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Nonlinear time series - important in financial modelling and other

dareas
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ARCH-M(1) : Mean term p allowed : Y = X +

Yir1 = p+ Vh(Y; — p)ers

GARCH(1,1) : different form of conditional variance
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Given data Xy, t = tp,1,...,n can one estimate distribution F' of €7
to = 0 for ARCH-M(1)

residuals : €;

Our study : some processes and functionals of residuals




ARCH-M(p) : EDF process of residuals /n(F — F)
- proof is easier than AR residual EDF process due to product form
for residuals; p = 1
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Typical residual qgnorm plot from simulated normal ARCH

Theoretical Quantiles




Second nonlinear time series study :

GARCH(p,q) : k-th moment partial sum processes to construct

1) Joint Distribution of Skewness (k = 3) and Kurtosis (kK = 4)
partial sum process

— test of normality : Jarque-Berra (sum of squares of skewness
and kurtosis) statistic for GARCH residuals

SAME asymptotics as the i.i.d. innovations !

NOT so for most other statistics




EDF process : ARCH-M(1)




Let s = (s0, 51,52) € R?

Define
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where

ﬁ(h(a}, 0 +n~1/2s) — h(z, 9))
gn(,5) = h(z, 0)
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Proposition 1. The process { X;,t > 0} : stationary and ergodic
F' has continuous density f that is positive on the open support of F
lim, 4o || f(2) = 0.

Then for any b > 0

sup sup |En(z,s) — En(z,0)] — 0
Isllo<b zER
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Theorem 1. Same conditions + 0 is \/n-consistent for 6. Then

sup
rER

B, () — {En (z,0) + <(<I>(«9) + %ZU\IJ(H))]E(CU)? N 9)>}|

— 0 Iin probability as n — oc.

where
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(1, (= p)? 20z —p))
g(il?) - ao+a1(x—u)2

(0, 0, 1)
Voo + oz — p)?

Corollary 1. Suppose that {E,(z,0), /n(0 — € R} converges

0): x
weakly to a Gaussian process {E(F(x)),Z : x € R} on
3 . . .
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Remark 1 ARCH model with known = 0 : the term ®(0)f(x)
disappears in the limiting Gaussian process

Remark 2 residuals of a ARCH-M process do not behave as the iid
innovations {€;,t > 1}.

Kolmogorov-Smirnov does differ from one based on iid sample.

Normal ARCH(1) with ;4 = 0 : extra term — small difference

Normal ARCH(1) with p estimated : big difference
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Normal ARCH with o4 in the range from .85 to .98 (< 1)
KS 0.95 Critical value for i.i.d. limit : 1.358 (size = 1 - .95)

Table of Monte Carlo estimate of true 0.95 critical value and
empirical size when usual critical value (1.358) is used

n ARCH, u known ARCH, u estimated

crit.val size MLE
crit.val ‘ size
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Subsampling :
deal with distribution and parameter dependent Gaussian limit

Construct the empirical process E,,(z) based on the first m (< n)
residuals

6 based on all n observations

Eon(z) = V(B (x) - F(z)) = ——= 3 (& < 2) — F(x))
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GARCH(p,q) moment sums : joint work with Hao Yu
X; = o46; where ¢; i.i.d. mean =0and E(e5) =1. Forp=¢q=1

2 2 2

GARCH(p,q) residuals representation based on Berkes , Horvath and
Kokoszka (2003) — need mean p = 0 is known.
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k-th moment partial sum of residuals, 0 < u <1 :

nu
SWw) =) &
t=R

k-th moment partial sum of innovations

[nu]




21

Theorem 2. For \/n consistent estimator and ergodic process,
smooth density and El|ey|*t° < oo for some 6 > 0 and an integer
k > 1 then

Kupik 5

sup
0<u<l

o= (89 - 5P w) +

where
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Remark 1. Asymptotic properties of the high moment partial
process depends on the parameter 6 unless up =0

1 = 0 : Ordinary residual partial sum process S’f,(zl)(u) has same
asymptotics as the unobservable innovations partial sum process

does not depend on F' or f except through 0




Theorem 3. Same conditions :

1 ~— . k A
I Z & — €| — §¢k (\/ﬁ(en — 9)) op(1),
t=R
where
Yr(u) = E|(egdlogog(6), u)|, ue RPHIHL

Remark 2. For h, > 0; h, — 0; /nh? — oo then
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To study residual sample skewness and kurtosis need

The kth order centered moment partial sum process residuals

(k) Z Gt—E

counterpart based on iid innovations
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Residuals sample variance 0( ) = T(2)(1)/

6(2n) — L15 in probability under the minimum condition 9 < 0o

Since s = 1 for GARCH models, then &(2”) seems a useless
estimator.

- Plays important role to self normalize Té’“)(u)

Innovations sample variance : a(zn) = TT(L2)(1)/n.
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Theorem 4. ./n consistent estimator, density condition E|ey|*T° <
oo for some & > 0 and an integer k > 2 or if k = 1 and Ee3 < oo

then o o
1 |1y T
Sup Ak(u) — k(U) — OP(1)°
UG (n)

Remark 3. The self normalized moment sums have same
asymptotics for residuals and innovations
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scaled moment : A\, = ,uk/,ug/Q

Corollary 2. Under these same conditions, for k > 2

1 (T ()
— nu
\/ﬁ< oty

converges weakly to a Gaussian process { B*)(u), 0 < u < 1}
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Remark 4. partial sumfork=1: A\g=1, Ay =0and Ay =1
The covariance : E [BM(w)BM(v)] =uAv—uv, 0<u,v<1
{BW(u), 0 <wu <1} is a Brownian bridge
For k£ = 2, Covariance

E[B@(w)B@(v)] = (A —1)(uAv—uv) for any 0 < u,v <1

- scaled Brownian bridge
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APPLICATIONS

Test of normality : Jarque-Berra test statistic

sample skewness and kurtosis partial sum process as

T (w)/n
- ~3
I (n)

P (4)
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Omnibus statistics based on sample skewness and kurtosis have been
used to test normality : Bowman and Shenton (1975) and Gasser

(1975) basic idea

n o . n .
— (A1) = A3)* + =5 (An(1) — Aa)?,
gy o
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2 3 2
> = E(B¥(1))
(A6 — A3) + 3(3 +3A3 — 2Xy) + 3x3(A3/4 + 3A3hs/4 — Xs)

02 = E(B®(1))2 = (As—A2)+4A3(4Ag+4A3h0—2X5)+4Xa (A2 )g).
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Standard normal innovation distribution :
2 2
)\320, )\4:3, 07:67(7&:24

then
0

TB = Z32(1) + o2 (Rn(1) = 3)° = x(2) (1)

6

The statistic JB in ( ) is the exact Jarque-Berra normality test
widely used in econometrics and implemented in standard statistical
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Jarque and Berra (1987) : JB is a Lagrange multiplier test statistic

asymptotically equivalent to the likelihood ratio test

- implying it has the same asymptotic power characteristics including
maximum local asymptotic power (Cox and Hinkley, 1974)

- J B statistic is asymptotically locally most powerful

Instead of asymptotic x?(2) critical value can use Monte Carlo to

find finite sample correction coefficients based on polynomial
—1/2

approximation in n
Lu (2001) : 5 per cent critical values of JB for a given sample size n
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Tests of structural change : change point

Test in the literature : cusums usually based on original data

Tests based on cusum of residuals : much better power
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Kernel density estimation of the innovation distribution
Innovation distribution : uniformly continuous density f(x)
h, > 0 and K (x) be a probability density function (kernel)

kernel density estimation of f(x) based on the residuals

A 1 - CC—é\t
() =—S K , z€R.
o) = 3 (hn) v e
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Theorem 5. /n consistent estimator, density condition and E|ey| <
00

(i) hyp > 0; hy — 0; /nh? — oo,

(ii) supj,>p |2|K(x) — 0 as b — oo,

(iii) K is Lipschitz, i.e., there exists a constant C' such that
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semi-parametric bootstrap based on resampling from f,, will be first
order correct.




