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Nonlinear time series - important in financial modelling and other

areas

ARCH(1)

Xt+1 =
√
h(Xt)εt+1

where

h(x) = α0 + α1x
2

εt are i.i.d. F , E(εt) = 0 and E(ε2t) = 1

→ last so that σ2
t+1 = h(Xt) = conditional variance of Xt+1 given

Ft, the information up to time t.
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ARCH-M(1) : Mean term µ allowed : Y = X + µ

Yt+1 = µ+
√
h(Yt − µ)εt+1

GARCH(1,1) : different form of conditional variance

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1,

Conditional variance at time t+ 1 depends on Xt and σ2
t , the

current conditional variance
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Given data Xt, t = t0, 1, . . . , n can one estimate distribution F of ε?

t0 = 0 for ARCH-M(1)

residuals : ε̂t

Our study : some processes and functionals of residuals
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• ARCH-M(p) : EDF process of residuals
√
n(F̂ − F )

- proof is easier than AR residual EDF process due to product form

for residuals; p = 1

ε̂t = Xt−µ̂
σ̂t

= µ−µ̂+σtεt
σ̂t

=
√

n(µ−µ̂)√
n h(Xt−1,θ̂)

+ εt

√
h(Xt−1,θ)

h(Xt−1,θ̂)

multiplicative structure ; bounded ratio h(x,θ)

h(x,θ̂)

on the set ||θ̂ − θ|| ≤ b for any b > 0
- does not easily extend to GARCH

converges to Brownian bridge + additional term
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Typical residual qqnorm plot from simulated normal ARCH
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Second nonlinear time series study :

• GARCH(p,q) : k-th moment partial sum processes to construct

I) Joint Distribution of Skewness (k = 3) and Kurtosis (k = 4)

partial sum process

→ test of normality : Jarque-Berra (sum of squares of skewness

and kurtosis) statistic for GARCH residuals

SAME asymptotics as the i.i.d. innovations !

NOT so for most other statistics

- eg Kolmogorov-Smirnov

II) consistency of residual EDF and density estimate

- justifies first order correct semi-parametric bootstrap
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EDF process : ARCH-M(1)

ε̂t =
Xt − µ̂

σ̂t
=
µ− µ̂+ σtεt

σ̂t

=
√
n(µ− µ̂)√
nh(Xt−1, θ̂)

+ εt

√
h(Xt−1, θ)

h(Xt−1, θ̂)
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Let s = (s0, s1, s2) ∈ R3

Define

F̂n(x, s) =

1
n

n∑
t=1

I

(
εt ≤

(
x+

s2√
nh(Xt−1, θ + n−1/2s)

)

×

√
1 +

gn(Xt−1, s)√
n
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where

gn(x, s) =

√
n

(
h(x, θ + n−1/2s)− h(x, θ)

)
h(x, θ)

ε̂t(s) =
εt√

1 + gn(Xt−1,s)√
n

Then Fn(x, 0) : EDF of innovations

and

F̂n(x) = F̂n(x,
√
n(θ̂ − θ))
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sup
x∈R

|gn(x, s)| ≤
3∑

i=1

Ci(θ)||s||i∞
n(i−1)/2

F̂n(x) =
1
n

n∑
t=1

I

(
εt ≤ (x+Op(1/

√
n))
√

1 +Op(1/
√
n)
)

En(x, s) =
1√
n

n∑
t=1

{
I

(
εt ≤

(
x+

s2√
nh(Xt−1, θ + n−1/2s)

)√
1 +

1√
n
gn(Xt−1, s)

)

−F

((
x+

s2√
nh(Xt−1, θ + n−1/2s)

)√
1 +

1√
n
gn(Xt−1, s)

)}
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En(x) =
√
n(Fn(x)− F (x)) =

√
n(Fn(x,

√
n(θ̂ − θ))− F (x)) =

En

(
x,
√
n(θ̂ − θ)

)
+

1√
n

n∑
t=1

F
{x+

√
n(µ̂− µ)√
nh(Xt−1, θ̂)

}√
1 +

1√
n
gn(Xt−1,

√
n(θ̂ − θ))

− F (x)
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Proposition 1. The process {Xt, t ≥ 0} : stationary and ergodic

F has continuous density f that is positive on the open support of F

limx→±∞ |x|f(x) = 0.

Then for any b > 0

sup
‖s‖∞≤b

sup
x∈R

|En(x, s)− En(x, 0)| → 0

in probability as n→∞.

Notice : for b large, then with large probability
√
n(θ̂− θ) belongs to

{s : ||s||∞ ≤ b}
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Theorem 1. Same conditions + θ̂ is
√
n-consistent for θ. Then

sup
x∈R

∣∣∣∣En(x)−
{
En (x, 0) +

〈
(Φ(θ) +

1
2
xΨ(θ))f(x),

√
n(θ̂ − θ)

〉}∣∣∣∣
→ 0 in probability as n→∞.

where

Ψ(θ) = lim
n→∞

1
n

n∑
t=1

g(Xt−1) a.s. and

Φ(θ) = lim
n→∞

1
n

n∑
t=1

k(Xt−1) a.s.

- constants depending on the parameter; g, k
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g(x) =
(1, (x− µ)2, −2α1(x− µ))

α0 + α1(x− µ)2

k(x) =
(0, 0, 1)√

α0 + α1(x− µ)2

Corollary 1. Suppose that {En(x, 0),
√
n(θ̂−θ) : x ∈ R} converges

weakly to a Gaussian process {E(F (x)), Z : x ∈ R} on

D(−∞,+∞) ×R3, where E is a standard Brownian bridge. Then

En(x) converges weakly to the Gaussian process

E(F (x)) +
〈

(Φ(θ) +
1
2
xΨ(θ))f(x), Z

〉
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Remark 1 ARCH model with known µ = 0 : the term Φ(θ)f(x)
disappears in the limiting Gaussian process

Remark 2 residuals of a ARCH-M process do not behave as the iid

innovations {εt, t ≥ 1}.

Kolmogorov-Smirnov does differ from one based on iid sample.

Normal ARCH(1) with µ = 0 : extra term → small difference

Normal ARCH(1) with µ estimated : big difference
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Normal ARCH with α1 in the range from .85 to .98 (< 1)

KS 0.95 Critical value for i.i.d. limit : 1.358 (size = 1 - .95)

Table of Monte Carlo estimate of true 0.95 critical value and

empirical size when usual critical value (1.358) is used

n ARCH, µ known ARCH, µ estimated

crit.val size MLE

crit.val size

100 1.31 .038 1.07 .005

500 1.32 .038 1.09 .006

1000 1.32 .038 1.09 .007
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Subsampling :

deal with distribution and parameter dependent Gaussian limit

Construct the empirical process Ẽm(x) based on the first m (< n)

residuals

θ̂ based on all n observations

Ẽm(x) =
√
m(F̂m(x)− F (x)) =

1√
m

m∑
t=1

(I(ε̂t ≤ x)− F (x))

Extra term now becomes Op

(√
m
n

)
→ 0 if m

n → 0
- But looses power
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GARCH(p,q) moment sums : joint work with Hao Yu

Xt = σtεt where εt i.i.d. mean = 0 and E(ε20) = 1. For p = q = 1

σ2
t = α0 + α1X

2
t−i + β1σ

2
t−1,

GARCH(p,q) residuals representation based on Berkes , Horváth and

Kokoszka (2003) → need mean µ = 0 is known.

Hao Yu has a grad student trying to extend this to the mean

estimated
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k-th moment partial sum of residuals, 0 ≤ u ≤ 1 :

Ŝ(k)
n (u) =

[nu]∑
t=R

ε̂kt

k-th moment partial sum of innovations

S(k)
n (u) =

[nu]∑
t=R

εkt

k-th moment : µk = E(εk0)

inner product : 〈x,y〉
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Theorem 2. For
√
n consistent estimator and ergodic process,

smooth density and E|ε0|k+δ < ∞ for some δ > 0 and an integer

k ≥ 1 then

sup
0≤u≤1

∣∣∣∣ 1√
n

(
Ŝ(k)

n (u)− S(k)
n (u)

)
+
kuµk

2
〈ψ(θ),

√
n(θ̂n − θ)〉

∣∣∣∣ = oP (1),

where

ψ(θ) = E
(
∂ log σ2

0(θ)
)

and ∂(·) == ∂(·)/∂θ
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Remark 1. Asymptotic properties of the high moment partial
process depends on the parameter θ unless µk = 0

µ1 = 0 : Ordinary residual partial sum process Ŝ(1)
n (u) has same

asymptotics as the unobservable innovations partial sum process

does not depend on F or f except through θ̂



23

Theorem 3. Same conditions :∣∣∣∣∣ 1√
n

n∑
t=R

|ε̂kt − εkt | −
k

2
ψk

(√
n(θ̂n − θ)

)∣∣∣∣∣ = oP (1),

where

ψk(u) = E
∣∣〈εk0∂ log σ2

0(θ), u〉
∣∣ , u ∈ Rp+q+1.

Remark 2. For hn > 0; hn → 0;
√
nh2

n →∞ then

1
nh2

n

n∑
t=R

|ε̂kt − εkt | = oP (1)

Case k = 1 : consistency of kernel density estimation based on the
residuals
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To study residual sample skewness and kurtosis need

The kth order centered moment partial sum process residuals

T̂ (k)
n (u) =

[nu]∑
t=R

(
ε̂t − ¯̂ε

)k
counterpart based on iid innovations

T (k)
n (u) =

[nu]∑
t=R

(εt − ε̄)k
,
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Residuals sample variance σ̂2
(n) = T̂

(2)
n (1)/n

σ̂2
(n) → µ2 in probability under the minimum condition µ2 <∞

Since µ2 = 1 for GARCH models, then σ̂2
(n) seems a useless

estimator.

- Plays important role to self normalize T̂
(k)
n (u)

Innovations sample variance : σ2
(n) = T

(2)
n (1)/n.
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Theorem 4.
√
n consistent estimator, density condition E|ε0|k+δ <

∞ for some δ > 0 and an integer k ≥ 2 or if k = 1 and Eε20 < ∞
then

sup
0≤u≤1

1√
n

∣∣∣∣∣T̂ (k)
n (u)
σ̂k

(n)

− T
(k)
n (u)
σk

(n)

∣∣∣∣∣ = oP (1).

Remark 3. The self normalized moment sums have same
asymptotics for residuals and innovations
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scaled moment : λk = µk/µ
k/2
2

Corollary 2. Under these same conditions, for k ≥ 2

1√
n

(
T̂

(k)
n (u)
σ̂k

(n)

− nuλk

)

converges weakly to a Gaussian process {B(k)(u), 0 ≤ u ≤ 1}

Also joint limit process for various k is obtained

k = 3, 4 needed for skewness and kurtosis
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Remark 4. partial sum for k = 1 : λ0 = 1, λ1 = 0 and λ2 = 1

The covariance : E
[
B(1)(u)B(1)(v)

]
= u ∧ v − uv , 0 ≤ u, v ≤ 1

{B(1)(u), 0 ≤ u ≤ 1} is a Brownian bridge

For k = 2, Covariance

E
[
B(2)(u)B(2)(v)

]
= (λ4 − 1)(u ∧ v − uv) for any 0 ≤ u, v ≤ 1

- scaled Brownian bridge

In general, the Gaussian process {B(k)(u), 0 ≤ u ≤ 1} depends on
the moments of the innovation distribution

- Neither a Brownian motion nor a Brownian bridge.
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APPLICATIONS

Test of normality : Jarque-Berra test statistic

sample skewness and kurtosis partial sum process as

γ̂n(u) =
T̂

(3)
n (u)/n
σ̂3

(n)

κ̂n(u) =
T̂

(4)
n (u)/n
σ̂4

(n)

for 0 ≤ u ≤ 1

residual sample skewness γ̂n(1) and sample kurtosis κ̂n(1)
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Omnibus statistics based on sample skewness and kurtosis have been

used to test normality : Bowman and Shenton (1975) and Gasser

(1975) basic idea

n

σ2
γ

(γ̂n(1)− λ3)
2 +

n

σ2
κ

(κ̂n(1)− λ4)
2
,
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σ2
γ = E(B(3)(1))2

= (λ6 − λ2
3) + 3(3 + 3λ2

3 − 2λ4) + 3λ3(λ3/4 + 3λ3λ4/4− λ5)

σ2
κ = E(B(4)(1))2 = (λ8−λ2

4)+4λ3(4λ3+4λ3λ4−2λ5)+4λ4(λ2
4−λ6).

Our results yield : If the innovation distribution is symmetric about 0

n

σ2
γ

(γ̂n(1)− λ3)
2 +

n

σ2
κ

(κ̂n(1)− λ4)
2 D−→ χ2(2).
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Standard normal innovation distribution :

λ3 = 0, λ4 = 3, σ2
γ = 6 , σ2

κ = 24

then

JB =
n

6
γ̂2

n(1) +
n

24
(κ̂n(1)− 3)2 D−→ χ2(2) (1)

The statistic JB in (1) is the exact Jarque-Berra normality test

widely used in econometrics and implemented in standard statistical

packages such as Splus

The previously unjustified asymptotic χ2(2) distribution is now

justified for GARCH residuals
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Jarque and Berra (1987) : JB is a Lagrange multiplier test statistic

asymptotically equivalent to the likelihood ratio test

- implying it has the same asymptotic power characteristics including

maximum local asymptotic power (Cox and Hinkley, 1974)

- JB statistic is asymptotically locally most powerful

Instead of asymptotic χ2(2) critical value can use Monte Carlo to

find finite sample correction coefficients based on polynomial

approximation in n−1/2

Lu (2001) : 5 per cent critical values of JB for a given sample size n

JB0.05 = 4.60517− 9.78n−1/2 + 132.25n−1 − 1696n−3/2, n ≥ 100.
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Tests of structural change : change point

Test in the literature : cusums usually based on original data

Tests based on cusum of residuals : much better power
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Kernel density estimation of the innovation distribution

Innovation distribution : uniformly continuous density f(x)

hn > 0 and K(x) be a probability density function (kernel)

kernel density estimation of f(x) based on the residuals

f̂n(x) =
1
nhn

n∑
t=R

K

(
x− ε̂t
hn

)
, x ∈ R.

counterpart based on iid innovations

fn(x) =
1
nhn

n∑
t=R

K

(
x− εt
hn

)
, x ∈ R.
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Theorem 5.
√
n consistent estimator, density condition and E|ε0| <

∞

(i) hn > 0; hn → 0;
√
nh2

n →∞,

(ii) sup|x|>b |x|K(x) → 0 as b→∞,

(iii) K is Lipschitz, i.e., there exists a constant C such that

|K(x)−K(y)| ≤ C|x− y|, ∀ x, y ∈ R.

Then

sup
x∈R

|f̂n(x)− fn(x)| = oP (1).
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semi-parametric bootstrap based on resampling from fn will be first

order correct.


