
Zinovi Krougly 

ACCURACY AND PRECISION REQUIREMENTS IN PROBABILITY 

MODELS 

RT&A, No 1 (61) 
Volume 16, March 2021 

 

133 

 

Accuracy and Precision Requirements in Probability 

Models 
 

Zinovi Krougly 
• 

Department of Applied Mathematics, 

Western University, London, Ontario, Canada N6A5B7 

e-mail: zkrougly@uwo.ca 

 

 

Abstract 

 
Numerical Laplace transform and inverse Laplace transform is a challenging task in queueing 

theory and others probability models. A double transformation approach is used to find stable, 

accurate, and computationally efficient methods for performing the numerical Laplace and 

inverse Laplace transform. To validate and improve the inversion solution obtained, direct 

Laplace transforms are taken of the numerically inverted transforms to compare with the original 

function. Algorithms provide increasing accuracy as precision level increases. The most 

promising methods were applied to computational probability models, when there are no closed-

form solutions of the Laplace transform inversion.The computational efficiency compared to 

precision levels is demonstrated for different service models in 𝑀/𝐺/1 queuing systems. 
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1  Introduction 
 

Numerical inverting of Laplace transform to get various performance measures is an 

important techniques in queueing theory and related stochastic models [1], [6], [16]. Laplace 

transform techniques may simplify the task of solving systems of differential equations [5], and can 

be considered in terms of typical applications [4], [8]. 

Inverting the Laplace transform is a challenging task. This challenge faced in many 

application areas including the finding of various performance measures in queueing and related 

probability models [1], [6], [16]. 

Several algorithms have been proposed for numerical Laplace transforms inversion, see for 

instance the surveys in [4] and [13]. The Gaver-Stehfest algorithm [18] is one of the most powerful 

algorithms for this purpose. The convergence of this algorithm has been examined in [14]. 

Unfortunately despite its theoretical advantages, in many practical applications, numerical 

approximation often encounters numerical accuracy problems [1], [9], [11], [12], [13], [15]. As such, 

small rounding errors in computation in standard double arithmetic may significantly corrupt the 

results, rendering these algorithms impractical to apply. With extended precision, we are able to 

add additional significant figures, and produce results that converge to the solution. 

We used C++ and Matlab numerical class library [10], [12] and applied ARPREC, Arbitrary 

precision computation package [3], for numerical implementation of Laplace transform and 

inversions. 

In [9] has been introduced double transformation approach which perform 

computationally efficient methods for inverse Laplace transform. Challenging numerical examples 

involving periodic and oscillatory functions, are investigated. It was found that the number of 
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expansion terms and precision level selected must be in a harmonious balance in order for correct 

and stable results to be obtained. In this paper we examine the stability and accuracy of the 

Laplace transform inversion by the Gaver-Stehfest algorithm [18]. The numerical results were first 

compared to known analytical solutions. The most interesting methods were then applied to 

computational probability models, where the solution requires numerical Laplace transform 

inversion. For computation efficiency a composite Simpson’s rule is implemented for the 

numerical direct Laplace transform [9]. The numerical examples illustrate the computational 

accuracy and efficiency of the direct Laplace transform and its inverse due to increasing precision 

level (N) and the number of terms (L) included in the expansion. The remainder paper is organized 

as follows. In general, we use lowercase letters to denote the function 𝑓(𝑡) to be transformed, and 

the uppercase letter 𝐶(𝑠) to denote its Laplace transform, for example ℒ{𝑓(𝑡)} = 𝐶(𝑠). If the closed 

form of 𝐶(𝑠) inversion is unknown, we compare the original 𝐶(𝑠) and numerical solution �̃̃�(𝑠) 

after double transformation. The results are illustrated in the plots and error estimations. 

In Section 2, a brief description and notation of the underlying theory is given. In section 3 

introduced numerical computation of the direct Laplace transform by composite Simpson’s rule. In 

section 4 defined numerical Laplace double transformation technique. Section 5, 6 and 7 illustrated 

challenges numerical examples and the role of high precision arithmetic in application for 

probability models. Numerical Laplace transform and their inverses, particular for applications in 

M/D/1 and M/G/1 queue, are given in sections 8, 9 and 10. We examine the stability and accuracy 

of the Laplace transform inversion and the role that the number of expansion terms and precision 

level play in the numerical approximation. We discuss the numerical double transformation 

technique to confirm agreement of the numerical inversion results. Section 11 demonstrates double 

transformation technique and precision requirement for approximation of waiting time 

distribution in M/D/1 queue. 

 

 

2  Numerical Laplace transforms and their inverses 
   

Let 𝑓(𝑡) be a function defined for 𝑡 ≥ 0. Then the integral 

 

 ℒ{𝑓(𝑡)} = ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡.   (2.1) 

 

 is said to be the Laplace transform of 𝑓(𝑡), provided the integral converges. The symbol ℒ is the 

Laplace transformation operator, which act on the function 𝑓(𝑡) and generates a new function, 
𝐶(𝑠) = ℒ{𝑓(𝑡)}.  

If 𝐶(𝑠) represents the Laplace transform of a function 𝑓(𝑡), that is, ℒ{𝑓(𝑡)} = 𝐶(𝑠), then 

𝑓(𝑡) is the inverse Laplace transform of 𝐶(𝑠) and 𝑓(𝑡) = ℒ−1{𝐶(𝑠)}. The inverse Laplace transform 

ℒ−1{𝐶(𝑠)} is uniquely determined in the sense that if 𝐶(𝑠) = 𝐺(𝑠) and 𝑓(𝑡) and 𝑔(𝑡) are continuous 

functions, then 𝑓(𝑡) = 𝑔(𝑡).  

The Laplace transform can be inverted either algebraically or numerically. The notation 

𝑓(𝑡) used for the numerical approximation to 𝑓(𝑡) (numerical inversion of the Laplace transform 

𝐶(𝑠)), and �̃�(𝑠) for the numerical Laplace transform of 𝑓(𝑡). 

If 𝑡 is the random variable with the probability density function 𝑓 and the cumulative 

distribution function 𝐹, this gives 

 

 𝐶(0) = ∫
∞

0
𝑒−𝑠𝑡𝑑𝐹(𝑡) = ∫

∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = 1 (2.2) 
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3  Numerical computation of the direct Laplace transform 
  

To validate and improve the inversion solution obtained by Gaver-Stehfest algorithm, the 

numerical direct Laplace transform are used for this inversion, to compare it with the original 

Laplace transform. To insure high accuracy of approximation, numerical direct Laplace transform 

are implemented [9] by the composite Simpson’s Rule [2]. We used a composite Simpson’s Rule 

calculation with large number of subintervals to ensure high accuracy. 

The Laplace transform of a function 𝑓(𝑡) is defined by (2.1) on the interval [0, ∞]. The 

problem of an infinite upper limit of integration may be removed by the substitution 𝑡 =

−ln(𝑢), 𝑑𝑡 = 𝑢−1𝑑𝑢 which replaces infinite by finite limits. 

When 𝑡 = 0, 𝑢 = 1 and when 𝑡 → ∞, 𝑢 → 0. Then  

 

 ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = ∫

1

0
𝑒ln(𝑢𝑠)𝑓(−ln(𝑢))𝑢−1𝑑𝑢 = ∫

1

0
𝑢𝑠−1𝑓(−ln(𝑢))𝑑𝑢 (3.1) 

  

The behaviour of the function to be transformed, needs to be considered at the new limits, and the 

exponential function inside the integral requires special examination in terms of high accuracy. 

 

3.1  Compute the direct Laplace transform by composite Simpson’s rule 

 

For integration over the interval [𝑎, 𝑏], an even 𝑛 is chosen such that the function is 

adequately smooth over each subinterval [𝑥𝑗 , 𝑥𝑗+1] where 𝑥𝑗 = 𝑎 + 𝑗ℎ for all 𝑗 ∈ {0,1,2, . . . , 𝑛} with 

ℎ =
𝑏−𝑎

𝑛
. In particular, 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏. Then, the composite Simpson’s Rule is given by [2]:  

 

 ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈

ℎ

3
[𝑓(𝑥0) + 2 ∑𝑛/2−1

𝑗=1 𝑓(𝑥2𝑗) + 4 ∑𝑛/2
𝑗=1 𝑓(𝑥2𝑗−1) + 𝑓(𝑥𝑛)] (3.2) 

 

 Applying this to the transformed integrand from the equation (3.1) we get 𝑢𝑗 = 𝑗ℎ for all 

𝑗 ∈ {0,1,2, . . . , 𝑛} with ℎ =
1

𝑛
. Therefore,  

 𝐶(𝑠) ≈
1

3𝑛
[0𝑠−1𝑓(−ln(0)) + 2 ∑𝑛/2−1

𝑗=1 𝑢2𝑗
𝑠−1𝑓(−ln(𝑢2𝑗)) + 4 ∑𝑛/2

𝑗=1 𝑢2𝑗−1
𝑠−1 𝑓(−ln(𝑢2𝑗−1)) + 1𝑠−1𝑓(−ln(1))]

 (3.3) 

 

The basic Simpson’s rule formula divides the interval [𝑎, 𝑏] of integration into two pieces. 

To apply the composite Simpson’s rule, the interval [𝑎, 𝑏] must be divided into an even number of 

subintervals 𝑛 = 2𝑚. Then ℎ =
𝑏−𝑎

𝑛
=

𝑏−𝑎

2𝑚
. 

 

 

4  Numerical Laplace double transformation technique 
 

We define the following double transformation technique for the Laplace transform of the 

inversion [9]:  

 

 �̃̃�(𝑠) = ℒ{ℒ−1{𝐶(𝑠)}} (4.1) 

 

 This definition will be used to estimate the accuracy of the Laplace transform inversion, when its 

closed-form is unknown. 

After applying the Laplace transform, the problem is said to be in the Laplace domain and 

it is denoted as a function of 𝑠 not 𝑡. While calculations might be easier in the Laplace domain, 

leaving the solution in the Laplace domain is typically not useful. To transform the result back into 

the time-domain, inverse Laplace transforms are used.  
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When the analytical answer is unknown, it is difficult to know whether or not the 

numerical inversion results are accurate. Moreover, it is hard to judge whether or not changes to 

the method improve or degrade the inversion estimate. 

The following steps are used:   

    1.  Begin with the Laplace domain function 𝐶(𝑠).  

    2.  Compute the numerical inversion using some set of parameters. In this case, we will 

control precision level and the number of terms in the approximation. Setting precision level to 𝑁1, 

we get  

 𝑓𝑁1
(𝑡) = ℒ𝑁1

−1{𝐶(𝑠)} (4.2) 

  

    3.  Take the Numerical Laplace Transform of 𝑓𝑁1
(𝑡), resulting in  

 

 ℒ{𝑓𝑁1
(𝑡)} = �̃̃�𝑁1

(𝑠) (4.3) 

  

    4.  Compare the functions 𝐶(𝑠) and �̃̃�𝑁1
(𝑠), and define the error-function as:  

 

 휀𝑁1
(𝑠) = |𝐶(𝑠) − �̃̃�𝑁1

(𝑠)| (4.4) 

  

    5.  Repeat the process with some other precision level 𝑁2.  

    6.  Compare 휀𝑁1
(𝑠) and 휀𝑁2

(𝑠). Precision level that provides lower errors is superior, and 

the difference between the error functions can provide a way of quantifying the accuracy 

improvement gained from increasing precision level.  

  

To validate and improve the inversion solution obtained by Gaver-Stehfest algorithm, the 

numerical direct Laplace transform are used for this inversion, to compare it with the original 

Laplace transform. To insure high accuracy of approximation, numerical direct Laplace transform 

are implemented [9] by the composite Simpson’s Rule [2]. We used a composite Simpson’s Rule 

calculation with large number of subintervals to ensure high accuracy. 

 

 

5  Testing numerical inversion algorithms in arbitrary precision 
 

This demonstration applies the inverse Laplace transforms of the test functions (Table 1) to 

various type numerical accuracy. 

Given 𝐶(𝑠) we want to find 𝑓(𝑡) such that the following must hold:  

 

 𝐶(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡. (5.1) 

 

 

Table  1: Laplace and inverse transforms for test functions used in the numerical calculations  
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 Example 1. Find 𝑓01 = ℒ−1{𝐶01(𝑠)}, where  

 

 𝐶01(𝑠) = 1(1 + 𝑠/𝛽)𝛼    (𝛽 > 0and𝛼 > 0) (5.2) 

 

 then we know that  

 

 𝑓01(𝑡) = 𝛽𝛼Γ(𝛼)𝑡𝛼−1𝑒−𝑡𝛽 (5.3) 

 

 where Γ(𝛼) is the gamma function. 

We are reached higher accuracy for the numerical inverting of the function 𝐶01(𝑠) = 1(1 +

𝑠/𝛽)𝛼 by multiple precision calculations. The exact inversion is 𝑓01(𝑡) = 𝛽𝛼Γ(𝛼)𝑡𝛼−1𝑒−𝑡𝛽. The 

results shown in Fig.1 correspond to the parameters 𝛽 = 1 and 𝛼 = 20. Fig. 1 illustrate a poor 

approximation for double precision level (N = 16). The numerical inversion evaluated also with 

precision level and the number of terms (𝑁, 𝐿) = (32, 32). Two screenshots are presented in Fig. 2 for 

the same function, as in Fig. 1. We see significant improvements in accuracy as precision level 

increased to 256, at order at least roughly 10−73. 

 

 
 

Figure  1: Inverse Laplace transform of the function 𝐶01(𝑠) = 1/(1 + 𝑠/𝛽)𝛼 evaluated in double and 

multiple precision. The exact and numerical solution with precision level N = 32 are 

indistinguishable to the eye 

   

 

 

 
   

Figure  2: Two screenshots for inverse Laplace transform of the function 𝐶01(𝑠) = 1/(1 + 𝑠/𝛽)𝛼 

evaluated in double and multiple precision 
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Numerous examples exists where there are no closed-form solution of the Laplace 

transform inversion. For such problems we compare numerical solution �̃̃� (s) after double 

transformation technique (4.1) with the original Laplace transform 𝐶(𝑠). 

First we illustrate that double transformation technique in Fig. 3 for the gamma 

distribution with 𝛼 = 1 (exponential distribution) and 𝛼 = 2.5. Both Laplace transform and inverting 

worked extremely well. The errors 𝐸 are the following: 2.5 × 10−5 and 7.45 × 10−4 corresponding 

to the plots on the left and the right sides. 

 

 

 

   

  

Figure  3: Given the original Laplace transform 𝐶01(𝑠) = 1/(1 + 𝑠/𝛽)𝛼. Compute its numerical 

approximation �̃̃�01(𝑠) = ℒ{ℒ−1{1/(1 + 𝑠/𝛽)𝛼}} evaluated for 𝛽 = 1.0 and 𝛼 = 1.0 (left plot) and 𝛼 = 

2.5 (right plot). The original and numerical solution are indistinguishable to the eye 

 

 

6  Numerical inverse Laplace transform of the incomplete Gamma function 
 

The folloving example is quite different from the previous as we cannot express the 

inverse Laplace transform analytically. The lower incomplete gamma function 𝑃 and the upper 

incomplete gamma function 𝑄 are defined by  

 𝑃(𝛼, 𝑥) =
1

Γ(𝛼)
∫

𝑥

0
𝑡𝛼−1𝑒−𝑡𝑑𝑡 (6.1) 

  

 𝑄(𝛼, 𝑥) =
1

Γ(𝛼)
∫

∞

0
𝑡𝛼−1𝑒−𝑡𝑑𝑡 (6.2) 

 

We used the normalized definition of the incomplete gamma function, where 𝑃(𝛼, 𝑥) +

𝑄(𝛼, 𝑥) = 1 

 Example 2. We determine 𝑓02(𝑡) = ℒ−1{𝐶02(𝑠)} and �̃�02(𝑠) = ℒ{ℒ−1{𝐶02(𝑠)}}, where  

 

 𝐶02(𝑠) = 𝑃(𝛼, 𝑠) =
1

Γ(𝛼)
∫

𝑠

0
𝑡𝛼−1𝑒−𝑡𝑑𝑡, (6.3) 

 

We obtained the approximation (Fig. 4) for the inverting of the function (6.3) with the 

parameters 𝛼 = 1.0. As easy to prove, the exact solution of inverse Laplace transform is −𝛿(𝑡 − 1), 

where 𝛿(𝑡) is the Dirac delta function (7.1).  
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Improvements can be effected with increasing the number of precision 𝑁 from double 

precision (left plot) to precision level 32 and 64 (right plot). We use the number of terms in 

approximation equals to precision level, 𝐿 = 𝑁. To obtain a more accurate estimate precision levels 

500 and 1000 used as displayed in (Fig. 5). 

 
 

Figure  4: Inverse Laplace transform of the function 𝐶02(𝑠) =
1

Γ(𝛼)
∫

𝑠

0
𝑡𝛼−1𝑒−𝑡𝑑𝑡 in double precision 

(left plot) and precision level 32 and 64 (right plot). Note that two plots use different scale 

 

 
 

Figure  5: Inverse Laplace transform of the function 𝐶02(𝑠) =
1

Γ(𝛼)
∫

𝑠

0
𝑡𝛼−1𝑒−𝑡𝑑𝑡 in precision level 512 

(left plot) and 1000 (right plot). Note that two plots use different scale 

   

 

The original 𝐶02(𝑠) compares with numerical solution �̃̃�02(𝑠) = ℒ{ℒ−1{𝐶02(𝑠)}} evaluated 

after double transformation. So, 𝑓02(𝑡) computed as numerical inversion of 𝐶02(𝑠). Then Laplace 

transform �̃̃�02(𝑠) of 𝑓02(𝑡) compares with the original function 𝐶02(𝑠). The original Laplace 

transform 𝐶02(𝑠) (Exact) and numerical approximation (Numerical) of this double transformation 

seen in Fig. 6. The following parameters used: 𝛼 = 0.5, 1, 3 and 5.  
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Figure  6:  Given the incomplete gamma function 𝐶02(𝑠) =

1

Γ(𝛼)
∫

𝑠

0
𝑡𝛼−1𝑒−𝑡𝑑𝑡. Compute its numerical 

approximation �̃̃�02(𝑠) = ℒ{ℒ−1{
1

Γ(𝛼)
∫

𝑠

0
𝑡𝛼−1𝑒−𝑡𝑑𝑡}}  for values 𝛼 = 0.5, 1, 3 and 5.   

 

7  Approximation of the Dirac delta function 
 

The Dirac delta function [5] can be loosely thought of as a function on the real line which is 

zero everywhere except at the origin, where it is infinite,  

 

 𝛿(𝑡) = (
+∞    (𝑡 = 0)
0    (𝑡 ≠ 0)

 (7.1) 

 

and which is also constrained to satisfy the identity  

 

 ∫
∞

−∞
𝛿(𝑡)𝑑𝑡 = 1 (7.2) 

 

This is merely a heuristic characterization. The Dirac delta is not a function in the 

traditional sense as no function defined on the real numbers has these properties. This function can 

be rigorously defined either as a distribution or as a measure. 

Noting that the Dirac delta function can be defined as the limit (in the sense of 

distributions) of the sequence of zero-centered normal distributions, 

 

 𝛿𝑎(𝑡) =
1

𝑎√𝜋
𝑒−𝑡2/𝑎2

, (7.3) 

 

as 𝑎 → 0. 

By analytic continuation of the Fourier transform, the Laplace transform of the delta 

function is found to be [5], 

 

 ∫
∞

0
𝑒−𝑠𝑡𝛿(𝑡 − 𝑎)𝑑𝑡 = 𝑒−𝑎𝑠, (7.4) 

 consistent with the definition of the Laplace transform of 𝛿(𝑡 − 𝑎) as 𝑒−𝑎𝑠. 

 Example 3. Find 𝑓03(𝑡) = ℒ−1{𝐶03(𝑠)} and �̃�03(𝑠) = ℒ{ℒ−1{𝐶03(𝑠)}}, where  

 

 𝐶03(𝑠) = exp(−𝑎𝑠𝛼)    (𝑎 > 0and𝛼 ∈ (0,1]) (7.5) 

 

 The expression of the inverse Laplace transform, in terms of standard mathematical functions, is 

unknown. We can handle the inverse Laplace transform and double transformation technique, 

including Dirac delta function and its shifted form.  
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So, if 𝛼 = 1, then 𝑓(𝑡) = 𝛿(𝑡 − 𝑎), where 𝛿(𝑡) is the Dirac delta function [5]. 

 

Mathematica gives for 𝑎 = 0.5 and 𝛼 = 0.5  

 

 ℒ−1{exp(−𝑎𝑠𝛼)} =
0.14104739588693907exp(−0.0625/𝑡)

𝑡3/2 . (7.6) 

 

Numerical inversion of Laplace transform 𝐶03(𝑠) = 𝑒−𝑎𝑠 is known to be equivalent to the 

approximation of the Dirac delta function. Fig. 7 illustrates the approximation of the Dirac delta 

function with parameter 𝑎 = 1 evaluated in double precision. On the left plot used equal number of 

terms and precision level 𝐿 = 𝑁. This approximation take negative values while the delta function 

is strictly positive. On the right plot 𝑁 = 16 and 𝐿 = 64. When looking at numerical inversion, it is 

important to note the accuracy with a varying number of expasion terms and precision level. We 

compare the inverses using Gaver-Stehfest implementation and observe the accuracy of the 

inversions as we increase the number of the expansion terms and precision level. However, there 

exists a limit to adding additional terms [12]. As we increase the number of expansion terms using 

𝐿 = 64 we quickly discover that the numerical inversion becomes unstable and our function is 

dominated by numerical error (right plot). 

 

 
 

Figure  7: Approximation of the Dirac delta function, 𝑎 = 1, in double precision. Precision level 𝑁 

and the number of expansion terms 𝑁 are (16, 16) (left plot) and (16, 64) (right plot) 

   

 

Extended precisions (Fig. 8) allow to combat the numerical limitation that we experience 

when dealing with double precision. Thus, we can use a larger number of terms. These examples 

use equal number of terms and precision level 𝐿 = 𝑁. To improve the accuracy of the 

approximation we extended precision level to 32, 64, 128, 512 and 1000. 
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Figure  8: Approximation of the Dirac delta function, 𝑎 = 1. Precision level 𝑁 and number of terms 

𝐿 are equal, 𝑁 = 𝐿: 32, 64, 128, 256, 512 and 1000. Note the difference in scales seen in four plots 

 

 

In Fig. 9 are shown Inverse Laplace transform (left plot) and Numerical Laplace double 

transformation (right plot) of 𝐶03(𝑠) = exp(−𝑎𝑠𝛼) evaluated for 𝑎 = 0.5 and 𝛼 = 0.5. The analytical 

solution of the inverse Laplace transform are given by (7.6). The approximation are given in double 

precision, and the errors are: 𝐸 = 6.6 × 10−4 and 1.3 × 10−2 corresponding to the left and to the 

right plot. In Fig. 10 presented the screenshot for Laplace transform inversion of 𝐶03(𝑠) =

exp(−𝑎𝑠𝛼) evaluated for the same 𝑎 and 𝛼 with precision level 64. Note the accuracy of 

approximation improved at the order of at least 10−18. 
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Figure  9: Given the original Laplace transform 𝐶03(𝑠) = exp(−𝑎𝑠𝛼). Compute its inverse Laplace 

transform (left plot) and numerical approximation �̃̃�03(𝑠) = ℒ{ℒ−1{exp(−𝑎𝑠𝛼)}} (right plot) 

   

 
Figure  10: The screenshot for inverse Laplace transform of the function 𝐶03 = exp(−𝑎𝑠𝛼), 

evaluated for 𝑎 = 0.5 and 𝛼 = 0.5 with precision level 64 

   

Tab. 2 displays numerical error 휀03(𝑠) = |𝐶03(𝑠) − �̃̃�03(𝑠)| for the numerical approximation 

�̃̃�03(𝑠) = ℒ{ℒ−1{exp(−𝑎𝑠𝛼)}, evaluated for 𝑎 = 0.5 and 𝛼 = 0.5, in varying precision levels of 16 and 

64. 

 

Table  2: Numerical error 휀03(𝑠) = |𝐶03(𝑠) − �̃̃�03(𝑠)| for the numerical approximation �̃̃�03(𝑠) =

ℒ{ℒ−1{exp(−𝑎𝑠𝛼)}, evaluated for 𝑎 = 0.5 and 𝛼 = 0.5, in varying precision levels of 16 and 64. 

Values 9.23e-6 ≡ 9.23 × 10−6 

 

 



Zinovi Krougly 

ACCURACY AND PRECISION REQUIREMENTS IN PROBABILITY 

MODELS 

RT&A, No 1 (61) 
Volume 16, March 2021 

 

144 

 

8  Waiting times distribution in 𝑴/𝑮/𝟏 queue 
 

The 𝑀/𝐺/1 model assumes Poisson arrival at rate 𝜆 to a single server with generally 

distributed service time 𝑆. The coefficient of variation 𝑐𝑆 of 𝑆 defined by 𝑐𝑆 = 𝜎/𝑏, where 𝑏 = 𝐸[𝑆] 

and 𝜎 are the expectation and the standard deviation of 𝑆. 

If 𝑐𝑆 = 1, we have M/M/1 model with 𝐵∗(𝑠) = 𝜇/(𝜇 + 𝑠). 

The PDF and CDF of waiting time simplified to [17] 

 

 𝑤𝑞(𝑡) = 𝜇(1 − 𝜌)𝑒−𝜇(1−𝜌)𝑡 , 𝑡 ≥ 0,    𝑃𝐷𝐹,    𝑀/𝑀/1 (8.1) 

 

 𝑊𝑞(𝑡) = 1 − 𝜌𝑒−𝜇(1−𝜌)𝑡 , 𝑡 ≥ 0,    𝐶𝐷𝐹,    𝑀/𝑀/1 (8.2) 

 

If the coefficient 𝑐𝑆 > 1 an approximation can be effective provided by hyperexponential 

distribution using for it the definition by parallel stages. 

Let the service time 𝑆 follows a hyperexponential 𝐻2 distribution whose PDF is given by 

(9.2), and the CDF is defined by (9.3). 

The Laplace transform of the PDF is given by (9.1). This gives the Laplace transform of the 

CDF  

 𝐹(𝑠) = 𝐶(𝑠)/𝑠 =
1

𝑠
∑2

𝑖=1
𝑝𝑖𝜇𝑖

𝜇𝑖+𝑠
 (8.3) 

 

First and second derivatives of 𝐶(𝑠) are:  

 

 
𝑑𝐶(𝑠)

𝑑𝑠
= − ∑2

𝑖=1
𝑝𝑖𝜇𝑖

(𝜇𝑖+𝑠)2 (8.4) 

 

 
𝑑2𝐶(𝑠)

𝑑𝑠2 = 2 ∑2
𝑖=1

𝑝𝑖𝜇𝑖

(𝜇𝑖+𝑠)3 (8.5) 

 

The expectation 𝐸[𝑆] = −
𝑑𝐶(𝑠)

𝑑𝑠
|𝑠=0 and the variance 𝑉𝑎𝑟[𝑆] = 𝐸[𝑆2] − (𝐸[𝑆])2 of the 

random variable 𝑆 are the following:  

 𝐸[𝑆] =
𝑝1

𝜇1
+

𝑝2

𝜇2
 (8.6) 

 

 𝑉𝑎𝑟[𝑆] =
𝑝1(2−𝑝1)

𝜇1
2 +

𝑝2(2−𝑝2)

𝜇2
2 −

2𝑝1𝑝2

𝜇1𝜇2
 (8.7) 

  

 𝐸[𝑆2] =
𝑑2𝐶(𝑠)

𝑑𝑠2 |𝑠=0 =
2𝑝1

𝜇1
2 +

2𝑝2

𝜇2
2  (8.8) 

 

To satisfy the condition (8.6), let  

 𝜇1 = 2𝑝1𝐸[𝑆],    𝜇2 = 2𝑝2𝐸[𝑆] (8.9) 

 

Substituting (8.6), (8.8) and (8.9) in 𝑐𝑆
2 =

(𝜎[𝑆])2

(𝐸[𝑆])2 =
𝐸[𝑆2]−(𝐸[𝑆])2

(𝐸[𝑆])2 , this gives the unique 𝐻2 PDF 

[6]:  

 𝑝1 =
1

2
(1 + √

𝑐𝑆
2−1

𝑐𝑆
2+1

), 𝑝2 = 1 − 𝑝1, 𝜇1 =
2𝑝1

𝐸[𝑆]
, 𝜇2 =

2𝑝2

𝐸[𝑆]
 (8.10) 
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9  Solving performance measures in 𝑴/𝑯𝟐/𝟏 queue 
 

 Example 4. Two cases consider for this 𝑀/𝐺/1 queue example. 

Case 1. Laplace transform are given for PDF of the service time distribution. 

Find 𝑓04(𝑡) = ℒ−1{𝐶04(𝑠)} and �̃�04(𝑠) = ℒ{ℒ−1{𝐶04(𝑠)}}, where 

 

 𝐶04(𝑠) = ∑2
𝑖=1

𝑝𝑖𝜇𝑖

𝜇𝑖+𝑠
,    (0 ≤ 𝑝1 ≤ 1,0 ≤ 𝑝2 ≤ 1, 𝑝1 + 𝑝2 = 1), (9.1) 

  

 𝑓04(𝑡) = ∑2
𝑖=1 𝑝𝑖𝜇𝑖𝑒

−𝜇𝑖𝑡     (𝑡 > 0). (9.2) 

 

Case 2. Identical to case 1, but now for CDF. 

Find �̃�04(𝑡) = ℒ−1{𝐹04(𝑠)} and �̃�04(𝑠) = ℒ{ℒ−1{𝐹04(𝑠)}}, where 

 

 𝐹04(𝑠) = 𝐶04(𝑠)/𝑠 =
1

𝑠
∑2

𝑖=1
𝑝𝑖𝜇𝑖

𝜇𝑖+𝑠
 (9.3) 

  

 𝐹04(𝑡) = 1 − ∑2
𝑖=1 𝑝𝑖𝑒−𝜇𝑖𝑡 ,    (𝑡 > 0). (9.4) 

 

Several cases were considered for 𝑀/𝐺/1 queue example. First is for Laplace transform of 

the PDF for service time distribution. Second is identical but for CDF. The 𝑀/𝐺/1 queue describes 

with 𝜆 = 0.8, the expectation 𝐸[𝑆] = 1, and the coefficient of variation 𝑐𝑠 = 1.5, 2.5 and 4.5. In Fig. 11 

are shown inverse Laplace transform of the function 𝐶04(𝑠), evaluated for the PDF (left plot), and 

inverse Laplace transform 𝐶04(𝑠)/𝑠 evaluated for the CDF (right plot). The errors are: 𝐸 =

3.52 × 10−5 (left plot) and 𝐸 = 1.2 × 10−5 (right plot). 

 

 
    

Figure  11: Inverse Laplace transform of the functions 𝐶04(𝑠), evaluated for the PDF (left plot), and 

for 𝐶04(𝑠)/𝑠 evaluated for the CDF (right plot). The 𝑀/𝐺/1 queue has 𝜆 = 0.8, the expectation 

𝐸[𝑆] = 1.0, and the coefficients of variation 𝑐𝑠 = 1.5, 2.5 and 4.5. 
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10  Waiting time distribution in M/D/1 queues 
 

Let service times has 𝐸𝑘 density with mean 1/𝜇 and PDF  

 

 𝑓(𝑡) =
(𝜇𝑘)𝑘𝑡𝑘−1𝑒−𝑘𝜇𝑡

(𝑘−1)!
    (0 < 𝑡 < ∞) (10.1) 

 

 and LST  

 

 𝐵∗(𝑠) = (
𝜇𝑘

𝑠+𝜇𝑘
)𝑘 (10.2) 

 

The model M/D/1 can be considered as a limited case of 𝑀/𝐸𝑘/1. As 𝑘 → ∞ and 𝜇 → ∞ in 

such a way that 𝑘𝜇−1 → 𝑏 (0 < 𝑏 < ∞) then 𝐸𝑘 service times are deterministic with the constant 𝑏. 

The traffic intensity 𝜆𝑏 < 1. Now 𝐵∗ → 𝑒−𝑏𝑠 as 𝑘 → ∞. PDF of waiting time has the Laplace 

transform [17].  

 

 𝑊𝑞(𝑠) =
(1−𝜌)𝑠

𝑠−𝜆[1−𝑒−𝑏𝑠]
 (10.3) 

 

 Example 5. Numerically estimate waiting time distribution 𝑊𝑞(𝑡) for different service 

models in M/G/1 queue. The Laplace transform of 𝑊𝑞(𝑡) is given by Pollaczek-Khinchine (P-K) 

transform equation [17]  

 

 𝑊𝑞(𝑠) =
𝑤𝑞(𝑠)

𝑠
=

(1−𝜌)

𝑠−𝜆[1−𝐵∗(𝑠)]
, where (10.4) 

 

 𝐵∗(𝑠) = ∫
∞

0
𝑑𝐹(𝑡) = ∫

∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡, (10.5) 

 

 𝐵∗(𝑠) is the Laplace-Stieltjes transform (LST) of 𝐹(𝑡), 𝐹(𝑡) is the CDF of the service time 

distribution, 𝜆 and 𝑏 are the averages of arrival rate and service tine distribution, and 𝜌 = 𝜆𝑏 is the 

traffic intensity. 

As with 𝑀/𝐺/1 queue the following service models considered: 

 

 𝑀/𝑀/1    𝐵∗(𝑠) =
𝜇

𝑠+𝜇
 (10.6) 

 

 𝑀/𝐸𝑘/1    𝐵∗(𝑠) = (
𝜇

𝑠+𝜇
)𝑘 (10.7) 

 

 𝑀/𝐷/1    𝐵∗(𝑠) = 𝑒−𝑏𝑠 (10.8) 

 

 𝑀/𝐻2/1    𝐵∗(𝑠) = ∑2
𝑖=1

𝑝𝑖𝜇𝑖

𝜇𝑖+𝑠
 (10.9) 

 

Consider 𝑀/𝐺/1 model for calculating waiting time distributions. For the system 𝑀/𝐻2/1 

the arrival rate 𝜆 = 5.0. The service time distribution is 𝐻2 evaluated for 𝜇 = 6, 𝑏 = 1/𝜇 and 𝑐𝑆 =

1.5. For this 𝑀/𝐻2/1 system the traffic intensity 𝜌 = 𝜆/𝜇, and the CDF at the time 0 is 𝐹(0) = 1 − 𝜌. 

Gaver-Sthefest algorithm used for inverting Laplace transform for variety 𝐵∗(𝑠) in (10.4). 

The CDF distribution of the waiting time in queue distribution CDF for 𝑀/𝐷/1, 𝑀/𝐻2/1 and 

𝑀/𝑀/1 are shown in Fig. 12. 
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Figure  12: PDF and CDF waiting time distributions for 𝑀/𝑀/1, 𝑀/𝐷/1 and 𝑀/𝐻2/1 

   

 

For 𝑀/𝐷/1 queue service times are deterministic and equal to the value 𝑏. For 

deterministic service 𝐵 ∗ (𝑠) are given by (10.8). We compare 𝑊𝑞(𝑡) calculated by inverting of (10.4) 

with 𝑊𝑞(𝑡) also known and analytically given by [17]:  

 𝑊𝑞(𝑡) = (1 − 𝜌) ∑[𝑡/𝑏]
𝑖=0 𝑒−𝜆(𝑖𝑏−𝑡) (𝑖𝑏−𝑡)𝑖

𝑖!
𝜆𝑖 , (10.10) 

 where [𝑥] is the greatest integer less than or equal to 𝑥. 

Figure  13 shows results for this queue with 𝜆 = 5.0, 𝜇 = 6.0 (𝑏 = 1/𝜇 and 𝜌 = 𝜆/𝜇 = 0.8). The 

figure shows errors, by analytical estimate, in logarithmic scale Log𝑊𝑞(𝑡) (left plot). The estimate 

for 𝑊𝑞(𝑡) is then obtained by Gaver-Stehfest algorithm. We failed to get the numerical analytical 

solution for precision level: 𝑁 = 16 if 𝑡 > 10; 𝑁 = 64 if 𝑡 > 26; 𝑁 = 256 if 𝑡 > 90. Only for 𝑁 = 512 

and 𝑁 = 1000 we get the correct result for all range 0 < 𝑡 ≤ 100. Gaver-Stehfest inversion 𝑊𝑞(𝑡) 

are shown in the right plot, even for double precision we have accurate solution, and can not 

distinguish by eyes the curves with different precision 𝑁 = 16, 64, 256 and 512.  

 

   

 
Figure  13: 𝑀/𝐷/1 outputs: Log of 𝑊𝑞(𝑡) error (left plot) and 𝑊𝑞(𝑡)  

by Gaver-Stehfest inversion (right plot) 
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Fig. 14 shows numerical results in double precision (N = 16) for 𝑀/𝐷/1 waiting time 

distribution 𝑊𝑞(𝑡) by analytical solution (10.10) and Gaver-Stehfest inversion. The analytical 

solution is dominated by noise after 𝑡 > 9. 

 

 

   
  

Figure  14: 𝑊𝑞(𝑡) for 𝑀/𝐷/1,CDF waiting time distribution  

by analytical solution and Gaver-Stehfest inversion 

   

The most common service time distribution is the exponential, in which case the waiting 

time distribution are available in closed-form. For more general cases, closed-form solutions of (P-

K) 𝑀/𝐺/1 transform equation are mathematically intractable. The following specific example used 

to compare analytical solution and Gaver-Stehfest inversion. Consider the system 𝑀/𝐻2/1 with pdf 

for service time distribution [7]  

 𝐵(𝑡) =
1

4
𝜆𝑒−𝜆𝑡 +

3

4
(2𝜆)𝑒−2𝜆𝑡 , (10.11) 

 where 𝜆 is the arrival rate, 𝑏 = 5/(8𝜆), and   𝑟ℎ𝑜 = 𝜆𝑏 = 5/8. For numerical solutions we used 𝜆 =

5. The corresponding laplace transform 𝐵∗(𝑠) is 

 

 𝐵∗(𝑠) = (
1

4
)

𝜆

𝜆+𝑠
+ (

3

4
)

2𝜆

2𝜆+𝑠
 (10.12) 

 

Using 𝐵∗(𝑠) and (P-K) transform equation (10.4) 𝑊𝑞(𝑠) and 𝑊𝑞(𝑡) for the waiting time 

density [7]:  

 𝑤𝑞
∗(𝑠) = (1 − 𝜌) [1 +

𝜆/4

(3/2)𝜆+𝑠
+

3𝜆/4

(1/2)𝜆+𝑠
] (10.13) 

  

 𝑤𝑞
(
𝑡) =

3

8
𝑢0(𝑡) +

3𝜆

32
𝑒−(3/2)𝜆𝑡 +

9𝜆

32
𝑒−(1/2)𝜆𝑡     𝑡 ≥ 0, (10.14) 

 where 𝑢0(𝑡) is unit impulse function. 

The analytical solution for CDF of waiting time distribution can be easily found as:  

 𝑊𝑞
∗(𝑠) = (1 − 𝜌) [

1

𝑠
+

𝜆/4

((3/2)𝜆+𝑠)𝑠
+

3𝜆/4

((1/2)𝜆+𝑠)𝑠
] (10.15) 

  

 𝑊𝑞
(
𝑡) = (1 − 𝜌) [

8

3
−

1

6
𝑒−(3/2)𝜆𝑡 −

3

2
𝑒−(1/2)𝜆𝑡]     𝑡 ≥ 0 (10.16) 

 

Fig. 15 shows numerical results in double precision (N = 16) for 𝑀/𝐻2/1 waiting time 

distribution for PDF (on the left) and CDF (on the right). To recognize by eyes the distinguish an 

analytical and Gaver-Stehfest inversion outputs is almost impossible. 
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Figure  15: Waiting time distribution for 𝑀/𝐻2/1 by analytical solution and Gaver-Stehfest 

inversion for PDF (left plot) and CDF (right plot) 

   

 

11  Accuracy and precision requirements of the 𝑴/𝑫/𝟏 large 𝒕 analysis 
 

The results of double transformation approximation for waiting time distribution 𝑊𝑞(𝑠) in 

𝑀/𝐷/1 are shown in Figs. 16 and 17. 

The following double transformation technique used for the Laplace transform of the 

inversion:  

 �̃̃�𝑞(𝑠) = ℒ{ℒ−1{𝑊𝑞(𝑠)}} (11.1) 

 

The exact solution is original 𝑊𝑞(𝑠) which compares with �̃̃�𝑞(𝑠) after double 

transformation technique. Laplace transform inversion implemented by the Gaver-Stehfest 

algorithm, and a composite Simpson’s rule is performed for the numerical direct Laplace 

transform. Approximation for the waiting time distribution in 𝑀/𝐺/1 queue is convenient for light 

traffic intensity and small 𝑡, providing suitable approximation in double precision. The Figures fit 

the wide-range small Laplace transform parameter 𝑠, corresponding to large number 𝑡. 

 

 

  Figure  16: Double transformation approximation for waiting time distribution 𝑊𝑞(𝑠) of the 

𝑀/𝐷/1: double precision (𝑁 = 16) with different number of subinterval 𝑛 = 500, 5000, 50000, 150000 

and ranges [0.1, 10] (left plot), and [0.1, 5] (right plot) 
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Figure  17: Double transformation approximation for waiting time distribution 𝑊𝑞(𝑠) of the 𝑀/𝐷/1 

with multiple precision calculation with the number of subintervals 𝑛 = 500 

   

On the Fig. 16 all curves are given for double precision level (𝑁 = 16) with different 

number of subinterval 𝑛 = 500, 5000, 50000 and 150000 in numerical direct Laplace calculation. It 

looks like the is no effect of 𝑛 increased for 𝑠 on the interval [0.1, 10] (left plot), but curve are 

different for 𝑠 on the smaller interval [0.1, 0.5] (right plot). 

The Fig.17 demonstrate the impact of precision level 𝑁. The number of subintervals 𝑛 =

500. In double precision the method does not work well, and significant improvements in accuracy 

illustrated as precision level increased up to 256. 

 

12  Conclusions 
  

Accuracy and stability of numerical Laplace transform and inversion are crucial for many 

applications in computation probability models. In this work, we proposed and evaluated different 

numerical implementations of the Laplace transform and inversion in multiple precision arithmetic 

systems. We are concerned with transformation that can occur in two ways. 

If the examples cover functions with known inverses, accuracy of multiple precision 

models can be asserted by comparison to the exact solution. 

The most realistic and challenging problems cover functions with analytically unknown 

inverses. So double transformation approach proposed to find computationally efficient methods 

for performing the numerical Laplace transform and inversion. In this approach numerical Laplace 

transform inversion used directly as input into numerical Laplace transform. The accuracy can be 

asserted by comparison to the original Laplace planform. We observe the accuracy of the 

inversions as we increase the number of the expansion terms and precision, which lead to stable 

solutions. The computational efficiency compared to precision levels is demonstrated for waiting 

times distribution in 𝑀/𝐺/1 queuing systems. 
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