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Mathematical modeling :

- relationships between variables (on average)

- (time evolution) dynamics

Stochastic processes and statistical modelling

- relationships between variables and their vari-
ability

- (time evolution) dynamics with variability (stochas-
tics)



A simple and classical biological model of two
species growth
x; and 1; population sizes

Zdﬂit = 24(b11 — b12xr — bisyt) (1)
% — yt<b2,1 — 62725615 - b2,3yt)

Models population average dynamics and growth

Special case : Lotka Volterra model
prey = x; and predator =

dzy

= z4(p — Ayy)
{% = y(—a+ Py 2)

Long history of studying this model and varia-
tions since the 1930’s.



Need to incorporate randomness

Method 1 : regression model
Nkurunziza : observe DE + noise
keeps cyclic behaviour

long term stability, never die out

Method IT :

DE models average growth rate per individual
make growth rate random

- changes dynamics

- no longer cyclic

- may no longer be stable (ergodic)



Paths of (2) are deterministic

F(x,y) = Bxr — alog(z) + Ay — plog(y)

[t can be shown

dF(z,y) _dzdF(z,y)  dydF(zy)

dt dt dx dt  dy

Solution to (2) lives on a contour F'(z,y) = ¢

=0

C= F(x()a yO)

Solution : Deterministic , Cyclic; Figure 1

Figure 1: Two Contours of (2) with (u,\,«,8) = (3,1,7,2) and (zg,y0) =
(4.5,3.5) and (6.5,4.5)



Regression extension

(log(X¢), log(X4)) = (log(xe), log(ye) + (€ €} )
Observed data (X3, Y})

Noise : iid Gaussian noise or Ornstein Uhlen-
beck process (continuous time analogue of auto-
regressive order 1 process).

System maintains the periodicity with this sta-
tionary noise, but the deterministic path is masked
by noise.



Random growth rate extension

Linear growth rate per individual is an approxi-
mation to population average rate

a natural extension is — add noise to growth
rates

dr; = x4 ([,u — Aydt + Ulth(1)>
= x(p — Ay )dt + alxtthm

dyt = Yt ([—OZ + ﬁxt]dt + 0_2th(2))
= y(—a+ Bay)dt + ooy dWy”

Renshaw (1991) - biological models

Mao, Marion and Renshaw (2002) - existence of
solution ; when diffusion term is oax™dW; and m =
2; restriction due to choice of test function

can be extended to m > % but not for m = 1.

Gard and Kannan (1976) - restricted form of er-
godicity conditional on solution bounded; that is
not true for the noisy rate model



F; = F(x,y;) (contour function)
apply Ito’s Lemma
dF, = 3 (ao?+ pos3)dt
+01 (Br; — ) awV
05 (\ye — ) AW,

= 1 (ao? + po) dt + dM,

(3)

M is zero mean martingale

1
E(F(z,y)) = Flxo,90) + 5 (a0F + pos ) t

— oo ast — o0

Thus (x4, ;) — OR% (in mean)
Not ergodic (stable) with ANY NOISE



Competing species

dry = x(p — Ay + yoe)dt + letth<1)
dy: = yi(—a + B, + 6y,)dt + ooy, dW,”
(4)
self damping : v < 0,90 <0
Discussions in biological literature : prey-predator

(v < 0, § < 0) has draw back of unlimited linear
growth

competing species model corrects for this

J

I /I _ 0
Lemma 1€ = and e; = 3.

Rewrite competing species model
dr; = ¢ [i — My + €,(Bxy — )] dt
+01:13tth(1)

dy; = yi[—a' + By + es( Ny, — )] dt
‘I‘O-Qytth(Q)

If either
1.7>Oand0<5<(ﬁ‘0r

2.6 <0 and —2 < v < 0 (biological interest)

then ' >0 and o/ > 0.



Theorem 1 Consider
dry = x¢[p — \yr + e1(Bry — )| dt
"‘Ulwtth(l)
dy; = vy |—a+ Bxy + ea(Ayy — p)] dt
—i—agytth@)

(5)

initial condition (z,y) € R%.
If e <0, ¢4 <0 and also

) 2
o1+ o5l
0< < —€1 = |€
o0 1 = e
and ) ,
o7+ o
0 < L 22u<—€2:‘62’
24

then the solution to the SDE (5) is ergodic.

If these conditions are violated the system can
be transient

Gard (1980’s - 1990’s) studies recurrence and er-
godicity in terms of differential operators and STRONG
conditions (bounded solution)
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Bhattacharya (1978) studies sufficient conditions
for ergodicity for diffusions on R™ based on test
function H (r;) and r; = ||x¢|]

Adapt his method for showing ergodicity :

1. choose distance function F' to play role of Eu-
clidean distance

F>0and F — oo as (z,y) — R

2. use F' to show (x4, y;) is recurrent; may need
to find function H and use H(F(X}))

3. ergodicity

M zero mean martingale; A drift function

e A continuous
e There exists D such that
(i) A(x,y) < —dy < 0 on D and
(11)
sup A(z,y) <a < oo
(x,y)eD

(trivial if F" and derivatives are continuous)
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4. K compact and arbitrary interior to D (may
enlarge D)

T = inf{t >0: (v, y:) € K}

— (TD + T](?TD’%D>> [(Tp < 00)

Note I(7p < 00) = 1 almost surely

= recurrence

As part of the recurrence we show E*0% (1) <

oo for all g, yg (uses continuity of A ; smooth-
ness of F)

Conditional expectation and Markov property

EiUOa?JO (TK) — EQTOJUO (TD> + Eany()(ExTDayTD (TK‘FTD)>

< EO%(rp)+ sup E"Y(7x)
(x,y)e0D
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Proof Theorem 1 is based on a simple geometric
property

F(z,y) = fz — alog(z) + Ay — plog(y) + ¢
¢ =a—alog(a/B)+ p — plog(p/A)
F(z,y) >0

Apply Ito’s Lemma

dFy = |e1 (B — o)’ + €2 (Ayy — p)” + a) di
+dM,
(6)

a = ;(ofa+a3p)

dM; = o1 (Bxy — «) th(l) + o9 (Ayr — p) th(z)

M; is zero mean martingale

Ala,y) =a—[la| (Br — @)’ + |e| (Ay — p)°]

€; < 0 for the damping condition in the Theorem
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Need D C Ri : hence condition in Theorem has
uniform bound on negative drift outside D, forces
process back to centre.
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Bacteria Plots, Main Frequency
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Figure 2: Bacteria Data with ”periodic”

Luckinbill (1973) Ecology, 56, 1320-1327

Paramecium caudatium (prey)

Didinium nasutum (predator)

62 observations over 30 days

Compute periodograms. From plot find predom-
inant frequency

Figure 2 shows the data with "period”
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If model were of regression type process would
stay in " phase”

Aside : Annual Seasonal model versus autore-
gressive model AR(12)

First stays in phase high levels every 12 months

Second gets out of phase after a random amount
of time

Data is not periodic as with regression model
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Model (x,y) = (prey, predator)
Time t measured in years; day = 1/365

2

dlog(z(t)) = |p— Ay(t) +yz(t) — U;) dt + o1dW(dt)
dlog(y(t)) = |—a+ Bz(t) + dy(t) — Uj) dt + oodWs(dt)
Estimation

Use continuous time likelihood function

Discretize the estimator to produce estimators

Estimates based on first 52 data points (leave 10
for out of sample study)

1 A Y o
0.10851 | 0.02813 | -0.07361 | 0.16760
Q 3 d o5
0.02870 | 0.21144 | -0.56752 | 0.11540

The condition for ergodicity fails so this process
may be unstable
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One step ahead prediction

Conditional distribution of (log(z((j+1)A), log(y((j+
1)A)) given data up to time jA

Either solve forward equations or use parametric
bootstrap

Use Euler approximation with small time incre-
ment size of A/m

m= 5 or 10 gives a stable answer, so we use m
=5

Parametric bootsrap with many (1000) replicates
to estimate conditional quantiles
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Figure 3: Observed log size, one-step-ahead prediction, and .95 prediction in-
terval (Out-of-sample)
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Prediction Intervals in and out of sample based
on parametric boostrap
This is an in sample prediction
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Figure 4: Observed log size, one-step-ahead prediction, and .95 prediction in-
terval (Out-of-sample)
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