
Parametric and Nonparametric Bootstrap

1 Sampling Distributions of Some Classes of Random
Variables

In our course we discuss statistical inference statistical models for iid samples. We also
some extensions to dependent r.v.s and their statitsical models, but mainly focus on iid
settings.

On common type of r.v. that comes up in hypothesis testing and confidence intervals
is

W =

√
n
(
X̄n − µ

)
√
S2
n

.

This involves r.v.s Xi, i = 1, . . . , n which are iid from a distribution F , and

µ = EF (X)

where X is a generic r.v. from distribution F . Sometimes it is helpful for us to think
about this in a bit more explicit form

W =

√
n
(
X̄n − µ(F )

)
√
S2
n

where we need to recognize how µ is related to the population distribution F , that is µ is
a function of F which is denoted as µ(F ).
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If the statistical model has parameter space Θ then we may estimate θ by θ̂n, typically
a method of moments estimator or MLE. In that case we might be interested in a r.v.

W =

√
n
(
X̄n − µ

)
√
V (θ̂n)

.

In this case we have µ = EF (X) which we can think of more explicitly as

µ(θ) =
∫ ∞

−∞
xf(x, θ)dx

in the continuous case and as
µ(θ) =

∑
x

xf(x, θ)

in the discrete case, interpreting f as the pdf of pmf in the two formulae.

These are of the following form.

W =

√
n
(
θ̂n − θ

)
√
τ̂ 2

In the case that θ is a vector, that is Θ has dimension 2 or larger, we might then pick on
component, and correspondingly interpret the above. The quantity in the denominator is
the expression that typically comes in from the normal approximation for the r.v. W . In
the regular statistical model with an MLE, it is obtained from either Fisher’s information,
I(θ), or from observed Fisher’s information, I(θ̂n).

We can think of this as

W =

√
n
(
ψ̂n − ψ

)
√
v2n

.

ψ is the appropriate parameter or function of the parameter as needed in our particular
application or case. Again if need to keep track of how ψ depends on the population
distribution we can think of it as ψ(F ) or as ψ(θ) when there is a parameter.

These can be used to construct a confidence interval for θ, or a component of θ, or of
µ which is a function of θ.
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If we have the sampling distribution of W the we have the corresponding quantiles for
this distribution. Specifically if we have the 0.025 and 0.975 quantiles, say cL = q.025 and
cU = q.975 then we obtain the 95% confidence interval for ψ by solving for ψ from

q.025 ≤
√
n
(
ψ̂n − ψ

)
√
τ̂ 2

≤ q.975 .

This gives the 95% confidence for ψ as

ψ̂n − q.975

√
τ̂ 2√
n

≤ ψ ≤ ψ̂n − q.025

√
τ̂ 2√
n
.

In order to make this useful in practice we need a statistic that is used to estimate v2n and
also to a method to obtain these quantiles. That is why we often use a sample variance
when ψ = µ = EF (X) or observed Fisher’s information, or another appropriate expression
as needed for a method of moments estimator.

If the distribution of W is not explicitly know, we can approximate the distribution
of W . This is usually done by a normal approximation. We have seen how these can be
obtained Theorems in Chapter 9.5 for the regular statistical models and MLE, and by the
use of the delta method in the method of moments estimation method.

Additionally we also have seen that if θ is known (generally not a realistic setting) we
can also use a simulation method to approximate the distribution of W and hence obtain
the needed quantiles of W .
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2 Parametric Bootstrap

Earlier in the course we used the parametric bootstrap. A brief overview of this method
is given below.

1. Xi, 1 = 1, . . . , n are iid from f(·; θ), θ ∈ Θ. θ0 is used to denote the true value of
the parameter.

2. θ̂n = h(X1, . . . , Xn) is an estimator of θ and Tn is a centred or standardized r.v.
constructed from this; for example

Tn =

√
n
(
θ̂n − θ0

)
vn

where vn is a known standard deviation or estimated standard deviation, say v2n =

h1(X1, . . . , Xn).

3. Consider X∗
i iid from f(·; θ̂obs). Based on these iid rv’s construct (that is using the

same formula as for θ̂n and vn, that is the same h, h1)

•
θ̂∗n = h(X∗

1 , . . . , X
∗
n) , (v

∗
n)

2 = h1(X
∗
1 , . . . , X

∗
n)

•

T ∗
n =

√
n
(
θ̂∗n − θ̂obs

)
v∗n

4. Use Monte Carlo simulation with M simulation steps of size n each to approximate
the sampling distribution of T ∗

n for this given θ̂obs

The bootstrap theory (not further discussed in our course) is that T ∗
n and Tn have

approximately the same distribution, thus approximately the same quantiles.

We will review this further in the lecture.



Parametric and Nonparametric Bootstrap 5

3 Nonparametic Bootstrap

The nonparametric bootstrap is very similar except for the third step. This is now replaced
by rv’s X∗

i iid from the empirical distribution of the observed X1, X2, . . . , Xn. Other parts
of the algorithm are the same.

1. Xi, 1 = 1, . . . , n are iid from f(·)

2. θ̂n = h(X1, . . . , Xn) is an estimator of θ and Tn is a centred or standardized r.v.
constructed from this; for example

Tn =

√
n
(
θ̂n − θ0

)
vn

where vn is a known standard deviation or estimated standard deviation, say v2n =

h1(X1, . . . , Xn).

3. Consider X∗
i iid from Fn, the empirical distribution function of X1, X2, . . . , Xn.

Based on these iid rv’s construct (that is using the same formula as for θ̂n and vn,
that is the same h, h1)

•
θ̂∗n = h(X∗

1 , . . . , X
∗
n) , (v

∗
n)

2 = h1(X
∗
1 , . . . , X

∗
n)

•

T ∗
n =

√
n
(
θ̂∗n − θ̂obs

)
v∗n

4. Use Monte Carlo simulation with M simulation steps of size n each to approximate
the sampling distribution of T ∗

n for this given θ̂obs

Based on the bootstrap simulation we can thus obtain the bootstrap approximation to
quantiles for the sampling distribution of

T ∗
n =

√
n
(
θ̂∗n − θ̂obs

)
v∗n
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This allows us for example to obtain quantiles, say c∗L and c∗U for the central 0.95 region.
The bootstrap theory then states that these quantiles are approximately the quantiles of

Tn =

√
n
(
θ̂n − θ0

)
vn

.

Thus for example we obtain an approximate 95% confidence interval for θ0 by solving for
θ0 from

c∗L ≤
√
n
(
θ̂n − θ0

)
vn

≤ c∗U .

This idea is explained in more detail at the end of this section.

The bootstrap algorithm is easy to implement in a simulation code, for example in R.
The numerical values of the appropriate quantiles c∗L and c∗U are then easily obtained. R
also contains several packages that implement the nonparametric bootstrap.

The theory of why the nonparametric bootstrap gives good approximations to the
sampling distribution of Tn and its quantiles is not discussed in this course. The method
applies generally when the true sampling distribution of Tn converges in distribution to
a normal distribution, and as a bonus usually gives a better approximation to the true
quantiles than does many other methods of approximation.

Now we need to ask how do we implement step 3 in the nonparametric bootstrap
method. For the parametric bootstrap we use a method of transformation based on
methods in Chapter 2 in Stat 3657. To make this even easier R often has programs
for generating random variables from some specified distributions, once we specify the
parameter values.

We have seen in earlier course that there may be different functions of r.v.s that give
the same resulting distribution. For example consider the Cauchy distribution, with pdf

f(x) =
1

π(1 + x2)
.

It has a nice cdf
F (x) =

1

2
+

1

π
tan−1(x)
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which is given terms of the arc tan function tan−1. Thus F−1 is very easy to obtain (the
student should do this). Since F is continuous then if U ∼ Unif(0, 1) then

X = F−1(U)

is a r.v. with cdf F , and thus X has a Cauchy distribution. A second method is given by
Rice Example 3.6.1 Example B. Suppose that Y1, Y2 are iid N(0, 1) r.v.s. Let

X =
Y1
Y2

.

Then X has the Cauchy pdf. The student should review that example or work through
the method of finding the pdf of X directly, using a quotients method or the completion
of the transformation.

Something similar can be done for simulation of r.v.s which have as its cdf the empirical
distribution.

Method 1

For the non parametric bootstrap we need to revisit the empirical distribution (EDF)
The observed data is x1, x2, . . . , xn and the EDF is

F̂n(y) = Fn(y) =
1

n

n∑
i=1

I(xi ≤ y) .

This is the sample proportion of the observed data less than or equal to the argument
y of the function Fn. Notice that Fn also happens to be a CDF, albeit a random CDF
in the sense that if we ran the experiment again we would get a different value for this
function.

For simplicity we consider only the case that the true CDF F is continuous. This
means that with probability 1 there no ties and so each observed xi is distinct, although
they may be tied to say 2 or 4 decimal places. The random CDF Fn is a discrete CDF. It
has jumps at arguments y that correspond to each xi, that is n jump points. At each of
these jump points the probability mass is 1

n
. Thus the random CDF Fn is a the CDF of

a distribution that can take values x1, x2, . . . , xn and each with probability 1
n
. A simple
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algorithm to simulate
X∗ ∼ Fn

is to simulate a uniform (0,1) random variable U and consider the mapping

X∗ = x1 if 0 ≤ U <
1

n

X∗ = x2 if 1

n
≤ U <

2

n

X∗ = x3 if 2

n
≤ U <

3

n
...

X∗ = xn−1 if n− 2

n
≤ U <

n− 1

n

X∗ = xn if n− 1

n
≤ U ≤ 1

The student should verify that X∗ has CDF Fn.

See the homework problem 44 at the end of chapter 2 for this method. There you
applied this simulation method to generate a geometric random variable from U . If some
the xi are equal, then Fn will have some jumps of size 2

n
(in the case of one tied pair) or

possibly bigger jumps that are multiples of 1
n
.

Method 2

R has an even simpler method, a program called sample. This will sample from a
vector of n a sample with replacement, by using the appropriate arguments. There are
also functions which carry out the nonparametric bootstrap method, one being in an R
package called boot.

Suppose that
U ∼ Uniform ({1, 2, . . . , n}) .

Let the n data points be x1, . . . , xn. Define

X∗ = xU .
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We can also think of this more explicitly as a function. Let h be a function with domain
{1, 2, . . . , n} given by the formula

h(i) = xi .

Then X∗ = h(U). The student should verify that X∗ has cdf given by the empirical
distribution function of this data.

This method does not need to be modified even if some of the xi are tied. The r.v.
X∗ random chooses amongst the n objects x1, . . . , xn.

Method 2 is in fact easier to implement or code, as long as the computing language
has a random number generator, and is even easier to code if the language has a uniform
discrete random number generator. R has such a program or function, called sample.

The (nonparametric) bootstrap does not make any parametric model assumptions on
F .
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Further Discussion of the Nonparametric Bootstrap

The Theory to prove that the nonparametric bootstrap methods works is beyond what
we discuss in this course. It depends on a study of how well the EDF Fn approximates
(or converges to) the true CDF F . In Statistics 3657 we studied, for a fixed value y the
sequence Fn(y). Since this is an average of iid Bernoulli random variables I(Xi ≤ y),
the Law of Large Number and Central Limit both applied since the conditions of these
Theorems are satisfied. In particular we can conclude that

Fn(y) → F (y) in probability, as n→ ∞ .

Thus Fn(y) (as a sequence of r.v.s indexed by n) is a consistent estimator of F (y).

The nonparametric bootstrap works very well for random variables of the form

W =

√
n
(
θ̂n − θ

)
√
τ̂ 2

. (1)

Recall also that Xi are iid F . To help us interpret this first recognize that W is a function
of r.v.s X1, . . . , Xn and the ”parameter” θ(F ), that is we can view θ as depending on
F . For example θ = EF (X) might be the mean of F , or it might be θ = EF (|X|) the
mean absolute value. It may also be the formula used to obtain a method of moments
estimator.

The bootstrap method is to consider the r.v. similar to (1) after recognizing that W
is obtained from X1, . . . , Xn, θ(F ) by a given formula. The bootstrap r.v. W ∗ uses this
same formula and is obtained from the r.v. X∗

1 , . . . , X
∗
n, θ(Fn). If we view W as the r.v.

obtained from a physical experiment with cdf F and r.v.s X1, . . . , Xn iid F we then view
W ∗ as the analogous experiment based on cdf Fn and X∗

1 , . . . , X
∗
n iid Fn.

The bootstrap paradigm is that the quantiles of W ∗ is a good approximation for the
quantiles of W . From this if we use W to generate a confidence interval for θ using
quantiles of W , then by the bootstrap we use W to generate a confidence interval for θ
but using the quantiles of W ∗ in place of the quantiles of W .
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We could also apply the bootstrap to a r.v. such as

W =
σ̂2

σ2
.

In this case we would use the bootstrap r.v.

W ∗ =
σ̂∗,2

σ2(Fn)
.

The term in the denominator is

σ2(Fn) = VarF (X∗)

which is the variance of the r.v. X∗ used in the bootstrap.

The nonparametric bootstrap method can be applied to other settings. In the case
of simple regression, with iid random innovation or random errors εi, one can fit the
regression model and calculate residuals

ri = ε̂i = Yi − Ŷi .

One can then consider r.v.s r∗i = ε∗i that are iid from the empirical distribution of the
residuals. Consider simple linear regression with data (xi, Yi) from the model

Yi = β0 + β1xi + εi .

Fit the model. The bootstrap data is then given by

Y ∗
i = β̂0 + β̂1xi + ε∗i .

From this one could then obtain the r.v. β̂∗, the fitted coefficient from the bootstrap r.v.
One could then for example study the bootstrap distribution of for example

√
n
(
β̂∗
1 − β̂1

)
.

The quantiles of this bootstrap distribution then estimate the distribution of the r.v.
√
n
(
β̂1 − β1

)
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which can then be used to obtain a confidence interval for β1 based on these bootstrap
quantiles. This bootstrap method does not require that the model be a normal regres-
sion model. This specific implementation is sometimes referred to as semi-parametric as
it assumes the linear part of the mean function for regression, but does not assume a
parametric form for the F , the distribution of the random noise.

Another version of a bootstrap for regression is to resample pairs (x∗i , Y
∗
i ). It has

slightly different properties than the method described above, but depends less on the
correctness of the linear regression assumptions. This method does even make use of the
linear mean part of regression. It is also referred to as a regression application of the
bootstrap method.

Bootstrap methods are versatile, but depend heavily on computing to implement the
method.


