(x1, . . . , zi, . . . , xn)

for every α ∈ [0, 1], yi, zi ∈ R, and every i = 1, . . . , n. Let X1, . . . , Xn be independent random
variables. Show that f(EX1, . . . ,EXn) ≤ Ef(X1, . . . , Xn) provided that E|f(X1, . . . , Xn)| < ∞
and E|Xi| <∞ for all i = 1, . . . , n.

Exercise 182. Show that if X ≥ 0, then
∫
R x1[0,∞)(x) dPX(x) =

∫
R x dPX(x). Hint: apply the

change of variable formula to both sides.

Theorem 183. If X1, . . . , Xn are independent random variables on (Ω,F ,P) and either a) Xi ≥ 0
for all i = 1, . . . , n or b) E|Xi| <∞ for all i = 1, . . . , n, then

E(X1X2 · · ·Xn) = EX1EX2 · · ·EXn.

Proof. The proof is by induction on n. We first verify the case n = 2. Suppose X1 ≥ and X2 ≥ 0.
Apply Theorem 178 to the positive function h(x, y) := xy1[0,∞)(x)1[0,∞)(y) to obtain

E(X1X2) = Eh(X1, X2) =

∫
R

(∫
R
xy1[0,∞)(x)1[0,∞)(y) dPX1(x)

)
dPX2(y)

=

∫
R
y1[0,∞)(y)

(∫
R
x1[0,∞)(x) dPX1(x)

)
dPX2(y)

=

∫
R
y1[0,∞)(y)

(∫
R
x dPX1(x)

)
dPX2(y)

=

∫
R
y1[0,∞)(y)EX1 dPX2(y) = EX1

∫
R
y1[0,∞)(y) dPX2(y)

= EX1

∫
R
y dPX2(y) = EX1EX2,
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where we used Exercise 182 twice.
Suppose now, E|X1| < ∞ and E|X2| < ∞. First, repeat the above steps with the positive

independent random variables |X1| and |X2| to obtain that E|X1X2| = E|X1||X2| = E|X1|E|X2| <
∞. Second, let h(x, y) = xy and note that E|h(X1, X2)| = E|X1X2| < ∞. This verifies that the
integrability condition in Theorem 178 holds. Repeat the above calculations one more time with
h(x, y) = xy to conclude.

Suppose the result holds for any n− 1 independent random variables that satisfy condition a)
or b). Then, if X1, . . . , Xn are independent and satisfy condition a) or b), we have

E(X1X2 · · ·Xn) = EX1E(X2 · · ·Xn) = EX1EX2 · · ·EXn,

where in the first equality we used the case n = 2, together with the fact that X1 and X2 · · ·Xn are
independent (see Lemma 271 in Appendix A), while in the second equality we used the induction
hypothesis.

The theorem implies, that ifX1 andX2 are independent and integrable, thenX1X2 is integrable.
This is not true if independence is removed. For example take X1 = X2 = 1/

√
ω on (0, 1) with the

Borel sets and the Lebesgue measure. Then, X1 and X2 are not independent, EX1 = EX2 = 2, but
EX1X2 =∞ (why?).

Corollary 184. Suppose X and Y are independent random variables and f, g : R → R are
measurable functions such that either a) f ≥ 0 and g ≥ 0; or b) E|f(X)| < ∞ and E|g(Y )| < ∞.
Then

Ef(X)g(Y ) = Ef(X)Eg(Y ).

Proof. By Lemma 271 in Appendix A, we have that f(X) and g(Y ) are independent random
variables.

Example 185. This example shows that it is possible to have E(XY ) = EXEY even though X
and Y are not independent. Let the joint distribution of X and Y be as follows

Y
1 0 −1

1 0 a 0
X 0 b c b
−1 0 a 0

where the numbers a, b, c are strictly positive with 2a + 2b + c = 1. The random variables X and
Y are dependent, since

0 = P(X = 1, Y = 1) 6= P(X = 1)P(Y = 1) = ab > 0.

Show that E(XY ) = EXEY .

Definition 186. Two random variables X and Y with EX2 < ∞ and EY 2 < ∞ are called
uncorrelated if E(XY ) = EXEY .
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Remark 187. The reason why conditions EX2 < ∞ and EY 2 < ∞ are required is so that all
expectations are finite. Indeed, on the one hand, by Exercise 160 with p = 1 and q = 2 we get

E|X| ≤ (E|X|2)
1
2 <∞ and E|Y | ≤ (E|Y |2)

1
2 <∞,

hence X and Y are integrable. On the other hand, by the Hölder’s inequality with p = q = 2 we
have

E|XY | ≤ (E|X|2)
1
2 (E|Y |2)

1
2 <∞,

hence the random variable XY is integrable.

The next theorem gives a formula for the cumulative distribution function of the sum of two
independent random variables.

Theorem 188. If X and Y are independent random variables, then

P(X + Y ≤ z) =

∫
R
FX(z − y) dFY (y).

Proof. Fix a value of z and let h(x, y) := 1{(x,y)∈R2:x+y≤z}(x, y). We have

P(X + Y ≤ z) =

∫
Ω

1{ω∈Ω:X(ω)+Y (ω)≤z}(ω) dP(ω) =

∫
Ω

h(X(ω), Y (ω)) dP(ω) = E(h(X, Y ))

=

∫
R

∫
R
h(x, y) dPX(x) dPY (y),

where in the last equality we used Theorem 178. Next, we evaluate the inside integral. For any
fixed y we have∫

R
h(x, y) dPX(x) =

∫
R

1{x∈R:x≤z−y}(x) dPX(x) =

∫
R

1(−∞,z−y](x) dPX(x)

= PX((−∞, z − y]) = P(X ≤ z − y) = FX(z − y).

The result follows since dFY (y) is just another notation for dPY (y).

The next corollary allows us to calculate specific examples.

Corollary 189. Suppose X, Y are independent random variables. Suppose the c.d.f. of X has
density f . Then X + Y has density

h(x) =

∫
R
f(x− y) dFY (y).

In addition, if the c.d.f. of Y has density g, then

h(x) =

∫
R
f(x− y)g(y) dy.
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Proof. First, note that

FX(z − y) =

∫ z−y

−∞
f(x) dx =

∫ z

−∞
f(t− y) dt,

where we performed a change of variables t := x+ y. Applying Theorem 188 we have

P(X + Y ≤ z) =

∫
R
FX(z − y) dFY (y) =

∫
R

(∫ z

−∞
f(t− y) dt

)
dFY (y)

=

∫ z

−∞

(∫
R
f(t− y) dFY (y)

)
dt =

∫ z

−∞
h(t) dt,

where we used Fubini’s theorem since the function f is positive.
The second formula follows from (28).

We finish this section with an important theorem that will be proved in Subsection 5.3.2.

Theorem 190 (Kolmogorov). Let {Fn}∞n=1 be a given sequence of distribution functions. Then
there exists a sequence of independent random variables {Xn}∞n=1 such that the cumulative density
function of Xn is Fn.

4.4 Modes of convergence

Definition 191 (Types of convergence). Let (Ω,F ,P) be a probability space and let X,X1, X2, . . . :
Ω→ R be random variables.

(i) The sequence {Xn} converges almost surely (a.s.) to X (denoted by Xn
a.s.−−→ X) if

P
(
{ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

(ii) The sequence {Xn} converges in probability to X (denoted Xn
P−→ X) if for every ε > 0

P
(
{ω ∈ Ω : |Xn(ω)−X(ω)| > ε}

)
→ 0 as n→∞.

(iii) The sequence {Xn} converges in Lp-mean to X (denoted Xn
Lp−→ X) if E|Xn|p < ∞ for all n

and
E|Xn −X|p → 0 as n→∞,

where p ∈ (0,∞).

Exercise 192. Show that if Xn
Lp−→ X, then E|X|p <∞.

Exercise 193. Show that {ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)} and {ω ∈ Ω : |Xn(ω) − X(ω)| > ε} are

measurable sets.

Lemma 194. If Xn
a.s.−−→ X then Xn

P−→ X.
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Proof. Fix an ε > 0 and define the sets

An := {ω ∈ Ω : |Xn(ω)−X(ω)| > ε}

and let A := limsupAn. If ω ∈ A then ω is in infinitely many of the sets An meaning that the
sequence {Xn(ω)} doesn’t converge to X(ω). Since {Xn(ω)} doesn’t converge to X(ω) on a set of
measure 0, we conclude that P(A) = 0. Applying Proposition 58 we get

0 ≤ liminf
n→∞

P(An) ≤ limsup
n→∞

P(An) ≤ P
(

limsup
n→∞

An) = P(A) = 0.

This shows that limn→∞ P(An) = 0 which is what we needed.

Example 195. This example shows that there is a sequence {Xn} converging in probability to X
but not converging to X a.s. That is, the converse of the last lemma is not true. Consider the
probability space (Ω,F ,P) where Ω = [0, 1], F :=the Borel sets on [0, 1] and P := the Lebesgue
measure on [0, 1]. Define the sequence of random variables

X1 := 1[0,1/2], X2 := 1[1/2,1],

X3 := 1[0,1/4], X4 := 1[1/4,1/2], X5 := 1[1/2,3/4], X6 := 1[3/4,1]

X7 := 1[0,1/8], . . .

Then Xn
P−→ 0 since for every small ε > 0 we get

P({ω ∈ Ω : |Xn(ω)| > ε}) = P({ω ∈ [0, 1] : Xn(ω) 6= 0}) =


1/2 if n = 1, 2
1/4 if n = 3, 4, 5, 6
1/8 if n = 7, . . .
...

But the sequence {Xn} doesn’t converge to 0 a.s.. In fact, lim
n→∞

Xn(ω) doesn’t exist for every

ω ∈ [0, 1].

Lemma 196. For any p ∈ (0,∞), if Xn
Lp−→ X then Xn

P−→ X.

Proof. Fix an ε > 0. By Chebyshev’s inequality we get

P
(
{ω ∈ Ω : |Xn(ω)−X(ω)| > ε}

)
= P

(
{ω ∈ Ω : |Xn(ω)−X(ω)|p > εp}

)
≤ E|Xn −X|p

εp
→ 0 as n→∞.

Example 197. This example shows that there is a sequence {Xn} converging in probability to X
but not converging to X in Lp-mean. That is, the converse of the last lemma is not true. Consider
the probability space (Ω,F ,P) where Ω = [0, 1], F :=the Borel sets on [0, 1] and P := the Lebesgue
measure on [0, 1]. Define the sequence of random variables

X1 := 21/p · 1[0,1/2], X2 := 21/p · 1[1/2,1],
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X3 := 41/p · 1[0,1/4], X4 := 41/p · 1[1/4,1/2], X5 := 41/p · 1[1/2,3/4], X6 := 41/p · 1[3/4,1]

X7 := 81/p · 1[0,1/8], . . .

Then Xn
P−→ 0 since for every small ε > 0 we get

P({ω ∈ Ω : |Xn(ω)| > ε}) = P({ω ∈ [0, 1] : Xn(ω) 6= 0}) =


1/2 if n = 1, 2
1/4 if n = 3, 4, 5, 6
1/8 if n = 7, . . .
...

But the sequence {Xn} doesn’t converge to 0 in Lp-mean since E|Xn|p = 1 for all n.

Example 195 shows that the converse of Lemma 194 is not true, but the next result is a partial
converse.

Lemma 198. If Xn
P−→ X then there is a subsequence {Xnk}∞k=1 converging to X a.s.

Proof. Let {εk} be a sequence of positive numbers converging to 0. For each k there is an index
nk so that P

(
{ω ∈ Ω : |Xnk(ω) − X(ω)| > εk}

)
≤ 1/2k. (Note that nk is possibly much bigger

than k.) Moreover, we can choose those indexes so that n1 < n2 < n3 < . . . Let Ak := {ω ∈ Ω :
|Xnk(ω)−X(ω)| > εk}. Since

∞∑
k=1

P(Ak) <∞

by the Borel-Cantelli lemma, we obtain P(limsupAk) = 0, that is P(liminf Ack) = 1. This means
that for almost every ω ∈ Ω, there are finitely many indexes k for which |Xnk(ω)−X(ω)| > εk and
for the rest of the indexes we have |Xnk(ω)−X(ω)| ≤ εk. Since εk → 0 we get Xnk(ω)→ X(ω) as
k →∞. That is exactly, {Xnk} converges to X a.s. as k approaches infinity.

Finally, Xn
Lp−→ X doesn’t imply that Xn

a.s.−−→ X and vice versa Xn
a.s.−−→ X doesn’t imply that

Xn
Lp−→ X as the next two examples show.

Example 199. This example shows a sequence {Xn} such that Xn
a.s.−−→ X but that doesn’t converge

to X in Lp-mean. Consider the probability space (Ω,F ,P) where Ω = [0, 1], F :=the Borel sets on
[0, 1] and P := the Lebesgue measure on [0, 1]. Define the sequence of random variables

X1 := 21/p · 1[0,1/2), X2 := 41/p · 1[0,1/4),

X3 := 81/p · 1[0,1/8), X4 := 161/p · 1[0,1/16),

. . .

Then Xn
a.s.−−→ 0 (so X := 0) but E|Xn|p = 1 for all n = 1, 2, . . . and all p ∈ (0,∞), that is

E|Xn −X|p = E|Xn|p doesn’t converge to 0 as n approaches infinity.

Example 200. This example shows a sequence {Xn} such that Xn
Lp−→ X but that doesn’t converge

to X almost surely. In fact, the sequence in Example 195 is just that (why?).
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In view of Example 195 and Lemma 198, the next result, which we state without a proof,
appears almost shocking.

Theorem 201 (P. Lévy). Suppose X1, X2, . . . is a sequence of independent random variables and

let Sn := X1 + · · ·+Xn. If Sn
P−→ S, then Sn

a.s.−−→ S.

Proposition 202. Suppose that Xn
(∗)−→ X and Yn

(∗)−→ Y where (∗) stand for either ‘a.s.’ or ‘P’,

or ‘Lp’. Then for any numbers a, b ∈ R we have aXn + bYn
(∗)−→ aX + bY .

Proof. (a.s.) Let (∗) stand for ‘a.s.’. Then the fact that Xn
a.s.−−→ X means that there is a set A

with measure 1 such that Xn(ω) → X(ω) for all ω ∈ A. Similarly the fact that Yn
a.s.−−→ Y means

that there is a set B with measure 1 such that Yn(ω) → Y (ω) for all ω ∈ B. By the rules for
manipulating sequences or numbers we have aXn(ω) + bYn(ω)→ aX(ω) + bY (ω) for all ω ∈ A∩B.
But P(A ∩B) = 1 so we are done.

(P) Let (∗) stand for ‘P’. Define the sets

Cn := {ω ∈ Ω : |aXn(ω) + bYn(ω)− (aX(ω) + bY (ω))| > ε},
An := {ω ∈ Ω : |a||Xn(ω)−X(ω)| > ε/2},
Bn := {ω ∈ Ω : |b||Yn(ω)− Y (ω)| > ε/2}.

Since

|aXn(ω) + bYn(ω)− (aX(ω) + bY (ω))| ≤ |a||Xn(ω)−X(ω)|+ |b||Yn(ω)− Y (ω)|,

we see that Cn ⊂ An ∪Bn (if ω 6∈ An ∪Bn then ω 6∈ Cn). Hence, 0 ≤ P(Cn) ≤ P(An) + P(Bn)→ 0
and we are done.

(Lp) Let (∗) stand for ‘Lp’. Then by the Minkowski’s inequality we have

E|aXn + bYn − (aX + bY )|p ≤
(
|a|
(
E|Xn −X|p

) 1
p + |b|

(
E|Yn − Y |p

) 1
p

)p
→ 0

which is what we needed to show.

For the above types of convergence the random variables have to be defined on the same
probability space. There is another type of convergence that does not require even that.

Definition 203 (Weak convergence). A sequence of distribution functions {Fn} converges weakly
to a distribution F (denoted Fn

w−→ F ) if lim
n→∞

Fn(x) = F (x) for every x that is a point of continuity

of F .

Definition 204 (Convergence in distribution). Let (Ω,F ,P) and (Ωn,Fn,Pn) be probability spaces
and let X : Ω → R and Xn : Ωn → R be random variables with distribution functions F and Fn
respectively n = 1, 2, . . . Then the sequence {Xn} converges in distribution to X (denoted Xn

d−→ X)
if Fn

w−→ F .
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Exercise 205. For any random variables X and Y , any x ∈ R and ε > 0 we have

{Y ≤ x} ⊆ {X ≤ x+ ε} ∪ {|Y −X| > ε},
{X ≤ x− ε} ⊆ {Y ≤ x} ∪ {|Y −X| > ε}.

Proposition 206. If Xn
P−→ X then Xn

d−→ X.

Proof. Apply Exercise 205 with Y := Xn and X := X. Taking probabilities from both sides of both
inclusions gives

P({Xn ≤ x}) ≤ P({X ≤ x+ ε}) + P({|Xn −X| > ε}), and

P({X ≤ x− ε}) ≤ P({Xn ≤ x}) + P({|Xn −X| > ε}).

Taking limsup from both sides of the first inequality and liminf from both sides of the second, and

using the fact that lim
n→∞

P({|Xn −X| > ε}) = 0, since Xn
P−→ X, results in

limsup
n→∞

P({Xn ≤ x}) ≤ P({X ≤ x+ ε}), and

P({X ≤ x− ε}) ≤ liminf
n→∞

P({Xn ≤ x}),

or combining

P({X ≤ x− ε}) ≤ liminf
n→∞

P({Xn ≤ x}) ≤ limsup
n→∞

P({Xn ≤ x}) ≤ P({X ≤ x+ ε}).

This holds for every ε > 0. Since the c.d.f. is right continuous, we have lim
ε→0+

P({X ≤ x + ε}) =

P({X ≤ x}). If x is a point where the c.d.f. of X is continuous then lim
ε→0+

P({X ≤ x−ε}) = P({X ≤
x}). Thus, letting ε→ 0+ we obtain

P({X ≤ x}) ≤ liminf
n→∞

P({Xn ≤ x}) ≤ limsup
n→∞

P({Xn ≤ x}) ≤ P({X ≤ x}),

showing that lim
n→∞

P({Xn ≤ x}) = P({X ≤ x}) for every x where the c.d.f. of X is continuous.

Example 207. This example shows that Xn
d−→ X does not imply Xn

P−→ X. Consider the proba-
bility space (Ω,F ,P) where Ω = [0, 1], F :=the Borel sets on [0, 1] and P := the Lebesgue measure
on [0, 1]. Define the sequence of random variables

X1(ω) := 1(0,1/2],

X2(ω) := 1(0,1/4]∪(2/4,3/4],

...

Xn(ω) := 1(0,1/2n]∪(2/2n,3/2n]∪···∪((2n−2)/2n,(2n−1)/2n],

...
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Let X := X1. If F is the c.d.f. of X and Fn is the c.d.f. of Xn then it is easy to see that

F (x) = Fn(x) =


0 if x < 0,
1/2 if 0 ≤ x < 1,
1 if 1 ≤ x,

so Fn(x)→ F (x) for every x showing that Xn
d−→ X.

On the other hand, for every ε ∈ (0, 1) we have P({|Xn −X| > ε}) = 1/2 for all n = 1, 2, . . .
showing that {Xn} does not converge in probability to X.

The next exercise shows that if X is a constant random variable then the converse of Proposi-
tion 206 holds.

Exercise 208. If Xn
d−→ X, where X(ω) = c for every ω ∈ Ω, then Xn

P−→ X.

Analogue of Proposition 202 for convergence in distribution doesn’t hold. Instead we have the
following results.

Exercise 209. Suppose Xn
d−→ X and Yn

d−→ Y , where Y (ω) = c for every ω ∈ Ω. Show that

(i) Xn + Yn
d−→ X + Y ;

(ii) If Zn −Xn
d−→ 0 then Zn

d−→ X;

(iii) XnYn
d−→ XY . (To avoid complications, assume that Yn ≥ 0 and c > 0.)

Exercise 210. Let F be a distribution function. Recall that the quantile function is defined by
F−1(ω) := sup{x : F (x) < ω} for all ω ∈ (0, 1). Show that

(i) F−1 is increasing, left-continuous function on (0, 1)

(ii) If x > F−1(ω), then F (x) ≥ ω

(iii) If F−1 is continuous at ω, then x > F−1(ω) implies that F (x) > ω.

(iv) If F (x) > ω, then x ≥ F−1(ω)

(v) If F is continuous at x, then F (x) > ω implies that x > F−1(ω)

(vi) If x < F−1(ω), then F (x) < ω

(vii) If F (x) < ω, then x < F−1(ω)

(viii) F−1 ◦F (x) ≤ x for all x ∈ R, such that 0 < F (x) < 1. (What is wrong when F (x) is 0 or 1?)

(ix) F ◦ F−1(ω) ≥ ω for all ω ∈ (0, 1)

(x) F ◦ F−1 ◦ F (x) = F (x) for all x ∈ R, such that 0 < F (x) < 1

(xi) F−1 ◦ F ◦ F−1(ω) = F−1(ω) for all ω ∈ (0, 1)
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(xii) If F has a jump at x, then F−1 is constant on (F (x−), F (x)]

(xiii) If F−1 has a jump at ω, then F is constant on [F−1(ω), F−1(ω+))

(xiv) The right limit of F−1 at ω is F−1(ω+) = inf{t : F (t) > ω}

(xv) Y (ω) := F−1(ω) is a random variable on
(
(0, 1),B(0, 1)

)
with the Lebesgue measure. Show

that FY = F.

Lemma 211. If F−1 is continuous at ω, then x > F−1(ω) implies that F (x) > ω.

Proof. Fix, x > F−1(ω). Recall that F−1 is always left continuous. So, F−1 is continuous at ω if
and only if it is right continuous. That is, for all small ε > 0, F−1(ω + ε) is close to F−1(ω). That
is, for all small ε > 0, we have

x > F−1(ω + ε) = sup{y : F (y) < ω + ε}

This means, that x is not in the set on the right-hand side (on which supremum is taken). Hence,
F (x) ≥ ω + ε > ω.

Exercise 212. Why is Lemma 211 not true, if F−1 is not continuous at ω?

Exercise 213. If F is continuous at x, then F (x) > ω implies that x > F−1(ω). Why is this
statement not true, if F is not continuous at x?

Proposition 214. If Fn
w−→ F then lim

n→∞
F−1
n (ω) = F−1(ω) for almost all ω ∈ (0, 1).

Proof. Let A be the set of all ω where F−1 is continuous. Since F−1 can have only countably many
discontinuities and the Lebesgue measure of a countable subset of (0, 1) is zero, we get that the
Lebesgue measure of A is 1. We show that for every ω ∈ A we have F−1

n (ω)→ F−1(ω) as n→∞.
So fix an ω ∈ A.

Take an x ∈ R, where F is continuous, such that x < F−1(ω) and note that by Exercise 210
we have F (x) < ω. It is given that Fn(x)→ F (x), so for all n large enough we also have Fn(x) < ω
implying that x < F−1

n (ω). Hence
x ≤ liminf

n→∞
F−1
n (ω).

Letting the point x approach F−1(ω) from below (keeping the fact that x is a point of continuity
for F ) we get

F−1(ω) ≤ liminf
n→∞

F−1
n (ω).

On the other hand, take a x ∈ R where F is continuous and such that x > F−1(ω). Since F−1

is continuous at ω ∈ A, by Lemma 211, we get F (x) > ω. It is given that Fn(x)→ F (x), so for all
n large enough we also have Fn(x) > ω implying that x ≥ F−1

n (ω), by Exercise 210. Hence

x ≥ limsup
n→∞

F−1
n (ω).

Finally, let the point x approach F−1(ω) from above (keeping the fact that x is a point of continuity
for F ) to get

F−1(ω) ≥ limsup
n→∞

F−1
n (ω).
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Combining the two findings we get

F−1(ω) ≥ limsup
n→∞

F−1
n (ω) ≥ liminf

n→∞
F−1
n (ω) ≥ F−1(ω).

We must have equality throughout showing that limn→∞ F
−1
n (ω) = F−1(ω).

Theorem 215 (Convergence in distribution). We have Xn
d−→ X if and only if Eg(Xn) → Eg(X)

for every bounded, continuous function g : R→ R.

Proof. Suppose Fn(x)
w−→ F (x) and let Y := F−1 and Yn := F−1

n , n = 1, 2, . . . By Exercise 210, the
random variable Y has c.d.f F and Yn has c.d.f. Fn. By Proposition 214, we have Yn

a.s.−−→ Y . Let
g : R → R be a bounded continuous function, then g(Yn)

a.s.−−→ g(Y ), because g is continuous, and
since g is bounded, we can apply Lebesgue’s Dominated Convergence Theorem:

Eg(Xn) = Eg(Yn)→ Eg(Y ) = Eg(X).

To show the opposite direction, suppose that Eg(Xn) → Eg(X) for every bounded continuous
function g : R → R. Fix an x ∈ R where F is continuous and an ε > 0. Define the continuous
function

gx,ε(y) =


1 if y ≤ x,
0 if y ≥ x+ ε,
linear if x ≤ y ≤ x+ ε.

Note that gx,ε ≥ 0 is bounded and continuous and in particular we have

gx−ε,ε(y) =


1 if y ≤ x− ε,
0 if y ≥ x,
linear if x− ε ≤ y ≤ x.

Note that for all y ∈ R, we have

1{y:y≤x−ε}(y) ≤ gx−ε,ε(y) ≤ 1{y:y≤x}(y) ≤ gx,ε(y) ≤ 1{y:y≤x+ε}(y).

Replacing y in the first and last of these inequalities by X(ω) and replacing y in the second and
third of these inequalities by Xn(ω), we get that

gx−ε,ε(Xn(ω)) ≤ 1{ω∈Ω:Xn(ω)≤x}(ω) ≤ gx,ε(Xn(ω)),

gx,ε(X(ω)) ≤ 1{ω∈Ω:X(ω)≤x+ε}(ω),

1{ω∈Ω:X(ω)≤x−ε}(ω) ≤ gx−ε,ε(X(ω)),

hold for all ω ∈ Ω. Hence, taking expectations from all sides

E
(
gx−ε,ε(Xn)

)
≤ P(Xn ≤ x) ≤ E

(
gx,ε(Xn)

)
,

E
(
gx,ε(X)

)
≤ P(X ≤ x+ ε),

P(X ≤ x− ε) ≤E
(
gx−ε,ε(X)

)
.
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So

limsup
n→∞

P(Xn ≤ x) ≤ limsup
n→∞

E
(
gx,ε(Xn)

)
= E

(
gx,ε(X)

)
≤ P(X ≤ x+ ε)

liminf
n→∞

P(Xn ≤ x) ≥ liminf
n→∞

E
(
gx−ε,ε(Xn)

)
= E

(
gx−ε,ε(X)

)
≥ P(X ≤ x− ε).

Thus, for every x ∈ R and ε > 0 we obtained that

P(X ≤ x− ε) ≤ liminf
n→∞

P(Xn ≤ x) ≤ limsup
n→∞

P(Xn ≤ x) ≤ P(X ≤ x+ ε).

In other words, if F is the c.d.f. of X and Fn is the c.d.f. of Xn, we have

F (x− ε) ≤ liminf
n→∞

Fn(x) ≤ limsup
n→∞

Fn(x) ≤ F (x+ ε).

Since F is continuous at x, letting ε→ 0 we get

F (x) ≤ liminf
n→∞

Fn(x) ≤ limsup
n→∞

Fn(x) ≤ F (x).

This shows that lim
n→∞

Fn(x) = F (x) at every x at which F is continuous.

5 Limit theorems

5.1 Weak and strong laws of large numbers

For a sequence of random variables {Xn}∞n=1 we denote

Sn := X1 + · · ·+Xn n = 1, 2, . . .

Lemma 216. Suppose the random variables {Xn} are independent and integrable, then

VarSn =
n∑
k=1

VarXk.

Proof. We calculate

VarSn = E(Sn − ESn)2 = E
( n∑
k=1

(Xk − EXk)
)2

=
n∑
k=1

E(Xk − EXk)
2 + 2

∑
1≤j,k≤n

E((Xj − EXj)(Xk − EXk)).

But the fact that Ej and Ek are independent implies

E((Xj − EXj)(Xk − EXk)) = E(XjXk −XjEXk −XkEXj + EXjEXk)

= E(XjXk)− EXjEXk − EXkEXj + EXjEXk = 0,

since E(XjXk) = EXjEXk
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The lemma, combined with the Chebyshev’s inequality immediately gives the following bound.

Corollary 217. Suppose the random variables {Xn} are independent and integrable, then

P(|Sn − ESn| ≥ ε) ≤ 1

ε2

n∑
k=1

VarXk.(34)

Corollary 218 (Weak law of large numbers). Suppose the random variables {Xn} are independent
and integrable.

If lim
n→∞

n∑
k=1

VarXk

n2
= 0 then

Sn − ESn
n

P−→ 0.

Proof. Just apply inequality (34) with ε replaced by nε

P
(∣∣∣Sn − ESn

n

∣∣∣ ≥ ε
)
≤ 1

ε2

n∑
k=1

VarXk

n2
→ 0

as n approaches infinity. Since the limit is zero for every ε > 0 the result follows.

The weak law of large numbers is called ‘weak’ because the convergence in the conclusion is
in probability. The proof of the weak law relies crucially on inequality (34). In order to prove a
‘strong’ law of large numbers, one in which the convergence in the conclusion is almost sure, we
need a stronger version of inequality (34).

Lemma 219 (Kolmogorov inequality). Suppose the random variables {Xn} are independent and
integrable. Then for every ε > 0 we have

P(max
k≤n
|Sk − ESk| ≥ ε) ≤ 1

ε2

n∑
k=1

VarXk.(35)

Proof. Without loss of generality we can assume that EXn = 0, for all n.3 In that case (35) becomes

P(max
k≤n
|Sk| ≥ ε) ≤ 1

ε2

n∑
k=1

VarXk.(36)

Fix ε > 0. Let A0 := Ω and An := {max
k≤n
|Sk| < ε}, clearly we have An−1 ⊇ An for n ≥ 1. Let

Bn := An−1 \ An and note that the sets Bn are disjoint and ∪nk=1Bk = Acn and

Bk = {|S1| < ε, . . . , |Sk−1| < ε, |Sk| ≥ ε}.(37)

Equality (37) implies that ε21Bk ≤ (Sk1Bk)
2. Taking expectation of both sides gives

ε2P(Bk) = E(ε21Bk) ≤ E(Sk1Bk)
2 ≤ E(Sk1Bk)

2 + E((Sn − Sk)1Bk)2 = E(Sn1Bk)
2.(38)

3Indeed, otherwise we let X ′n := Xn−EXn then the random variables X ′1, X
′
2, . . . are independent and integrable.

Moreover VarX ′n = VarXn and S′k − ES′k = Sk − ESk, where S′k = X ′1 + · · · + X ′k. So proving (35) is the same as
proving (35) with Xn replaced by X ′n.
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The last equality is not quite obvious, but let us return to it at the end. Using it, we estimate

ε2P(Acn) = ε2
n∑
k=1

P(Bk) ≤
n∑
k=1

E(Sn1Bk)
2 ≤ ES2

n =
n∑
k=1

VarXk,

where in the last equality we used Lemma 216.
Let us justify now the last equality in (38). Square both sides of Sk1Bk +(Sn−Sk)1Bk = Sn1Bk ,

then take expectation throughout:

E(Sk1Bk)
2 + E(2Sk1Bk(Sn − Sk)1Bk) + E((Sn − Sk)1Bk)2 = E(Sn1Bk)

2.

The middle term on the left-hand side is zero since

E(2Sk1Bk(Sn − Sk)1Bk) = 2E(Sk1Bk(Sn − Sk)) = 2E(Sk1Bk)E(Sn − Sk) = 0,

where we used that Sk1Bk and (Sn − Sk) are independent random variables. Indeed, Equality (37)
shows that the random variable Sk1Bk is a function of X1, . . . , Xk,

4 while the random variable
(Sn − Sk) is a function of Xk+1, . . . , Xn. Since the random variables {Xn}∞n=1 are independent, by
Lemma 271 we see that Sk1Bk and (Sn − Sk) are independent.

Corollary 220. Suppose the random variables {Xn} are independent and integrable.

If
∞∑
k=1

VarXk <∞ then Sn − ESn converges a.s. to a random variable as n→∞.

Proof. Without loss of generality assume, again, that EXn = 0 for all n. We need to show that Sn
converges a.s. to a random variable as n→∞. Define the random variable

Wm := sup
k,p≥0

|Sm+k − Sm+p|.

Note that for every ω ∈ Ω the sequence {Wm(ω)}∞m=1 is decreasing and bounded from below by 0.
Hence, it has a limit. We are going to show that Wm(ω)→ 0 for almost all ω ∈ Ω. By Theorem 14,
this implies that {Sn(ω)}∞n=1 converges for almost all ω ∈ Ω.

The rest of the proof shows that Wm
a.s.−−→ 0. If we remove the first m random variables

from the sequence {Xn}, inequality (36) still holds for the truncated sequence Xm+1, Xm+2, . . . But
Xm+1 +Xm+2 + · · ·+Xm+k = Sm+k − Sm, so we get

P( max
k=0,...,n

|Sm+k − Sm| ≥ ε) ≤ 1

ε2

m+n∑
k=m+1

VarXk.

4Indeed, Sk1Bk
= Skg(|S1|, . . . , |Sk−1|, |Sk|), where

g(x1, . . . , xk−1, xk) := 1(−∞,ε)×···×(−∞,ε)×[ε,∞)(x1, . . . , xk−1, xk).

Note that g : Rk → R is measurable since the set (−∞, ε)× · · · × (−∞, ε)× [ε,∞) is a measurable subset of Rk.
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Since n can be arbitrary large, letting n→∞, we obtain

P(sup
k≥0
|Sm+k − Sm| ≥ ε) ≤ 1

ε2

∞∑
k=m+1

VarXk.

Since
∑∞

k=m+1 VarXk → 0 as m → ∞ we conclude that P(sup
k≥0
|Sm+k − Sm| ≥ ε) → 0 as m → ∞.

Next, observe that

Wm = sup
k,p≥0

|Sm+k − Sm + Sm − Sm+p| ≤ sup
k,p≥0

(
|Sm+k − Sm|+ |Sm − Sm+p|

)
= sup

k≥0
|Sm+k − Sm|+ sup

p≥0
|Sm − Sm+p|.

Thus, {Wm > 2ε} ⊆ {sup
k≥0
|Sm+k − Sm| > ε} ∪ {sup

p≥0
|Sm+p − Sm| > ε} and taking probability from

both sides shows that

P(Wm > 2ε) ≤ P(sup
k≥0
|Sm+k − Sm| > ε) + P(sup

p≥0
|Sm+p − Sm| > ε)→ 0 as m→∞.

This shows that the sequence {Wm}∞m=1 converges to 0 in probability. By Lemma 198 there is a
subsequence {Wmk}∞k=1 converging to 0 a.s.. But since the whole sequence {Wm(ω)}∞m=1 is convergent
and a subsequence converges to 0, the whole sequence must converge to zero.

Corollary 221 (Strong law of large numbers). Suppose the random variables {Xn} are independent
and integrable.

If
∞∑
k=1

VarXk

k2
<∞ then

Sn − ESn
n

a.s.−−→ 0.

Proof. Apply Corollary 220 to the random variables X ′k := Xk/k. Since
∞∑
k=1

VarX ′k =
∞∑
k=1

VarXk

k2
<

∞, then S ′n − ES ′n converges a.s. to a random variable. That is for almost all ω ∈ Ω we have
S ′n(ω)− ES ′n → sω as n→∞, where sω is a some real number. But

S ′n(ω)− ES ′n =
n∑
k=1

(X ′k(ω)− EX ′k) =
n∑
k=1

Xk(ω)− EXk

k
.

Applying Corollary 28 with xk := (Xk(ω)−EXk)/k and bk := k we conclude that (Sn(ω)−ESn)/n→
0. Since this holds for almost all ω ∈ Ω, we are done.

The strong law of large numbers given in Corollary 221 may not be the familiar one but it
applies to any sequence {Xn} of random variables having varied distributions. Note that if any of
the random variables has an infinite variance then the result cannot be applied.

Corollary 222 (Strong law of large numbers, classical form, finite variance). Let {Xn}∞n=1 be a
sequence of independent, identically distributed random variables with E(X2

i ) <∞ and EXi = µ ∈
R. Then

Sn − nµ
n

a.s.−−→ 0.
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Proof. Since E(X2
i ) < ∞, we have that m := VarXi ≤ ∞. Then

∑∞
k=1

VarXk
k2

= m
∑∞

k=1
1
k2
< ∞

and we conclude using Corollary 221, keeping in mind that ESn/n = µ.

Exercise 223. Show that

if
∞∑
k=1

VarXk

k2
<∞ then lim

n→∞

n∑
k=1

VarXk

n2
= 0.

This means that the condition in Corollary 221 is stronger that the condition in Corollary 218.
Thus, in Corollary 221 we require more but get a stronger conclusion in return too.

Exercise 224. For any random variable X we have

∞∑
n=1

P(|X| ≥ n) ≤ E|X| ≤ 1 +
∞∑
n=1

P(|X| ≥ n).

Exercise 225. If the random variables {Xn}∞n=1 are independent andXn
a.s.−−→ 0, then

∑∞
n=1 P(|Xn| ≥

c) <∞ for any c > 0.

It turns out that if the random variables {Xn}∞n=1 are independent and identically distributed,
then we do not need to insist on a finite variance, in order to have the same conclusion.

Theorem 226 (Strong law of large numbers, classical form, any variance). Let {Xn}∞n=1 be a
sequence of independent, identically distributed random variables with EXi = µ ∈ R. Then

Sn − nµ
n

a.s.−−→ 0.

Proof. We need to show that Sn/n
a.s.−−→ µ. Let X be a random variable having the same distribution

as Xi. Since EXi = µ ∈ R, then Xi is integrable and so X is, i.e. E|X| < ∞. Observe by
Exercise 224, that

∑∞
k=1 P(|Xk| ≥ k) =

∑∞
k=1 P(|X| ≥ k) ≤ E|X| < ∞. Thus, by the Borel-

Cantelli Lemma P(limsup{|Xk| ≥ k}) = 0. This means that for almost all ω ∈ Ω, ω is in finitely
many of the sets {|Xk| ≥ k}, k = 1, 2, . . . Then

Sn
n

=
1

n

( n∑
k=1

Xk

)
=

1

n

n∑
k=1

Xk1{|Xk|<k} +
1

n

n∑
k=1

Xk1{|Xk|≥k} =:
S ′n
n

+
S ′′n
n
.

By the above observations, for almost all ω ∈ Ω only finitely many terms in the sum S ′′n(ω) are
non-zero, hence as n goes to infinity, S ′′n/n

a.s.−−→ 0. Thus, in order to show that Sn/n
a.s.−−→ EX it is

enough to show that S ′n/n
a.s.−−→ EX.

Next, since X1{|X|<k}
a.s.−−→ X as k → ∞, |X1{|X|<k}| ≤ X, and E|X| < ∞, by the Dominated

Convergence Theorem we get

E
(
Xk1{|Xk|<k}

)
= E

(
X1{|X|<k}

)
→ EX as k →∞.

Hence, by Corollary 27 we obtain lim
n→∞

ES ′n
n

= EX. Thus, it is sufficient to show that (S ′n −

ES ′n)/n
a.s.−−→ 0. In order to do that, we use Corollary 221.
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In the rest of the proof, we show that
∑∞

k=1

VarX′k
k2

< ∞, where X ′k := Xk1{|Xk|<k}. Using
Exercise 145 to exchange the summation with the expectation, we estimate

∞∑
k=1

VarX ′k
k2

≤
∞∑
k=1

E
(
(X ′k)

2
)

k2
=
∞∑
k=1

E
((X ′k)

2

k2

)
=
∞∑
k=1

E
(X2

k

k2
1{|Xk|<k}

)
(39)

=
∞∑
k=1

E
(X2

k2
1{|X|<k}

)
= E

( ∞∑
k=1

X2

k2
1{|X|<k}

)
,

where we used that Xk has the same distribution as X. In order to estimate the infinite sum, define
the sets Bm := {m− 1 ≤ |X| < m} and note that

{|X| < k} ∩Bm =

{
∅ if k < m,
Bm if k ≥ m.

Thus ( ∞∑
k=1

X2

k2
1{|X|<k}

)
1Bm =

∞∑
k=1

X2

k2
1{|X|<k}1Bm =

∞∑
k=1

X2

k2
1{|X|<k}∩Bm =

∞∑
k=m

X2

k2
1Bm

=
( ∞∑
k=m

1

k2

)
X21Bm ≤

( ∞∑
k=m

1

k2

)
m21Bm .

We now bound the sum separately( ∞∑
k=m

1

k2

)
m2 = 1 +m2

( 1

(m+ 1)2
+

1

(m+ 2)2
+ · · ·

)
≤ 1 +m2

(∫ m+1

m

1

x2
dx+

∫ m+2

m+1

1

x2
dx+ · · ·

)
= 1 +m2

(∫ ∞
m

1

x2
dx
)

= 1 +m2
( 1

m

)
= 1 +m.

Putting the last two estimates together we obtain( ∞∑
k=1

X2

k2
1{|X|<k}

)
1Bm ≤ (1 +m)1Bm ≤ (2 + |X|)1Bm .

Notice that the sets Bm are disjoint and ∪∞m=1Bm = Ω, thus
∑∞

m=1 1Bm = 1Ω ≡ 1. Summing the
last displayed bound over m we get

∞∑
k=1

X2

k2
1{|X|<k} ≤ 2 + |X|.

Substituting into (39) we finally obtain

∞∑
k=1

VarX ′k
k2

≤ E
( ∞∑
k=1

X2

k2
1{|X|<k}

)
≤ E(2 + |X|) = 2 + E|X| <∞.

With this the proof of the strong law of large numbers is complete.
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Remark 227. Theorem 226 still holds (with a different proof) if we assume that the random
variables {Xn}∞n=1 are pairwise independent and identically distributed. As we will see, this is not
true for the Central Limit Theorem. For the Central Limit Theorem, we have to require that all
{Xn}∞n=1 be independent.

5.2 The central limit theorem

5.2.1 Characteristic functions

This section introduces the characteristic function of a random variable and its main properties with
minimum emphasis on proofs. We begin by giving the necessary background on complex numbers.

A complex number z ∈ C has representation z = a + ib where a, b ∈ R and i is the imaginary
unit i =

√
−1. Clearly, we have i2 = −1, i3 = −i, i4 = +1, i5 = i, and so on. The complex numbers

can be viewed as points in R2 to each z = a+ ib ∈ C corresponds the point (a, b) ∈ R2.
The norm of z = a+ ib is |z| :=

√
a2 + b2. Note that this is just the norm of vector (a, b) ∈ R2,

or in other words, the distance of (a, b) to the origin of the coordinate system (0, 0). Thus, the
norm of a complex number z is the distance from z to (0, 0). In particular, the complex numbers
with norm 1 are the points on the circle with radius 1 and centered at (0, 0) in R2. If we have two
complex numbers z = a + ib and w = c + id then the difference is z − w = (a − c) + i(b − d), so
the norm of z−w is |z−w| =

√
(a− c)2 + (b− d)2. This is the distance between the vectors (a, b)

and (c, d), or in other words, the distance between z and w. It can be shown that for any complex
numbers z, w one has |z+w| ≤ |z|+ |w|, |zw| = |z||w|, and |z/w| = |z|/|w|. Thus, for every z ∈ C,
the number z/|z| has norm 1. Complex numbers cannot be compared, for z, w ∈ C, it doesn’t make
sense to say z ≤ w or w ≤ z. But their norms, being real numbers, can be compared.

The complex conjugate of z = a + ib, denoted z̄, is z̄ := a− ib. Note that z̄ is the reflexion of
z across the x-axis in R2. The properties of conjugation are zz̄ = |z|2; z + w = z̄ + w̄; zw = z̄w̄;
and |z̄| = |z|.

Complex numbers of the form z = cos(t) + i sin(t), for t ∈ R, always have norm 1 since
cos2(t) + sin2(t) = 1. In fact, every complex number with norm 1 can be represented in this way
for a unique t ∈ (−π, π].

The exponent of a complex number z = a+ ib is defined to be

ez := 1 +
z

1!
+
z2

2!
+
z3

3!
+
z4

4!
+
z5

5!
+ · · ·

= 1 +
a+ ib

1!
+

(a+ ib)2

2!
+

(a+ ib)3

3!
+

(a+ ib)4

4!
+

(a+ ib)5

5!
+ · · ·

(It can be shown that this power series converges for every z ∈ C.) If a = 0, we obtain that for any
b ∈ R we have

eib = 1 +
ib

1!
+

(ib)2

2!
+

(ib)3

3!
+

(ib)4

4!
+

(ib)5

5!
+ · · ·

= 1 + i
b

1!
− b2

2!
− ib

3

3!
+
b4

4!
+ i

b5

5!
+ · · ·

=
(

1− b2

2!
+
b4

4!
− · · ·

)
+ i
( b

1!
− b3

3!
+
b5

5!
− · · ·

)
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= cos(b) + i sin(b),

where we used that the power series expansions of cos(b) and sin(b), for any b ∈ R, are

cos(b) = 1− b2

2!
+
b4

4!
− · · · and sin(b) =

b

1!
− b3

3!
+
b5

5!
− · · ·

Using the power series expansion of ez it can be shown (but we will not) that for any z, w ∈ C we
have

ez+w = ezew.(40)

Therefore, if z = a+ ib we have

ez = ea+ib = eaeib := ea(cos(b) + i sin(b)).

That is, ea is a real number and eib = cos(b) + i sin(b) having norm |eib| = 1. That is, if b ∈ R
then eib is a complex number on the circle with radius 1, centered at 0 (called, the unit circle). The
number 1 is also on the unit circle. Thus, the distance between eib and 1 is

|eib − 1| ≤ 2,(41)

since the diameter of the unit circle is 2. In addition, we have

ez̄ = ea−ib = eaei(−b) = ea(cos(−b) + i sin(−b)) = ea(cos(b)− i sin(b)) = ez.

The following fact will be useful, but we are not going to prove it. Compare(!) with Lemma 149.

Lemma 228. If lim
n→∞

zn = z ∈ C then lim
n→∞

(
1 +

zn
n

)n
= ez.

Let (Ω,F ,P) be a probability space. A function X : Ω → C is measurable if it is measurable
as a function from Ω into R2 (with the Borel σ-algebra). In that case we say that X is a complex-
valued random variable. For every ω ∈ Ω, we have X(ω) = A(ω) + iB(ω) where A : Ω → R and
B : Ω→ R are measurable functions (why?). The expectation of X is defined to be

EX := EA+ iEB,(42)

provided that the expectations EA and EB exist and are finite.
Now, let X : Ω→ R be a (real-valued) random variable. The characteristic function (ch.f.) of

X is defined to be
φX(t) := E

(
eitX

)
for t ∈ R.

By definition, we have E
(
eitX

)
= E(cos(tX)+i sin(tX)) = E(cos(tX))+iE(sin(tX)). Now, for every

ω ∈ Ω, we have | cos(tX(ω))| ≤ 1 and | sin(tX(ω))| ≤ 1 so for every t ∈ R the random variables
cos(tX) and sin(tX) are integrable. That is, the expectations E(cos(tX)) and E(sin(tX)) exist and
are finite. Hence the characteristic function is well-defined for every t ∈ R. Other notations for the
characteristic function are

φX(t) = E
(
eitX

)
=

∫
Ω

eitX dP =

∫
R
eitx dFX(x),
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where FX is the c.d.f. of X, see the first comment after Proposition 165.
The characteristic function is a useful tool for proving results about convergence in distribution.

Since it is just a tool, we are not going to go into the deep details. We are going to show the
elementary properties of the characteristic function and then just state the deeper results.

Proposition 229. The characteristic function has the following properties:

(i) φX(0) = 1;

(ii) φX(−t) = φX(t);

(iii) |φX(t)| =
∣∣E(eitX)∣∣ ≤ E

∣∣eitX∣∣ = 1;

(iv) φaX+b(t) = eitbφX(at);

(v) If X and Y are independent with characteristic functions φX(t) and φY (t), then X + Y has
characteristic function φX(t)φY (t).

Proof. (i) Easy. (ii) φ(−t) = E(cos(−tX) + i sin(−tX)) = E(cos(tX) − i sin(tX)) = E(cos(tX)) −
iE(sin(tX)) = φ(t). (iii) Since |a+ ib| :=

√
a2 + b2 we have

|φX(t)| =
∣∣E(eitX)∣∣ =

∣∣E(cos(tX)) + iE(sin(tX))
∣∣ =

((
E(cos(tX))

)2
+
(
E(sin(tX))

)2
)1/2

= h(E(cos(tX)),E(sin(tX))),

where h(x, y) = (x2 + y2)1/2. It is a fact that the function h(x, y) : R2 → R is convex, hence by
Exercise 157, for the random variables cos(tX) and sin(tX), we have

h(E(cos(tX)),E(sin(tX))) ≤ Eh(cos(tX), sin(tX)) ≤ E
(

cos2(tX) + sin2(tX)
)1/2

= E| cos(tX) + i sin(tX)| = E
∣∣eitX∣∣.

In addition, note that E
(

cos2(tX) + sin2(tX)
)1/2

= E(1) = 1. (iv) Exercise. (v) Eeit(X+Y ) =
E(eitXeitY ) = EeitXEeitY , where we used, (42), Corollary 184 with condition b).

Theorem 230 (Continuity theorem). Let X,X1, X2, . . . be a sequence of random variables with
characteristic functions φ(t), φ1(t), φ2(t), . . . respectively.

(a) If Xn
d−→ X, then φn(t)→ φ(t) for all t.

(b) If φn(t)→ φ(t) for all t and φ(t) is continuous at t = 0, then Xn
d−→ X.

Theorem 231 (Inversion theorem). Let X and Y are two random variables with c.d.f.’s FX and
FY , and characteristic functions φX and φY . Then FX = FY if and only if φX = φY .

Theorem 232 (Moments and derivatives theorem). If E|X|n <∞ then the characteristic function
φX(t) is n times continuously differentiable, with derivatives given by

φ
(k)
X (t) =

∫
R
(ix)keitx dFX(x), k = 0, 1, . . . , n.(43)

In particular, we obtain that φ
(k)
X (0) =

∫
R(ix)k dFX(x) = E(iX)k.

92



Theorem 232 says that if E|X|n <∞ then the characteristic function φ(t) of X has n-th order
Taylor expansion around x:

φ(x+ t) = φ(x) +
t

1!
φ(1)(x) +

t2

2!
φ(2)(x) + · · ·+ tn

n!
φ(n)(x) + o(tn),

where “error” term o(tn) is an (unknown) function with the property that o(tn)/tn → 0 as t → 0.
In particular, the Taylor expansion at x = 0 is

φ(t) = φ(0) +
t

1!
φ(1)(0) +

t2

2!
φ(2)(0) + · · ·+ tn

n!
φ(n)(0) + o(tn)(44)

= 1 +
t

1!
E(iX) +

t2

2!
E(iX)2 + · · ·+ tn

n!
E(iX)n + o(tn).

5.2.2 The central limit theorem

Let N(0, 1) denote a standard normal random random variable (that is, a normal random variable
with mean 0 and standard deviation 1.) Refer to Example 123 for the c.d.f. of a normal random
variable.

Theorem 233 (Central limit theorem). Let {Xn}∞n=1 be independent and identically distributed
random variables with EXi = µ ∈ R and VarXi = σ2 ∈ (0,∞). Then

Sn − nµ
σ
√
n

d−→ N(0, 1).

Proof. Without loss of generality assume EXi = 0 or otherwise replace Xn by X ′n := Xn−µ. Let X
be a random variable with the same distribution as Xi. Since EX2

i = VarXi+(EXi)
2 = σ2 +0 <∞

then by (44) with n = 2 we get that the characteristic function of X satisfies

φX(t) = φX(0) +
t

1!
φ

(1)
X (0) +

t2

2!
φ

(2)
X (0) + o(t2) = 1− t2

2
σ2 + o(t2).

Hence by Proposition 229, part (iv) we obtain

φX/σ√n(t) = φX(t/σ
√
n) = 1− t2

2n
+ o
( t2

σ2n

)
.

So by Proposition 229, part (v), using the fact that X1, . . . , Xn are independent, we obtain

φSn/σ
√
n(t) = φX1/σ

√
n+···+Xn/σ

√
n(t) = φX1/σ

√
n(t) · · ·φXn/σ√n(t) =

(
1− t2

2n
+o
( t2

σ2n

))n
=
(

1+
cn
n

)n
,

where we defined the complex number

cn := n
(
− t2

2n
+ o
( t2

σ2n

))
= −t

2

2
+
t2

σ2

o( t2

σ2n
)

t2

σ2n

.
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As n approaches infinity, t2

σ2n
approaches 0 and hence

o( t2

σ2n
)

t2

σ2n

approaches 0. Hence cn → −t2/2 as

n→∞. By Lemma 228 we see that for every fixed t we have

φSn/σ
√
n(t)→ e−t

2/2.

Since e−t
2/2 is the characteristic function of N(0, 1), and it is continuous at t = 0, by Theorem 230,

part b), we conclude.

Example 234. Let {Xn} be independent and identically distributed random variables with EXn =
0 and EX2

n = σ2 ∈ (0,∞). We will show that∑n
k=1 Xk(∑n

k=1X
2
k

)1/2

d−→ N(0, 1).

Indeed ∑n
k=1Xk(∑n

k=1X
2
k

)1/2
=

∑n
k=1 Xk

σ
√
n

σ((∑n
k=1X

2
k

)
/n
)1/2

.

By the central limit theorem ∑n
k=1Xk

σ
√
n

d−→ N(0, 1)(45)

By the strong law of large numbers, applied to the random variables {X2
n} we have

(∑n
k=1 X

2
k

)
/n

a.s.−−→
σ2. Hence

σ((∑n
k=1X

2
k

)
/n
)1/2

a.s.−−→ 1.

But almost sure convergence implies convergence in probability, which implies convergence in dis-
tribution, hence

σ((∑n
k=1X

2
k

)
/n
)1/2

d−→ 1.(46)

Evoke Exercise 209, part (iii) to conclude that the product of the left-hand sides of (45) and (46)
converges in distribution to N(0, 1).

5.2.3 Other limit theorems (optional)

The requirement in the central limit theorem that the random variables have to be identically
distributed can be removed with a small price to pay for that. The next theorem does that. Define

sn :=
√

VarSn

94



to be the standard deviation of Sn. If the random variables {Xn} are independent, then by
Lemma 216, we have sn =

√
VarX1 + VarX2 + · · ·+ VarXn. If the random variables {Xn} are

independent and identically distributed with variance σ2, then sn = σ
√
n.

The proof of the next theorem is given in Appendix B.

Theorem 235 (Central limit theorem, not identically distributed random variables). Let {Xn}∞n=1

be independent and integrable random variables.

If for some δ ∈ (0, 1] we have lim
n→∞

n∑
k=1

E|Xk − EXk|2+δ

s2+δ
n

= 0 then
Sn − ESn

sn

d−→ N(0, 1).

Remark 236. Note also that if the random variables are identically distributed with mean µ
and variance σ2, then sn = σ

√
n and the conclusion of the theorem is exactly the same as that

of Theorem 233. The condition limn→∞
∑n

k=1
E|Xk−EXk|2+δ

s2+δn
= 0 is reminiscent of the condition in

Corollary 218. (Recall that VarXk = E|Xk − EXk|2).

Let us compare Theorem 226 and Theorem 233. If σ ∈ (0,∞) is any constant, then the strong
law of large numbers can be rewritten in an equivalent form as follows.

Theorem 237 (Strong law of large numbers, classical form). Let {Xn}∞n=1 be a sequence of inde-
pendent, identically distributed random variables with EXi = µ ∈ R. Then

Sn − nµ
σn

a.s.−−→ 0.

In the strong law of large numbers the denominator n grows much faster (as n approaches
infinity) that the denominator σ

√
n in the central limit theorem. That faster growth “kills” all

randomness in the random walk Sn − nµ and hence the “normalized” ((Sn − nµ)/n) random walk
almost always ends at 0. In the central limit theorem the slower growth of the denominator is not
capable of annihilating the random walk and that is why the limiting distribution of the “normal-
ized” ((Sn−nµ)/σ

√
n) is non-trivial (that is, it is not a constant). This raises the question, if there

are other functions of n that we can put in the denominator and still have a meaningful result. One
answer is given by the next deep theorem.

Theorem 238 (Law of iterated logarithm). Let {Xn}∞n=1 be independent and identically distributed
random variables with EXi = µ ∈ R and VarXi = σ2 ∈ (0,∞). Then

P
(

limsup
n→∞

Sn − nµ
σ
√
n log log n

=
√

2
)

= P
(

liminf
n→∞

Sn − nµ
σ
√
n log log n

= −
√

2
)

= 1.

Notice first that for every n ≥ 16 the denominator in the law of iterated logarithm is between
σ
√
n and σn, that is

σ
√
n ≤ σ

√
n log log n ≤ σn.

Hence the conclusion in Theorem 238 is in a sense “between” those of Theorems 226 and 233. It
says that for almost all ω ∈ Ω, we have

limsup
n→∞

Sn(ω)− nµ
σ
√
n log log n

=
√

2 and liminf
n→∞

Sn − nµ
σ
√
n log log n

= −
√

2.
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This means that for every ε > 0 the sequence Sn(ω)−nµ
σ
√
n log logn

does not have a limit point bigger than√
2+ε and does not have a limit point smaller than −

√
2−ε. But that can happen if and only if the

sequence Sn(ω)−nµ
σ
√
n log logn

has finitely many terms above
√

2 + ε and below −
√

2− ε. (If it has infinitely

many terms above
√

2 + ε then it must have a limit point bigger than
√

2 + ε contradicting the fact
that limsup is

√
2.) In other words, for almost all ω ∈ Ω the random walk Sn(ω)− nµ satisfies

(−
√

2− ε)σ
√
n log log n ≤ Sn(ω)− nµ ≤ (

√
2 + ε)σ

√
n log log n

for all n large enough. For example, suppose σ = 1 and ε = 0.01, then almost surely the random
walk Sn − nµ is between the graphs of the functions f(x) := (−

√
2− 0.01)

√
x log log x and g(x) :=

(
√

2 + 0.01)
√
x log log x for all n large enough.

It is important to know how good is the approximation in the central limit theorem. The next
theorem does that and we will omit the proof. Recall that

Φ(x) :=
1

2
√
π

∫ x

−∞
e−y

2/2 dy

is the cumulative distribution function of a standard normal random variable.

Theorem 239 (Berry-Essen). Let {Xn}∞n=1 be independent and identically distributed random
variables with EXi = µ ∈ R and VarXi = σ2 ∈ (0,∞). Suppose also that E|Xi − µ|3 = ρ ∈ (0,∞).
Then ∣∣∣P(Sn − nµ

σ
√
n
≤ x

)
− Φ(x)

∣∣∣ ≤ 3ρ

σ3
√
n
.

5.3 Applications

5.3.1 Glivenko-Cantelli theorem

Let {Xn} be independent and identically distributed random variables with common cumulative
distribution function F (x). The function

Fn(x, ω) :=
1

n

n∑
k=1

1[Xk(ω),∞)(x).(47)

is called empirical distribution function, it is a function of both ω and x. For every x and ω, the
empirical distribution function counts how many of the numbers X1(ω), . . . , Xn(ω) are less than or
equal to x and divides by n.

We give some motivation for considering the function Fn(x, ω). Suppose we do not know the
real distribution F (x) of the random variables {Xn} and suppose that we can sample as many as
we like of the variables {Xn} at one and the same ω. That is, suppose for any ω we can measure
the numbers X1(ω), X2(ω), . . . , Xn(ω). How can we estimate F (x) using the sample? The goal of
this section is to prove the Glivenko-Cantelli theorem, which says that for every x the empirical
distribution function converges to F (x) for almost all ω ∈ Ω. In fact, Glivenko-Cantelli theorem
proves more than that as we will see.

Since 1[Xk(ω),∞)(x) = 1{Xk≤x}(ω) we also have the representation

Fn(x, ω) =
1

n

n∑
k=1

1{Xk≤x}(ω).
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Exercise 240. Let {Xn}∞n=1 be random variables. Fix n ∈ {1, 2, . . .} and ω ∈ Ω. Show that

(i) As a function of x, Fn(x, ω) is a distribution function;

(ii) For every x, Fn(x−, ω) := lim
y↑x

Fn(y, ω) =
1

n

n∑
k=1

1{Xk<x}(ω).

To simplify the notation we are going to stop writing the ω but keep in mind that it is there.
That is, we denote

Fn(x) := Fn(x, ω) and Fn(x−) := Fn(x−, ω).

Lemma 241. Let {Xn}∞n=1 be independent and identically distributed random variables with com-
mon cumulative distribution function F (x). Then for every x ∈ R, Fn(x)

a.s.−−→ F (x) as n→∞.

Proof. Let X be a random variable having distribution F (x) as well. Fix x ∈ R and define the
random variables Yn := 1{Xn≤x}, n = 1, 2, . . . The random variables {Yn}∞n=1 are independent (why?)
and identically distributed. Indeed,

P(Yn ≤ y) = P(1{Xn≤x} ≤ y)

= P(1{X≤x} ≤ y) =


P(Ω) if y ≥ 1,
P(X > x) if 0 ≤ y < 1,
P(∅) if y < 0.

=


1 if y ≥ 1,
1− F (x) if 0 ≤ y < 1,
0 if y < 0.

Next, EYn = P(Xn ≤ x) = F (x) < ∞. So by the strong law of large numbers, Theorem 226, we
have 1

n

∑n
k=1 Yk

a.s.−−→ F (x).

Remark 242. The lemma says that for every x ∈ R there is a measurable subset Ax ⊆ Ω with
P(A) = 1 such that limn→∞ Fn(x, ω) = F (x) for all ω ∈ Ax. Note that this set Ax depends on
x. What do we get if we intersect all these Ax? That is, define A := ∩x∈RAx. If ω ∈ A, then
limn→∞ Fn(x, ω) = F (x) for all x ∈ R. This is almost what we want to show, but the problem is
that, being an intersection of more than countably many sets, A may not be measurable and may
not have probability 1.

Lemma 243. Let {Xn}∞n=1 be independent and identically distributed random variables with com-
mon cumulative distribution function F (x). Then for every x ∈ R, Fn(x−)

a.s.−−→ F (x−) as n→∞.

Proof. Let X be a random variable having distribution F (x) as well. Fix x ∈ R and define the
random variables Zn := 1{Xn<x}, n = 1, 2, . . .. The random variables {Zn}∞n=1 are independent
(why?) and identically distributed (why?). By Exercise 240, we have Fn(x−, ω) = 1

n

∑n
k=1 Zk.

Next, EZn = P(Xn < x) = F (x−) < ∞. So by the strong law of large numbers, Theorem 226, we
have 1

n

∑n
k=1 Zk

a.s.−−→ F (x−).

Combining Lemmas 241 and 243 in a clever way, gives the result that we wanted.

Theorem 244 (Glivenko-Cantelli). Let {Xn}∞n=1 be independent and identically distributed ran-
dom variables with common cumulative distribution function F (x). Then

sup
x∈R
|Fn(x)− F (x)| a.s.−−→ 0.
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Proof. Fix a positive integer k ≥ 1. For every integer j = 1, . . . , k − 1, define the point

xj,k := F−1(j/k).

Let Aj,k ⊆ Ω be the set of measure 1 such that Fn(xj,k)→ F (xj,k) for all ω ∈ Aj,k as per Lemma 241.
Let Bj,k ⊆ Ω be the set of measure 1 such that Fn(xj,k−) → F (xj,k−) for all ω ∈ Bj,k as per
Lemma 243. Let

Ck :=
( ⋂

1≤j≤k−1

Aj,k

)⋂( ⋂
1≤j≤k−1

Bj,k

)
,

and note that P(Ck) = 1 (the complement of Ck is a finite union of sets of measure 0.) The point
of defining Ck is that for any ω ∈ Ck we have

Fn(xj,k)→ F (xj,k) and Fn(xj,k−)→ F (xj,k−)

for all xj,k with j = 1, . . . , k − 1..
Fix an integer k ≥ 1 and ω ∈ Ck. Since there are finitely many xj,k for that fixed k (remember

that j = 1, 2, . . . , k − 1), there is an integer N = N(ω, k) such that for all n ≥ N we have

|Fn(xj,k)− F (xj,k)| < 1/k and |Fn(xj,k−)− F (xj,k−)| < 1/k(48)

for all j = 1, 2, . . . , k − 1. If we let x0,k := −∞ and xk,k :=∞ then the first inequality in (48) still
holds for j = 0 and j = k (indeed Fn(−∞)−F (−∞) = 0− 0 = 0 and Fn(∞)−F (∞) = 1− 1 = 0),
while the second holds for j = k. The numbers x0,k, x1,k, . . . , xk−1,k, xk,k partition the real line R
into the intervals [x0,k, x1,k), [x1,k, x2,k),. . . ,[xk−1,k, xk,k). We now show a bound on the growth of
the function F on each of these intervals.

Claim: For any j = 1, . . . , k we have F (xj,k−)− F (xj−1,k) ≤ 1/k.

Proof: First, if j = 1, 2, .., k− 1 then F (xj,k−) = limx↑xj,k F (x), and since for x < xj,k = F−1(j/k),
by Lemma 210, part (vi) we have F (x) < j/k, hence F (xj,k−) ≤ j/k.

Second, if j = 2, . . . , k, then F (xj−1,k) = F (F−1((j − 1)/k)) ≥ (j − 1)/k, where we used
Lemma 210, part (ix). Putting these observations together we get:

If j = 1 we have F (xj,k−)− F (xj−1,k) = F (x1,k−)− 0 ≤ 1/k;

If j = 2, 3, . . . , k − 1 we have F (xj,k−)− F (xj−1,k) ≤ j/k − (j − 1)/k = 1/k;

If j = k we have F (xj,k−)− F (xj−1,k) = 1− F (xk−1,k) ≤ 1− (k − 1)/k = 1/k.

Every x ∈ R must belong to one of the intervals [xj−1,k, xj,k) for some j ∈ {1, . . . , k}. Using
inequalities (48), the Claim, and the monotonicity of F (x), we estimate

Fn(x) ≤ Fn(xj,k−) ≤ F (xj,k−) + 1/k ≤ F (xj−1,k) + 2/k ≤ F (x) + 2/k,

Fn(x) ≥ Fn(xj−1,k) ≥ F (xj−1,k)− 1/k ≥ F (xj,k−)− 2/k ≥ F (x)− 2/k.

This shows that |Fn(x)− F (x)| ≤ 2/k. Since this is true for every x ∈ R we see that

sup
x∈R
|Fn(x)− F (x)| ≤ 2/k.(49)
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We showed that for any k ≥ 1 and any ω ∈ Ck, there is an N = N(k, ω) such that for all
n ≥ N inequality (49) holds. Finally, let

C :=
∞⋂
k=1

Ck.

Since C is a countable intersection of sets of measure 1, we have P(C) = 1.
Fix any ω ∈ C and any ε > 0. Since ω ∈ Ck for all k ≥ 1, we can choose k such that 2/k < ε.

By the above, there is an N = N(k, ω) such that for all n ≥ N ,

sup
x∈R
|Fn(x)− F (x)| ≤ 2/k < ε.

This means that for all ω ∈ C, we have supx∈R |Fn(x)− F (x)| → 0 as n→∞. We are done.

Thus, the Glivenko-Cantelli theorem is a significant strengthening of Lemma 241. We con-
clude with a statement of a strengthening of Glivenko-Cantelli theorem, quantifying the rate of
convergence as n tends to infinity.

Theorem 245 (Dvoretzky-Kiefer-Wolfowitz inequality). Let {Xn}∞n=1 be independent and identi-
cally distributed random variables with common cumulative distribution function F (x). Then

P
(

sup
x∈R
|Fn(x)− F (x)| > ε

)
≤ 2e−2nε2 ,

for any ε > 0.

The next exercise shows that the Dvoretzky-Kiefer-Wolfowitz’ inequality indeed strengthens
the Glivenko-Cantelli theorem.

Exercise 246. Show that Theorem 244 follows from the Dvoretzky-Kiefer-Wolfowitz’ inequality.

5.3.2 Kolmogorov’s extension theorem

Suppose you want to find out what is the distribution of an unknown random variable X. Suppose
you can sample this random variable as much as you like. Say you sampled it n times and obtained
the values x1, x2,. . . ,xn. How would you estimate the distribution function from the sample you
have got? From undergraduate courses, one “knows” that the probability P(X ≤ x) is approximately
equal to the observed frequency of the sampled values that are less than or equal to x:

The number of sample values that are less than or equal to x

n
.(50)

So we should have that

F (x) := P(X ≤ x)(51)

is approximately equal to (50). The good news is that we can write (50) as a function of x:

1

n

n∑
k=1

1[xk,∞)(x).(52)
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Indeed, 1[xk,∞)(x) is equal to 1 if xn ≤ x and is equal to 0 otherwise. So the sum
∑n

k=1 1[xk,∞)(x)
is equal to the number of sample values that are less than or equal to x. The bad news is that
we do not know what it means to sample a random variable and we do not know if P(X ≤ x) is
approximately equal to (50) and in what sense.

To sample a random variable means to perform an experiment with an unpredictable outcome
and then measure that outcome to get x1. (If you throw a die, usually the outcome of the experiment
is the side of the die that points upwards and the measurement is the count of the dots on that side.
If you are interested in the lifetime of a light bulb, the experiment is to pick a random light bulb
from an inventory of identical light bulbs and turn it on until it expires. The measurement is the
estimation of the (approximate) time when it burnt out.) Denote the set of all possible outcomes of
the experiment by Ω. The outcome of the experiment is ω1 ∈ Ω and the result of the measurement
is X(ω1).

To sample again, perform the experiment again, independently of what happened before, mea-
sure the outcome to get the number x2. But the outcome of the experiment, when performed for
the second time is ω2 ∈ Ω and the result of the measurement is x2 := X(ω2). And so on, after
performing the experiment n times we collect the sample

x1 = X(ω1), x2 = X(ω2), . . . , xn = X(ωn).

So, how can we estimate the distribution function F (x) using the sample? We will answer this
question if we show that (52), or equivalently (50), converges to F (x) as n approaches infinity.
Formula (52) can be written as

1

n

n∑
k=1

1[xk,∞)(x) =
1

n

n∑
k=1

1[X(ωk),∞)(x)

Thus, we want to show that for every x ∈ R

1

n

n∑
k=1

1[X(ωk),∞)(x)
a.s.−−→ F (x) as n→∞(53)

The function on the left-hand side of (53) is quite different from the function defined by (47). The
function in (53) is a function of x and ω1, ω2, . . . , ωn, and as n → ∞ the number of arguments of
that function increases to infinity as well. Another difficulty that we have to clarify is what we mean
by almost sure convergence in (53). In the Glivenko-Cantelly theorem, the almost sure convergence
refers to the fact that for almost all ω ∈ Ω we have Fn(x, ω) → F (x) as n → ∞. But now, the
arguments in

1

n

n∑
k=1

1[X(ωk),∞)(x)

are x and in fact a whole sequence of omegas ω1, ω2, . . . , ωn, . . .. Thus we need to define a measure
on the set of all sequences of omegas.

Suppose a sequence of probability spaces (Ωi,Fi,Pi) for i = 1, 2 . . . is given. We will explain
what it means to form their product (a product of countably many probability spaces). Define the
set

ΩN := {(ω1, ω2, . . .) : ωi ∈ Ωi for all i = 1, 2, . . .}.
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The set ΩN is the collection of all sequences, in which the i-th element is from Ωi. To define a
σ-algebra on ΩN, first consider the subsets of ΩN of the form

ΠA1,...,An := {(ω1, ω2, . . .) ∈ ΩN : ω1 ∈ A1, . . . , ωn ∈ An}

for some n and some Ai ∈ Fi for all i = 1, . . . , n. That is, ΠA1,...,An is the set of all sequences such
that their first term is in A1, second term is in A2,. . . , and n-th term is in An. The subsequent
terms of the sequences have no restrictions. Let

FN := σ({ΠA1,...,An : Ai ∈ Fi for all i = 1, . . . , n, n = 1, 2, . . .}).

Theorem 247 (Kolmogorov extension theorem). There is a unique probability measure PN on
(ΩN,FN), such that

PN(ΠA1,...,An) = P1(A1) · · ·Pn(An),

for any n and any Ai ∈ Fi, where i = 1, . . . , n.

You may not realize that you have been exposed to these ideas before. Here is one example
from undergraduate probability classes.

Example 248. An experiment has outcomes Ω = {ω1, ω2, . . .} occurring with probabilities P (ωk) =
pk. Perform the experiment repeatedly. What is the probability that ωi occurs before ωj, where
i 6= j.

Solution. We have a ‘little’ experiment with outcomes in Ω = {ω1, ω2, . . .} occurring with proba-
bilities P (ωk) = pk, but we repeat it endlessly, one little experiment after another. So, we end up
with a big experiment having an outcome that is a sequence of ω’s. The sample space of this big
experiment is the set of all possible sequences of ω’s.

We are interested in the event, call it E, of all sequences in which ωi occurs before ωj. But
the first time ωi occurs in a sequence could be on position 1, or 2, or any. Let En be the event
consisting of all sequences in which ωi occurs for the first time on the n-th position and ωj does not
occur on any of the previous (n− 1) positions. Note that the events E1, E2, . . . are disjoint (that is
there is no sequence of ω’s that is in say E1 and E2) and

E =
∞⋃
i=1

Ei.

The probability that neither ωi nor ωj occurs in one little experiment is 1 − pi − pj. Thus, En is
the event consisting of all sequences in which neither ωi nor ωj occur on positions 1, 2, . . . , n − 1,
and ωi occurs on position n. Thus,5

P (En) = (1− pi − pj)n−1pi.

5Let us carefully match this example with the developments before it. We have (Ωi,Fi,Pi) = (Ω, 2Ω, P ) for all
i = 1, 2, . . . The sample space ΩN is the set of all sequences with elements from Ω. The event En is in the σ-algebra
FN. More precisely, let Ak := Ω \ {ωi, ωj} for all k = 1, . . . , n− 1 and let An := {ωi}. Then En = ΠA1,...,An

. Hence,
PN(En) = P (A1) · · ·P (An−1)P (An) = (1− pi − pj)n−1pi. So, the measure, P , that is used is in fact PN but nobody
told you that.
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Thus, we finally have

P (E) = P
( ∞⋃
n=1

En

)
=
∞∑
n=1

P (En) =
∞∑
n=1

(1− pi − pj)n−1pi

= pi

∞∑
n=1

(1− pi − pj)n−1 = pi
1

1− (1− pi − pj)
=

pi
pi + pj

.

Denote by w a generic element of ΩN, that is, w = (ω1, ω2, . . .). Consider the function

Pn : ΩN → Ωn, defined by Pn(w) := ωn.

Lemma 249. The functions {Pn} have the following properties.

(i) Each Pn is measurable;

(ii) The law of Pn is the measure Pn;

(iii) The measurable functions {Pn} are independent.

Proof. (i) Let An ∈ Fn then P−1
n (An) = {w ∈ ΩN : ωn ∈ An} = ΠA1,...,An ∈ FN with A1 :=

Ω1, . . . , An−1 := Ωn−1.

(ii) Let An ∈ Fn, then PN(P−1
n (An)) = PN(ΠA1,...,An) = P1(A1) · · ·Pn(An) = Pn(An) since A1 :=

Ω1, . . . , An−1 := Ωn−1. So the measurable function Pn is distributed with law Pn.

(iii) For any fixed n, let Ai ∈ Fi for i = 1, . . . , n. Then,

PN(P1 ∈ A1, . . . , Pn ∈ An) = PN({w ∈ ΩN : P1(w) ∈ A1, . . . , Pn(w) ∈ An}) = PN(ΠA1,...,An)

= P1(A1) · · ·Pn(An) = PN(P1 ∈ A1) · · ·PN(Pn ∈ An),

where in the last equality we used part (ii) of the proof.

To summarize: (ΩN,FN,PN) is a probability space and the measurable functions {Pn} are
independent and distributed with law Pn. Suppose now that we are also given random variables
Xn : (Ωn,Fn,Pn)→ (R,B(R)), for all n = 1, 2, . . . Consider the random variables

Xn : (ΩN,FN,PN)→ (R,B(R)) defined by Xn(w) := Xn(Pn(w)) for all n = 1, 2, . . .

They are independent, for reasons similar to those given in Lemma 271. We show now, that Xn

has the same distribution as Xn.

Lemma 250. The cumulative distribution function of Xn is equal to the cumulative distribution
function of Xn. Hence EXn = EXn.

Proof. Indeed

PN(Xn ≤ x) =

∫
ΩN

1{Xn≤x}(w) dPN(w) =

∫
ΩN

1(−∞,x](Xn(w)) dPN(w)
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=

∫
ΩN

1(−∞,x](Xn(Pn(w))) dPN(w) =

∫
Ωn

1(−∞,x](Xn(ω)) dPn(ω),

where in the last equality, we performed a change of variable, according to Proposition 165, with
g(ω) := 1(−∞,x](Xn(ω)) ≥ 0, and using the fact that the law of Pn is exactly the measure Pn. Thus,
we continue

PN(Xn ≤ x) =

∫
Ωn

1(−∞,x](Xn(ω)) dPn(ω) =

∫
Ωn

1{Xn≤x}(ω) dPn(ω) = Pn(Xn ≤ x).

The fact that EXn = EXn should be now clear.

Exercise 251. Prove Theorem 190.

Now, return to (53). We apply the above discussion with Xi = X and (Ωi,Fi,Pi) = (Ω,F ,P)
for all i = 1, 2 . . . Let w = (ω1, ω2, . . .), then one can rewrite the function on the left-hand side of
(53)

1

n

n∑
k=1

1[X(ωk),∞)(x) =
1

n

n∑
k=1

1[X(Pk(w)),∞)(x) =
1

n

n∑
k=1

1[Xk(w),∞)(x).

Since the random variables {Xn} are independent and identically distributed, by the Glivenko-
Cantelli theorem, we have that for almost all w ∈ ΩN

1

n

n∑
k=1

1[Xk(w),∞)(x) converges to the c.d.f. of Xn as n→∞

But the c.d.f. of Xn is exactly equal to the c.d.f. of X, see Lemma 250. This establishes (53) and
clarifies that the almost sure convergence in it, has to be taken with respect to the measure PN on
the set of all sequences of elementary events (ω1, ω2, . . .).

In practice events with measure zero never occur. Thus, in practice, if we keep performing the
experiment over and over again obtaining a sequence of outcomes (ω1, ω2, . . .) and measurements
X(ω1), X(ω2), . . . then

1

n

n∑
k=1

1[X(ωk),∞)(x)

converges, as n→∞, to the distribution of the unknown random variable X.

6 Conditional expectation

Let us start with special cases.
Let B ∈ F have positive probability P(B) > 0. Then, the conditional probability of A ∈ F ,

given B, is

P(A|B) =
P(A ∩B)

P(B)
=

1

P(B)

∫
Ω

1A1B dP =
1

P(B)

∫
A

1B dP.
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We have known for some time that P(·|B) is a measure on F . Denote this measure by PB for short.
That is

PB(A) := P(A|B).

What we see now is that PB(A) can be represented in the form of Problem (viii) from Homework
5 with X raplaced by 1B:

PB(A) =
1

E(1B)

∫
A

1B dP.

So far, PB(A) is nothing more than the conditional probability of A given B. Now, the second part
of this homework problem is really interesting. It says that for any random variable X : (Ω,F ,P)→
(R,B(R)), non-negative or integrable with respect to PB, we have

EPB(X) =

∫
Ω

X dPB =
1

P(B)

∫
Ω

X1B dP =
1

P(B)

∫
B

X dP,

which, by analogy, is called the conditional expectation of X given B and denoted by E(X|B). That
is

E(X|B) :=
1

P(B)

∫
B

X dP,(54)

provided that P(B) > 0. This is a number. Similarly, we can define the number E(X|Bc), the
conditional expectation of X given Bc by

E(X|Bc) :=
1

P(Bc)

∫
Bc
X dP.

Now, consider the random variable X0 : (Ω,F ,P)→ (R,B(R)), defined by

X0 := E(X|B)1B + E(X|Bc)1Bc .(55)

It is not only measurable with with respect to F (meaning that the preimage under X0 of a Borel set
is in F) but also measurable with respect to σ({B}) = {∅, B,Bc,Ω}. That is, X0 : (Ω, σ({B}),P)→
(R,B(R)) is also a random variable. It is trivial to see that∫

C

X0 dP =

∫
C

X dP holds for all C ∈ σ({B})(56)

(There are four choices for C in this case.) Conversely, a random variable X0 : (Ω, σ({B}),P) →
(R,B(R)) satisfying (56) is of the form (55) almost surely. In other words, there is a unique (to
within almost sure equality) σ({B})-measurable random variable that satisfies (56). For this reason,
X0 is called the conditional expectation of X given σ({B}), denoted by E(X|σ({B})). We should
emphasize: X0 is a σ({B})-measurable random variable.

What is the expectation of X0? Using the definitions of the numbers E(X|B) and E(X|Bc),
we get

E(X0) = E(X|B)P(B) + E(X|Bc)P(Bc) =

∫
B

X dP +

∫
Bc
X dP =

∫
Ω

X dP = EX.
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Note that {B,Bc} is a partition of Ω. The above arguments can be made for any partition
{B1, B2, . . . , Bn} of Ω, where P(Bk) > 0 for all k = 1, . . . , n. (That is, the sets {B1, B2, . . . , Bn} are
disjoint and their union is Ω.) In this case, the step-function

X0 :=
n∑
i=1

E(X|Bi)1Bi ,(57)

where

E(X|Bi) :=
1

P(Bi)

∫
Bi

X dP

is called the conditional expectation of X given σ({Bi : i = 1, . . . , n}). It is a σ({Bi : i = 1, . . . , n})-
measurable and satisfies∫

C

X0 dP =

∫
C

X dP for all C ∈ σ({Bi : i = 1, . . . , n})

Exercise 252. If the random variables X, Y : (Ω,F ,P)→ (R,B(R)) are integrable and satisfy∫
A

X dP =

∫
A

Y dP for all A ∈ F .

then X = Y a.s.

In general, we have the following theorem that we will not prove.

Theorem 253. Let X : (Ω,F ,P) → (R,B(R)) be a non-negative (resp. integrable) random
variable. Then, for every σ-algebra G ⊆ F , there is a non-negative (resp. integrable) random
variable X0 : (Ω,G,P)→ (R,B(R)), unique, to within almost sure equality with respect to P, such
that ∫

C

X0 dP =

∫
C

X dP for all C ∈ G.(58)

If X is both non-negative and integrable, then so is X0.

The uniqueness in Theorem 253 is easy to show. Suppose there are two G-measurable random
variables X0 and X ′0 that satisfy equations (58). Substituting X0 and X ′0 into (58) and comparing
the left-hand sides we find that∫

C

X0 dP =

∫
C

X ′0 dP for all C ∈ G.

Using Exercise 252, we conclude that X0 = X ′0 a.s.

Definition 254. Suppose that X : (Ω,F ,P) → (R,B(R)) is non-negative or integrable random
variable. Suppose that G is a σ-algebra contained in F . A random variable X0 : (Ω,F ,P) →
(R,B(R)) is called the conditional expectation of X given G if

(i) X0 is G-measurable; and
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(ii) X0 satisfies (58).

It is denoted by E(X|G).

• Theorem 253 guarantees that a random variable, satisfying the two conditions in Defini-
tion 254, exists. But it also states that it may not be unique. If two random variables X0 and Y0

satisfy the two conditions in Definition 254, then X0 = Y0 a.s. (But, if you change the σ-algebra G,
then the conditional expectation may change completely.)
• One should remember that E(X|G) stands for a G-measurable function, that is, it is a random

variable on (Ω,G,P). Since G ⊆ F , it is obvious that E(X|G) is also F -measurable. Hence, E(X|G)
is a random variable on (Ω,F ,P) as well.
• The random variable E(X|G) is only defined to within almost sure equality with respect to

P. This means that if X0, Y0 : (Ω,G,P) → (R,B(R)) are two random variables that satisfy (58),
then X0 = Y0 P-almost surely. That is why statements about conditional expectation, often hold
only P-almost surely.
•What happens if we take G = {∅,Ω}? If G = {∅,Ω}, then a random variable is G-measurable

if and only if it is equal to a constant almost surely, so X0 = c a.s. To find that constant, let C := Ω
in (58):

c =

∫
Ω

X0 dP =

∫
Ω

X dP = EX.

• What happens if we take G = {∅, A,Ac,Ω}? If G = {∅, A,Ac,Ω}, then, Example 84, a random
variable X0 is G-measurable if and only if it is X0 = a1A + b1Ac . Now, if X0 = E(X|G), then we
can find the values of the constants a and b using (58) with C replaced by A and then by Ac:

aP(A) =

∫
A

X0 dP =

∫
A

X dP = P(A)E(X|A),

bP(Ac) =

∫
Ac
X0 dP =

∫
Ac
X dP = P(Ac)E(X|Ac).

Thus,
E(X|G) = E(X|A)1A + E(X|Ac)1Ac .

• The situation in the last two bullets generalizes easily. Let I be a finite or countably infinite
index set, that is I = {1, 2, . . . , n} or I = {1, 2, . . .}. Let {Bi : i ∈ I} be sets in F with P(Bi) > 0
for all i ∈ I. Suppose the sets {Bi : i ∈ I} are disjoint and their union is Ω. If G = σ(Bi : i ∈ I),
then

E(X|G) =
∞∑
i=1

E(X|Bi)1Bi .(59)

This example generalizes (57) since now the σ-algebra G may be generated by countably many sets.
• What happens if we take G = σ(X)? First, since X : (Ω,F ,P) → (R,B(R)) is a random

variable, that is F -measurable, we know that σ(X) ⊆ F , so σ(X) is a legitimate choice for G in
Theorem 253. Since, X is σ(X)-measurable, and it obviously satisfies (58), when put in place of
X0, then the uniqueness part of Theorem 253 guarantees that X = E(X|G) a.s.
• The arguments in the previous bullet apply to any σ-algebra G satisfying σ(X) ⊆ G ⊆ F .

For such G, we have E(X|G) = X a.s.
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• If the σ-algebra G contains a minimal set A, that is, no proper subsets of A are in G, then a
G-measurable random variable X0 must be a constant on A. If, in addition, X0 satisfies (58), then
the value of this constant is E(X|A).
• The proceeding bullets should clarify what is the intuitive meaning of the random variable

E(X|G): its values are the average values of X over the sets in G.
• Often one encounters expression like E(X|Y ), where X and Y are random variables. This is

a short-hand notation for E(X|σ(Y )).
• Similarly to the previous bullet, if {Yi : i ∈ I} is any family of random variables (finitely

many or not), by E(X|Yi, i ∈ I) one understands E(X|G), where G is the σ-algebra generated by
{Yi : i ∈ I} on Ω.

The following properties of conditional expectation follow easily from the definition and the
corresponding properties of general random variables.

Proposition 255. Assume that X, Y : (Ω,F ,P)→ (R,B(R)) are random variables that are either
both non-negative or both integrable. Let G ⊆ F . Then

(i) E(E(X|G)) = E(X)

(ii) If X is G-measurable, then E(X|G) = X a.s.

(iii) If X = Y a.s. then E(X|G) = E(Y |G) a.s.

(iv) If X = c a.s. then E(X|G) = c a.s.

(v) E(aX + bY |G) = aE(X|G) + bE(Y |G) a.s., where a, b ≥ 0 if X and Y are both non-negative,
or a, b ∈ R if X and Y are both integrable.

(vi) If X ≤ Y a.s. then E(X|G) ≤ E(Y |G) a.s.

(vii) |E(X | G)| ≤ E(|X| | G) a.s.

(viii) If {Xn}∞n=1 is an increasing sequence of non-negative random variables converging to X, then

lim
n→∞

E(Xn|G) = E(X|G) a.s.

(ix) If {Xn}∞n=1 is a sequence of random variables converging to X a.s. and if there is an integrable
random variable Y such that |Xn| ≤ Y for all n, then

lim
n→∞

E(Xn|G) = E(X|G) a.s.

(x) For any ε > 0

E(1{X≥ε}|G) ≤ E(X2|G)

ε2

(xi) If f : R→ R is a convex function, then

f(E(X|G)) ≤ E(f(X)|G).
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(xii) If p ≥ 1 and E|X|p <∞, then

|E(X|G)|p ≤ E(|X|p|G) a.s.

Taking expectation from both sides of the last inequality and using property (i), gives

E(|E(X|G)|p) ≤ E(|X|p) <∞.

(xiii) If E|X|p <∞ and E|Y |q <∞, where p, q ∈ (1,∞) satisfy 1/p+ 1/q = 1, then

|E(XY |G)| ≤ (E(|X|p|G)1/p(E(|Y |q|G)1/q.

Proof. (i) Take C := Ω in (58) to get

E(E(X|G)) = E(X0) =

∫
Ω

X0 dP =

∫
Ω

X dP = EX.

The rest is left for homework.

Lemma 256. Suppose X : (Ω,F ,P) → (R,B(R)) is a non-negative (resp. integrable) random
variable and G ⊆ F . Let X0 be a G-measurable random variable. Then X0 = E(X|G) a.s. if and
only if ∫

Ω

ZX0 dP =

∫
Ω

ZX dP(60)

for all G-measurable non-negative (resp. bounded) random variables Z.

Proof. (⇐) Just take Z = 1C for C ∈ G and we obtain (58). (⇒) Suppose now (58) holds. Then,
(60) holds right away for indicator functions Z = 1C for C ∈ G and by linearity, it holds for all
G-step-functions Z. If X ≥ 0, then X0 = E(X|G) ≥ 0. Take any Z ≥ 0. Let {Zn} be an increasing
sequence of positive step-functions converging to Z. By the above, we have∫

Ω

ZnX0 dP =

∫
Ω

ZnX dP.

Taking the limit as n goes to infinity and using the Monotone Convergence Theorem shows that
(60) holds for all Z ≥ 0.

If X is integrable, we want to show that (60) holds for all bounded G-measurable Z. First, take
any bounded Z ≥ 0, that is |Z| ≤ C. Let {Zn} be an increasing sequence of positive step-functions
converging to Z. Then, |ZnX0| ≤ C|X0| and |ZnX| ≤ C|X| hold for every n. Since X and X0 are
integrable, by the Dominated Convergence Theorem we see that (60) holds for the bounded Z ≥ 0.
Finally, take any bounded Z. Using the decomposition Z = Z+ − Z− and the fact that both Z+

and Z− are non-negative and bounded, implies that (60) holds for Z+ and Z−, and hence for Z.

All properties listed in Proposition 255 are extensions of corresponding properties of ordinary
random variables. Lemma 256 allows us to derive new ones.
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Proposition 257. Let X and Y be either both non-negative or satisfy E|X| <∞, E|Y | <∞, and
E|XY | <∞.

(i) If X is G-measurable, then E(XY |G) = XE(Y |G) a.s..

(ii) E(XE(Y |G)|G) = E(X|G)E(Y |G) a.s..

Proof. (i) Suppose first that both X and Y are non-negative. Let Z be any non-negative, G-
measurable random variable. Apply Lemma 256 with Z replaced by the non-negative random
variable ZX and X0 replaced by the G-measurable random variable E(Y |G), to get∫

Ω

ZXE(Y |G) dP =

∫
Ω

ZXY dP.(61)

Since XE(Y |G) is G-measurable random variable, then by Lemma 256 again, but this time applied
to Z itself and X0 replaced by XE(Y |G), we conclude that XE(Y |G) = E(XY |G).

Suppose now, E|X| <∞, E|Y | <∞, and E|XY | <∞. Let Z be any bounded, G-measurable
random variable. Define the bounded random variables Xn := X1{−n≤X≤n}. Apply Lemma 256
with Z replaced by the bounded random variable ZXn and X0 replaced by the G-measurable random
variable E(Y |G), to get ∫

Ω

ZXnE(Y |G) dP =

∫
Ω

ZXnY dP.

Since XnE(Y |G) is G-measurable random variable, then by Lemma 256 again, but this time applied
to Z itself and X0 replaced by XnE(Y |G), we conclude that

XnE(Y |G) = E(XnY |G) for all n = 1, 2, . . .(62)

Let n approach infinity. Since, limn→∞Xn(ω) = X(ω) for all ω ∈ Ω the left-hand side of (62)
approaches XE(Y |G). Since, |XnY | ≤ |XY | and |XY | is integrable, by Proposition 255, part (ix),
the right-hand side of (62) approaches E(XY |G).

(ii) Apply the first part, together with the fact that E(Y |G) is G-measurable.

Proposition 258. If G1 ⊆ G2 ⊆ F , then

(i) E(E(X|G1)|G2) = E(X|G1);

(ii) E(E(X|G2)|G1) = E(X|G1).

Proof. (i) By definition, E(X|G1) is G1-measurable and hence it is G2-measurable. Apply part (i) of
Proposition 257.

(ii) We check the two conditions in Definition 254. First, E(X|G1) is G1-measurable. Second,
for all C ∈ G1, we have ∫

C

E(X|G1) dP =

∫
C

X dP =

∫
C

E(X|G2) dP.

The first equality holds since E(X|G1) is the conditional expectation of X. The second, holds since
E(X|G2) is the conditional expectation of X and C ∈ G2 (recall that G1 ⊆ G2). This implies that
E(X|G1) is the conditional expectation of E(X|G2), given G1.
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Proposition 259. Suppose X is non-negative or integrable. Suppose σ(X) is independent of G (in
that case, we say that X and G are independent), then

E(X|G) = E(X).

Proof. The random variable E(X) (it is a constant) is G-measurable. For every C ∈ G, we have∫
C

X dP =

∫
Ω

X1C dP = E(X1C) = E(X)E(1C) = E(X)

∫
Ω

1C dP =

∫
C

E(X) dP,

where we used that the random variables X and 1C are independent. This shows that E(X) =
E(X|G) a.s.

We give another important characterization of conditional expectation.

Proposition 260. Suppose E|X|2 < ∞. The conditional expectation E(X|G) is the unique G-
measurable random variable (up to almost sure equality) that minimizes the expectation

E
(
(X −X0)2

)
over all X0 with E|X0|2 <∞.

Proof. Let Y be a G-measurable random variable with E|Y |2 < ∞. Let X0 := E(X|G). We want
to show that

E
(
(X −X0)2

)
≤ E

(
(X − Y )2

)
.(63)

In fact, we show the stronger identity from which the inequality follows

E
(
(X −X0)2

)
+ E

(
(X0 − Y )2

)
= E

(
(X − Y )2

)
.

Expanding all squares, gives

E(X2)− 2E(XX0) + E(X2
0 ) + E(X2

0 )− 2E(X0Y ) + E(Y 2) = E(X2)− 2E(XY ) + E(Y 2)

which simplifies to

E(XY ) + E(X2
0 ) = E(XX0) + E(X0Y )(64)

On the one hand, since X0 is G-measurable, we have

E(XX0) = E
(
E(XX0|G)

)
= E

(
X0E(X|G)

)
= E(X2

0 ).

On the other hand, since Y is G-measurable, we have

E(XY ) = E(E(XY |G)) = E(Y E(X|G)) = E(Y X0).

Substituting into (64), establishes its validity. Note that (63) holds with equality if and only if
E
(
(X0 − Y )2

)
= 0, that is, if and only if Y = X0 a.s.
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Proposition 260 says that for a random variable X with E|X|2 < ∞, the conditional ex-
pectation E(X|G) is precisely the best (least-squares) approximation of X by a G-measurable,
square-integrable, random variable.

We conclude this section with a case study, designed to better understand the role of condi-
tion (i) in Definition 254. Let X, Y : (Ω,F ,P)→ (R,B(R)) be two integrable random variables and
let G be a σ-algebra contained in F . Suppose that∫

C

X dP =

∫
C

Y dP for all C ∈ G.

Can we conclude that one of X and Y is the conditional expectation of the other?
The answer varies. If both X and Y are G-measurable, then by Exercise 252, we see that

X = Y a.s.. If X is G-measurable, but Y is not, then by Definition 254, we have that X = E(Y |G).
Similarly, if Y is G-measurable, but X is not, then Y = E(X|G). Finally, if both X and Y are not
G-measurable, then E(X|G) = E(Y |G).

6.1 Special case: conditional probability

In the definition of conditional expectation, we may specialize X to be an indicator random variable.
Thus, we arrive at the concept of conditional probability.

Definition 261. Let G ⊆ F be a σ-algebra and let A ∈ F . The conditional probability of A, given
G is defined by

P(A|G) := E(1A|G).

Thus, P(A|G) is a G-measurable, (a.s.) non-negative random variable, satisfying∫
C

P(A|G) dP =

∫
C

1A dP = P(A ∩ C).

Using properties of conditional expectation, we easily get the following properties of conditional
probability.

Proposition 262. Conditional probability satisfies the following properties.

(i) 0 ≤ P(A|G) ≤ 1 a.s.;

(ii) P(∅|G) = 0 a.s. and P(Ω|G) = 1 a.s.;

(iii) If A1 ⊂ A2, then P(A1|G) ≤ P(A2|G) a.s.;

(iv) For every sequence A1, A2, . . . of pairwise disjoint sets from F , we have

P
( ∞⋃
k=1

Ak|G
)

=
∞∑
k=1

P(Ak|G) a.s.
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The properties listed in Proposition 262 do not imply that A 7→ P(A|G)(ω) is a probability
measure on F for almost every ω ∈ Ω, because in each property, the exceptional P-null set depends
on the events A, A1, A2 etc., involved. The union of these (possibly uncountably many) null sets
may not be a null set.

For example, let {B1, B2, . . .} be a sequence of disjoint sets with P(Bk) > 0, for all k = 1, . . .,
and consider the σ-algebra G := σ(B1, B2, . . .). We know that since P(A|G) is G-measurable random
variable, it has the form

P(A|G) =
∞∑
k=1

bk1Bk

for some constants b1, b2, . . . Integrate both sides over the set Bk to find bk := P(A|Bk). That is,

P(A|G) =
∞∑
k=1

P(A|Bk)1Bk .

This formula, as should be expected, is just a special case of (59) for X = 1A.

6.2 Special case: conditional expectation of X given Y

Let X : (Ω,F ,P) → (R,B(R)) be an integrable random variable. In this subsection, we consider
the conditional expectation of X with respect to a σ-algebra generated by a measurable function
Y : (Ω,F ,P)→ (S,S).

We need the following theorem, a special case of which appeared on Problem Set 4 (see Problem
(viii) there). Note that the theorem is purely functional one and has nothing to do with probability.

Theorem 263 (Factorization lemma). Let X : Ω → (R,B(R)) and Y : Ω → (S,S) be two
functions on the set Ω, where (S,S) is a measurable space. Then, σ(X) ⊆ σ(Y ) if and only if there
is a measurable function g : (S,S)→ (R,B(R)), such that

X = g ◦ Y.

If X is non-negative, then g is non-negative.

Note that the function g is uniquely determined on the set Y (Ω) ⊆ S. Indeed, suppose there
is another function h : (S,S) → (R,B(R)) satisfying X = h ◦ Y . For every y ∈ Y (Ω) there is an
ω ∈ Ω such that Y (ω) = y. Then g(y) = g(Y (ω)) = X(ω) = h(Y (ω)) = h(y).

Theorem 264. Let X : (Ω,F ,P) → (R,B(R)) be an integrable random variable and let Y :
(Ω,F ,P)→ (S,S) be a measurable map. There is an integrable function g : (S,S,PY )→ (R,B(R)),
such that

E(X|Y ) = g ◦ Y.(65)

In addition, g satisfies ∫
B

g dPY =

∫
{Y ∈B}

X dP for all B ∈ S.(66)

Conversely, if g : (S,S,PY )→ (R,B(R)) is an integrable function that satisfies (66), then

E(X|Y ) = g ◦ Y a.s.
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Proof. Since, by definition, E(X|Y ) is σ(Y )-measurable, the factorization lemma implies that there
is a measurable function g : (S,S)→ (R,B(R)), such that (65) holds.

To show that g is integrable, apply the change of variables formula to the non-negative function
|g|, as follows: ∫

S

|g| dPY =

∫
Ω

|g(Y )| dP =

∫
Ω

|E(X|Y )| dP <∞,

since E(X|Y ) is integrable whenever X is.
Next, for every B ∈ S, by the change of variables formula again, we have∫

B

g dPY =

∫
S

1Bg dPY =

∫
Ω

(1B ◦ Y )(g ◦ Y ) dP =

∫
{Y ∈B}

g ◦ Y dP

=

∫
{Y ∈B}

E(X|Y ) dP =

∫
{Y ∈B}

X dP,

establishing (66).
Conversely, suppose g : (S,S,PY )→ (R,B(R)) is an integrable function satisfying (66). Clearly,

g ◦ Y is σ(Y )-measurable. Also, for all B ∈ S, by the change of variable formula, we have∫
{Y ∈B}

g ◦ Y dP =

∫
B

g dPY =

∫
{Y ∈B}

X dP,

which by definition of σ(Y ) is just∫
C

g ◦ Y dP =

∫
C

X dP for all C ∈ σ(Y ).

This means g ◦ Y = E(X|Y ) a.s..

We know that the function g in (65) is uniquely determined on the set Y (Ω). Notice that this
is the same as saying that g is uniquely determined PY -almost everywhere, since PY (Y (Ω)) = 1.

Definition 265. Let X : (Ω,F ,P) → (R,B(R)) be an integrable random variable and let Y :
(Ω,F ,P)→ (S,S) be a measurable map. Let g : (S,S,PY )→ (R,B(R)) be the integrable function
satisfying (65). For every y ∈ S, we define

E(X|Y = y) := g(y)

and call it the conditional expectation of X given that Y = y.

Note that, while E(X|Y ) is a random variable, E(X|Y = y) is a number. By the comment
before the definition, the function y ∈ S 7→ E(X|Y = y) ∈ R is uniquely defined only on the set
Y (Ω), which is enough because it has PY -measure one. By (65), for every ω ∈ Ω, we have

E(X|Y )(ω) = g(Y (ω)) = E(X|Y = Y (ω)).(67)

In particular, if Y (ω1) = Y (ω2), then E(X|Y )(ω1) = E(X|Y )(ω2). That is, E(X|Y ) is constant on
every set {ω ∈ Ω : Y (ω) = y}.
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Suppose that the singleton set {y} is an element of S for some y ∈ S. Then, according to (66),
applied with B = {y}, we have

g(y)P(Y = y) =

∫
{Y=y}

X dP.

If, in addition, P(Y = y) = PY ({y}) > 0, we obtain

E(X|Y = y) = g(y) =
1

P(Y = y)

∫
{Y=y}

X dP = E(X|{Y = y}).

This is precisely formula (54) with B = {Y = y}. This shows that, if {y} ∈ S and P(Y = y) > 0,
the two notations E(X|Y = y) and E(X|{Y = y}) stand for the same thing and can be used
interchangeably.

Example 266. Let I be a finite of countably infinite index set, that is I = {1, 2, . . . , n} or I =
{1, 2, . . .}. Let {Bi : i ∈ I} be sets in F with P(Bi) > 0 for all i ∈ I. Suppose the sets {Bi : i ∈ I}
are disjoint and their union is Ω.

Consider the measurable space (S,S) := (I, 2I) and the measurable function Y : (Ω,F ,P) →
(I, 2I) defined by Y (ω) = i for all ω ∈ Bi. We know that σ(Y ) = σ(Bi : i ∈ I) and that

E(X|Y ) =
∞∑
i=1

E(X|Bi)1Bi .

The relevant g is given by g(i) = E(X|Bi) for all i ∈ I.

We conclude with another very useful and intuitive result facilitating the computation of con-
ditional expectation. Try to verify this result independently, when X and Y have joint density. It
is much easier in this case.

Proposition 267. Suppose X and Y are independent random variables. Let h : (R2,B(R2)) →
(R,B) be measurable and either non-negative or E|h(X, Y )| <∞. Then

E(h(X, Y )|Y )(ω) = E(h(X, Y (ω))) for almost all ω ∈ Ω.(68)

Proof. Recall that

Eh(X, Y ) =

∫
R2

h(x, y) dP(X,Y )

and since X and Y are independent, we have P(X,Y ) = PX × PY . So, by the Fubini’s theorem, we
have

Eh(X, Y ) =

∫
R2

h(x, y) dP(X,Y ) =

∫
R

(∫
R
h(x, y) dPX(x)

)
dPY (y)

=

∫
R

(∫
Ω

h(X, y) dP
)
dPY (y) =

∫
R
Eh(X, y) dPY (y).
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The first part of Fubini’s theorem, says that the function g(y) := Eh(X, y) exists for PY -almost
all y ∈ R and that (if we define g(y) := 0 for those y’s for which Eh(X, y) does not exists) it is
measurable (and non-negative or integrable). Hence, g(Y ) is σ(Y )-measurable.

Let C ∈ σ(Y ), that is C = {Y ∈ B} for some B ∈ B(R). We have∫
C

h(X, Y ) dP =

∫
Ω

h(X, Y )1C dP =

∫
Ω

h(X, Y )1B(Y ) dP =

∫
Ω

h(X, Y )1R×B(X, Y ) dP

=

∫
R2

h(x, y)1R×B(x, y) dP(X,Y ),

where we used the change of variable formula. Since X and Y are independent random variables,
we know that P(X,Y ) = PX × PY . So, we can continue using the Fubini’s theorem and then twice
the change of variable formula∫

C

h(X, Y ) dP =

∫
R

(∫
R
h(x, y)1R×B(x, y) dPX

)
dPY =

∫
R
E(h(X, y)1R×B(X, y)) dPY

=

∫
R
E(h(X, y)1B(y)) dPY

=

∫
R
g(y)1B(y) dPY

=

∫
Ω

g(Y )1B(Y ) dP

=

∫
Ω

g(Y )1C dP

=

∫
C

g(Y ) dP.

By the second part of Definition 254, this shows

E(h(X, Y )|Y ) = g(Y ) almost surely.

Evaluate both sides of this equality at ω to see that this is the same as (68).

6.2.1 The case when X and Y have joint density

In this section, we assume that X, Y : (Ω,F ,P) → (R,B(R)) are random variables and X is
integrable. (That is, we consider the special case of the previous section, when (S,S) = (R,B(R)))

In addition, we suppose that X and Y are jointly continuously distributed. That is, there is a
non-negative function f : R2 → R such that

P(X ≤ x, Y ≤ y) =

∫ y

−∞

∫ x

−∞
f(s, t) dsdt.

In that case, Y also has density

fY (y) =

∫ ∞
−∞

f(x, y) dx.

The goal of this section is to prove the following theorem.
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Theorem 268. If fY (y) > 0 for all y ∈ R, then the following formula holds.

E(X|Y ) =
1

fY (Y )

∫ ∞
−∞

xf(x, Y ) dx P-almost surely.

In particular, we have

E(X|Y = y) =
1

fY (y)

∫ ∞
−∞

xf(x, y) dx for PY -almost all y ∈ R.(69)

Proof. The second formula follows from the first together with (67).
To prove the first formula, start by recalling that P(X,Y ) denotes the measure induced by

(X, Y ) : (Ω,F ,P)→ (R2,B(R2)) on B(R2). By the change of variable theorem, for every B ∈ B(R).
we have∫

{Y ∈B}
X dP =

∫
Ω

X1B(Y ) dP =

∫
Ω

X1R×B(X, Y ) dP =

∫
R2

x1R×B(x, y) dP(X,Y )(x, y)

=

∫
R×B

x dP(X,Y )(x, y) =

∫
R×B

xf(x, y) d(x, y).

The integration in the last integral is with respect to the Lebesgue measure on R2. Since X is
integrable, we may repeat the same calculations with |X| in stead of X and B = R, to conclude
that ∫

R×R
|x|f(x, y) d(x, y) <∞.

The Lebesgue measure on R2 is a product measure. (It is the product of the Lebesgue measure on
R and the Lebesgue measure on R.) Thus, by Fubini’s theorem, we have∫

{Y ∈B}
X dP =

∫
R×B

xf(x, y) d(x, y) =

∫
B

(∫
R
xf(x, y) dx

)
dy.

Define the function

g(y) :=
1

fY (y)

∫ ∞
−∞

xf(x, y) dx.

We continue, using the change of variable formula in the third equality:∫
{Y ∈B}

X dP =

∫
B

g(y)fY (y) dy =

∫
R

1B(y)g(y)fY (y) dy =

∫
R

1B(y)g(y) dPY (y) =

∫
B

g(y) dPY (y)

=

∫
{Y ∈B}

g(Y ) dP,

that is, we have E(X|Y ) = g(Y ).

Recall that if fX(x) is the density of X, then

E(X) =

∫ ∞
−∞

xfX(x) dx.
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In order to extend this analogy, if fY (y) > 0 for all y ∈ R, one defines the function

f(x|y) :=
f(x, y)

fY (y)
,

called the conditional density of X given that Y = y. With it, formula (69) becomes

E(X|Y = y) =

∫ ∞
−∞

xf(x|y) dx.

You may want to check (and it is simple) that for every y, the function x 7→ f(x|y) is indeed a
density function. If you want to abuse notation even further, you may say that ‘X|Y = y’ is the
random variable having density x 7→ f(x|y).
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7 Appendix A: Functions of independent random variables

The lemmas in this Appendix are needed in for the proof of Theorem 183. The first result is a
corollary from Theorem 172.

Corollary 269. Suppose Fi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ mi are independent σ-algebras. Let Gi :=
σ(∪mij=1Fi,j) for i = 1, . . . , n. Then G1, . . . ,Gn are independent σ-algebras.

Proof. We want to use Theorem 172. The claim would be trivial if ∪mij=1Fi,j were closed under
intersection, but it need not be so. Let Ai be the collection of sets of the form ∩mij=1Ai,j where
Ai,j ∈ Fi,j. Clearly, Ai ⊆ σ(∪mij=1Fi,j). Now Ai is closed under intersection, contains Ω, and contains
∪mij=1Fi,j. Hence σ(Ai) = Gi, for i = 1, . . . , n. Since the collections of sets Ai, i = 1, 2, . . . , n are
independent, so are Gi, for i = 1, . . . , n, by Theorem 172.

Lemma 270. Let X1, . . . , Xn be random variables on (Ω,F ,P) and let Fi := σ(Xi), i = 1, . . . , n
be the σ-algebras that they generate. Consider the function (X1, . . . , Xn) : Ω→ (Rn,B(Rn)). Show
that the σ-algebra that it generates on Ω is

σ((X1, . . . , Xn)) = σ(∪ni=1Fi).

Proof. Since the rectangles A1 × · · · × An, Ai ∈ B(R), generate B(Rn) their preimages under
(X1, . . . , Xn), i.e. ∩ni=1X

−1
i (Ai), generate σ((X1, . . . , Xn)). But X−1

i (Ai) ∈ Fi so ∩ni=1X
−1
i (Ai) ∈

σ(∪ni=1Fi) and thus σ((X1, . . . , Xn)) ⊆ σ(∪ni=1Fi).

For the opposite inclusion, we show that Fi ⊆ σ((X1, . . . , Xn)) for all i = 1, . . . , n, thus σ(∪ni=1Fi) ⊆
σ((X1, . . . , Xn)). Indeed, the preimage of the rectangle A1 × Ω × · · · × Ω under (X1, . . . , Xn)
is X−1

1 (A1) which is in σ((X1, . . . , Xn)). But the sets {X−1
1 (A1) : A1 ∈ B(R)} generate F1 so

F1 ⊆ σ((X1, . . . , Xn)). To show that the other Fi’s are in σ((X1, . . . , Xn)) is analogous.

Lemma 271. Suppose Xi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ mi are independent random variables. Suppose
the functions fi : Rmi → R are measurable, and let Yi := fi(Xi,1, . . . , Xi,mi) for i = 1, . . . , , n. Then
the random variables Y1, . . . , Yn are also independent.

Proof. Let Fi,j := σ(Xi,j) and let Gi := σ(∪mij=1Fi,j) for i = 1, . . . , n. Then by Corollary 269,
G1, . . . ,Gn are independent σ-algebras. It can be shown, using Lemma 270, that σ(Yi) ⊆ Gi hence
σ(Y1), . . . , σ(Yn) are independent σ-algebras. The latter fact is equivalent to Y1, . . . , Yn being inde-
pendent random variables.
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