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Mathematical modeling :

- relationships between variables (on average)

- (time evolution) dynamics

Stochastic processes and statistical modelling

- relationships between variables and their vari-

ability

- (time evolution) dynamics with variability (stochas-

tics)
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A simple and classical biological model of two

species growth

xt and yt population sizes

dxt
dt = xt(b1,1 − b1,2xt − b1,3yt)
dyt
dt = yt(b2,1 − b2,2xt − b2,3yt)

(1)

Models population average dynamics and growth

Special case : Lotka Volterra model

prey = xt and predator = yt

dxt
dt = xt(µ− λyt)
dyt
dt = yt(−α + βxt)

(2)

Long history of studying this model and varia-

tions since the 1930’s.
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Need to incorporate randomness

Method 1 : regression model

Nkurunziza : observe DE + noise

keeps cyclic behaviour

long term stability, never die out

Method II :

DE models average growth rate per individual

make growth rate random

- changes dynamics

- no longer cyclic

- may no longer be stable (ergodic)
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Paths of (2) are deterministic

F (x, y) = βx− α log(x) + λy − µ log(y)

It can be shown

dF (x, y)

dt
=

dx

dt

dF (x, y)

dx
+

dy

dt

dF (x, y)

dy
= 0

Solution to (2) lives on a contour F (x, y) = c

c = F (x0, y0)

Solution : Deterministic , Cyclic; Figure 1
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Figure 1: Two Contours of (2) with (µ, λ, α, β) = (3,1,7,2) and (x0, y0) =
(4.5, 3.5) and (6.5,4.5)
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Regression extension

(log(Xt), log(Xt)) = (log(xt), log(yt)) +
(
εX
t , εY

t

)

Observed data (Xt, Yt)

Noise : iid Gaussian noise or Ornstein Uhlen-

beck process (continuous time analogue of auto-

regressive order 1 process).

System maintains the periodicity with this sta-

tionary noise, but the deterministic path is masked

by noise.
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Random growth rate extension

Linear growth rate per individual is an approxi-

mation to population average rate

a natural extension is → add noise to growth

rates

dxt = xt

(
[µ− λyt]dt + σ1dW

(1)
t

)

= xt(µ− λyt)dt + σ1xtdW
(1)
t

dyt = yt

(
[−α + βxt]dt + σ2dW

(2)
t

)

= yt(−α + βxt)dt + σ2ytdW
(2)
t

Renshaw (1991) - biological models

Mao, Marion and Renshaw (2002) - existence of

solution ; when diffusion term is σxmdWt and m =

2; restriction due to choice of test function

can be extended to m > 3
2 but not for m = 1.

Gard and Kannan (1976) - restricted form of er-

godicity conditional on solution bounded; that is

not true for the noisy rate model
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Ft = F (xt, yt) (contour function)

apply Itô’s Lemma

dFt = 1
2

(
ασ2

1 + µσ2
2

)
dt

+σ1 (βxt − α) dW
(1)
t

+σ2 (λyt − µ) dW
(2)
t

= 1
2

(
ασ2

1 + µσ2
2

)
dt + dMt

(3)

Mt is zero mean martingale

E (F (xt, yt)) = F (x0, y0) +
1

2

(
ασ2

1 + µσ2
2

)
t

→ ∞ as t →∞

Thus (xt, yt) → ∂R2
+ (in mean)

Not ergodic (stable) with ANY NOISE
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Competing species

dxt = xt(µ− λyt + γxt)dt + σ1xtdW
(1)
t

dyt = yt(−α + βxt + δyt)dt + σ2ytdW
(2)
t

(4)

self damping : γ < 0, δ < 0

Discussions in biological literature : prey-predator

(γ < 0, δ < 0) has draw back of unlimited linear

growth

competing species model corrects for this

Lemma 1 ε′1 = γ
β and ε′2 = δ

λ.

Rewrite competing species model

dxt = xt [µ′ − λyt + ε′1(βxt − α′)] dt

+σ1xtdW
(1)
t

dyt = yt [−α′ + βxt + ε′2(λyt − µ′)] dt

+σ2ytdW
(2)
t

If either

1. γ > 0 and 0 < δ < αλ
µ or

2. δ < 0 and −µβ
α < γ < 0 (biological interest)

then µ′ > 0 and α′ > 0.
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Theorem 1 Consider

dxt = xt [µ− λyt + ε1(βxt − α)] dt

+σ1xtdW
(1)
t

dyt = yt [−α + βxt + ε2(λyt − µ)] dt

+σ2ytdW
(2)
t

(5)

initial condition (x, y) ∈ R2
+.

If ε2 < 0, ε1 < 0 and also

0 <
σ2

1α + σ2
2µ

2α2
< −ε1 = |ε1|

and

0 <
σ2

1α + σ2
2µ

2µ2
< −ε2 = |ε2|

then the solution to the SDE (5) is ergodic.

If these conditions are violated the system can

be transient

Gard (1980’s - 1990’s) studies recurrence and er-

godicity in terms of differential operators and STRONG

conditions (bounded solution)
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Bhattacharya (1978) studies sufficient conditions

for ergodicity for diffusions on RN based on test

function H(rt) and rt = ||xt||
Adapt his method for showing ergodicity :

1. choose distance function F to play role of Eu-

clidean distance

F ≥ 0 and F →∞ as (x, y) → ∂R2
+

2. use F to show (xt, yt) is recurrent; may need

to find function H and use H(F (Xt))

3. ergodicity

dFt = A(xt, yt)dt + dMt

M zero mean martingale; A drift function

• A continuous

• There exists D such that

(i) A(x, y) ≤ −d0 < 0 on Dc and

(ii)

sup
(x,y)∈D̄

A(x, y) ≤ a < ∞

(trivial if F and derivatives are continuous)
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4. K compact and arbitrary interior to D (may

enlarge D)

τK = inf{t ≥ 0 : (xt, yt) ∈ K}
=

(
τD + τ

(xτD
,yτD

)
K

)
I(τD < ∞)

Note I(τD < ∞) = 1 almost surely

⇒ recurrence

As part of the recurrence we show Ex0,y0(τD) <

∞ for all x0, y0 (uses continuity of A ; smooth-

ness of F )

Conditional expectation and Markov property

Ex0,y0(τK) = Ex0,y0(τD) + Ex0,y0(ExτD
,yτD(τK|FτD))

≤ Ex0,y0(τD) + sup
(x,y)∈∂D

Ex,y(τK)
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Proof Theorem 1 is based on a simple geometric

property

F (x, y) = βx− α log(x) + λy − µ log(y) + c

c = α− α log(α/β) + µ− µ log(µ/λ)

F (x, y) ≥ 0

Apply Ito’s Lemma

dFt =
[
ε1 (βxt − α)2 + ε2 (λyt − µ)2 + a

]
dt

+dMt

(6)

a = 1
2

(
σ2

1α + σ2
2µ

)

dMt = σ1 (βxt − α) dW
(1)
t + σ2 (λyt − µ) dW

(2)
t

Mt is zero mean martingale

A(x, y) = a−
[
|ε1| (βx− α)2 + |ε2| (λy − µ)2

]

εi < 0 for the damping condition in the Theorem
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D =




(x, y) :

(
x− α

β

)2

a
|ε1|β2

+

(
y − µ

λ

)2

a
|ε2|λ2

≤ 1





.

Need D ⊂ R2
+ ; hence condition in Theorem has

uniform bound on negative drift outside D, forces

process back to centre.
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Figure 2: Bacteria Data with ”periodic”

Luckinbill (1973) Ecology, 56, 1320-1327

Paramecium caudatium (prey)

Didinium nasutum (predator)

62 observations over 30 days

Compute periodograms. From plot find predom-

inant frequency

Figure 2 shows the data with ”period”
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If model were of regression type process would

stay in ”phase”

Aside : Annual Seasonal model versus autore-

gressive model AR(12)

First stays in phase high levels every 12 months

Second gets out of phase after a random amount

of time

Data is not periodic as with regression model
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Model (x, y) = (prey, predator)

Time t measured in years; day = 1/365

d log(x(t)) =


µ− λy(t) + γx(t)− σ2

1

2


 dt + σ1dW1(dt)

d log(y(t)) =


−α + βx(t) + δy(t)− σ2

2

2


 dt + σ2dW2(dt)

Estimation

Use continuous time likelihood function

Discretize the estimator to produce estimators

Estimates based on first 52 data points (leave 10

for out of sample study)

µ λ γ σ2
1

0.10851 0.02813 -0.07361 0.16760

α β δ σ2
2

0.02870 0.21144 -0.56752 0.11540

The condition for ergodicity fails so this process

may be unstable
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One step ahead prediction

Conditional distribution of (log(x((j+1)∆), log(y((j+

1)∆)) given data up to time j∆

Either solve forward equations or use parametric

bootstrap

Use Euler approximation with small time incre-

ment size of ∆/m

m= 5 or 10 gives a stable answer, so we use m

= 5

Parametric bootsrap with many (1000) replicates

to estimate conditional quantiles
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Figure 3: Observed log size, one-step-ahead prediction, and .95 prediction in-
terval (Out-of-sample)
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Prediction Intervals in and out of sample based

on parametric boostrap

This is an in sample prediction
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Figure 4: Observed log size, one-step-ahead prediction, and .95 prediction in-
terval (Out-of-sample)
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