
Statistics 3858 : Construction of Two Common Types of

Estimators

Estimators are statistics used to estimate parameters or functions of parameters for a statistical model.

Here we consider finite parameter models. Let Θ be the parameter space.

Consider the typical setting of the random data X1, X2, . . . , Xn being iid from a distribution that

belongs to a statistical model. That is Xi are iid with distribution f(·, θ) where θ ∈ Θ, but unknown.

The first method we discuss is the method of moments. The other commonly used method is the

method of maximum likelihood, and is discussed in a later handout.

1 Method of Moments

Let µk = E(Xk). Notice this expectation depends on the parameter θ, and so we write µk(θ) = Eθ(X
k).

The subscript θ is denote the dependence on the parameter θ.

Aside To help clarify this notation and idea recall, in the continuous r.v. case that we define, when

finite,

E(Xk) =

∫ ∞

−∞
xkf(x)dx . (1)

In the case of a statistical model with parameter space Θ possible choices for the pdf f are f(·; θ). Thus
in (1) we have a possibly different value for this integral for each possible choice of θ. Thus we have

Eθ(X
k) =

∫ ∞

−∞
xkf(x; θ)dx .

which gives a mapping θ 7→ Eθ(X) ≡ µk(θ).

In the case of a discrete r.v. we have a similar property.

End of Aside

Notice this gives a mapping θ 7→ µk(θ), typically a many to one mapping. However we can often find

a mapping

θ 7→ (µ1(θ), µ2(θ), . . . , µK(θ))

so that this mapping (or function) is a one to one function. Specifically this gives a function

h : Θ 7→ RK .
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When we restrict the range appropriately this is a 1 to 1 function. Therefore, when using the domain

Θ and suitable range, the function h has an inverse h−1. Usually K = d where d = dimension(Θ), but

sometimes we need to modify this to obtain a 1 to 1 function. Specifically we have

θ = h−1 (µ1(θ), µ2(θ), . . . , µK(θ)) .

Examples : (fill in details)

Exponential , Bernoulli , Poisson , Normal, Gamma, N(0, σ2)

Bernoulli and Binomial

If X ∼ Bernoulli(θ) then Eθ(X) = θ. Thus for a given value of µ1 = E(X) we can determine θ = µ1.

If X ∼ Binom(m, θ) then Eθ(X) = mθ. Thus for a given value of µ1 = E(X) we can determine

θ = µ1

m .

Notice that if X1, . . . , Xm are iid Bernoulli(θ) then Y = X1 +X2 + . . .+Xm ∼ Binom(m, θ).

End of Example

Exponential

If X ∼ exponential, θ then X has pdf

f(x; θ) = θe−θxI(x ≥ 0)

The parameter θ belongs to the parameter space Θ = (0,∞). Eθ(X) = 1
θ and Eθ(X

2) = 2
θ2 . Thus we

have a mapping

θ 7→ Eθ(X) =
1

θ
.

This produces a mapping h : Θ 7→ R+ given by h(θ) = 1
θ . This has an inverse mapping h−1 : R+ 7→ Θ

given by h−1(x) = 1
x . Thus for a given value µ = E(X) we can determine

θ = h−1(µ) =
1

µ
.

We do not need to use the second moment, since stopping at the first moment produces a 1 to 1

mapping between Θ and the set of possible first moments.

End of Example

Gamma Example

If X ∼ Gamma(α, λ) then X has pdf

f(x;α, λ) =
λαxα−1

Γ(α)
e−λxI(x > 0)

and

µ1(α, λ) = Eθ(X) =
α

λ
, µ2(α, λ) = Eθ(X

2) =
α

λ2
+

α2

λ2
=

α(α+ 1)

λ2

In this example it is not possible to find a 1 to 1 mapping between Θ and the possible values of the

first moments. This is because Θ is of dimension 2 and the set of possible first moments is R+, a set of

dimension 1. Thus we next have to consider first and second moments.
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The above formulae gives us a mapping h : Θ 7→ B, where

B = {(µ1, µ2) : µ1 > 0, µ2 > 0, µ2 − µ2
1 > 0}

This formula can be inverted, that is an inverse map can be found.

Given (µ1, µ2) ∈ B, that is such that µ2 − µ2
1 > 0, we can then solve

α

λ
= µ1

α(α+ 1)

λ2
= µ2

The solution is

λ =
µ1

µ2 − µ2
1

α =
µ2
1

µ2 − µ2
1

Thus knowing the parameter θ = (α, λ) is equivalent to knowing the value (µ1, µ2) ∈ B.

End of Example

Normal mean 0

This is an example where the construction of the method of moments estimators does not start at µ1.

X ∼ N(0, θ), with θ ∈ Θ = (0,∞). Then

Eθ(X) = 0 , Eθ(X
2) = θ .

Notice if we have a possible value of µ1 in this case, the only possible value is µ1 = 0 and then we cannot

find an inverse map to determine what is the corresponding value of θ. However for a given possible value

of µ2 then we can determine (that is find the corresponding value) θ from

µ2 = θ .

End of Example

Let

µ̂k,n =
1

n

n∑
i=1

Xk
i

be the k-th sample moment. Let

θ̃n = h−1 (µ̂1,n(θ), µ̂2,n(θ), . . . , µ̂K,n(θ))

We call θ̃n the method of moments estimator. It is also sometimes called the moment matching method,

but the usual statistical terminology is the method of moments.

Examples : (fill in details)

Exponential
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The method of moments estimator for θ is obtained by solving

µ̂1,n =
1

θ

Recall also that µ̂1,n = X̄n so therefore we obtain the method of moments estimator

θ̃n =
1

X̄n

In this particular example we can calculate the expected value of θ̃n.

If X1, . . . , Xn are iid exponential, θ, then Tn = X1 + . . . + Xn has Gamma(n, θ) distribution. The

student should verify this at home. The simplest method is to use moment generating functions.

Therefore

Eθ

(
1

X̄n

)
= nEθ

(
1

Tn

)
= n

∫ ∞

0

1

x

θnxn−1

Γ(n)
e−θxdx

=
nΓ(n− 1)θ

Γ(n)

∫ ∞

0

θn−1x(n−1)−1

Γ(n− 1)
e−θxdx

=
nΓ(n− 1)θ

Γ(n)

=
n(n− 2)!θ

(n− 1)!

=
n

n− 1
θ .

We can therefore determine that the method of moments estimator is not unbiased. However we can

construct another estimator from this that does happen to be unbiased. What is it?

We can also determine the distribution of 1
X̄n

= n
Tn

. Let fT be the pdf of Tn. It is the Gamma(n, θ)

pdf. Set W = n
Tn

. The pdf of W is the of course the pdf of 1
X̄n

, and we are just using more convenient

notation of the type used earlier in Chapter 2. The from the methods in Chapter 2 we obtain the pdf

fW of W

fW (w) = fT (
n

w
) | − n

w2
|

For w ≤ 0, fW (w) = 0. For w > 0

fW (w) = fT (
n

w
)
n

w2

=
θn
(
n
w

)n−1
n

Γ(n)w2
e−θ( n

w )

=
nnθn

Γ(n)wn+1
e−(

nθ
w )

End of Example

Gamma Example

Xi, i = 1, . . . , n are iid random variables from the Gamma model. The method of moments estimator

is then
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λ̃n =
µ̂1,n

µ̂2,n − µ̂2
1,n

α̃n = = λ̃nµ̂1,n =
µ̂1,nµ̂1,n

µ̂2,n − µ̂2
1,n

End of Example

Normal mean 0

We have a 1 to 1 mapping Θ 7→ R+ given by

θ 7→ Eθ(X
2) = µ2 = θ .

Thus the method of moments estimator is

θ̃n = µ̂2,n =
1

n

n∑
i=1

X2
i

This is an example where we do not use µ̂1,n = X̄n to construct our method of moments estimator.

End of Example
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Return to the exponential θ example. We also have

Eθ(X
2) =

2

θ2

so the method of moments also gives an estimator based on solving

2

θ2
= µ̂2,n

yielding an estimator

˜̃
θn =

√
2√

µ̂2,n

We now have two estimators θ̃n and
˜̃
θn. Which estimator is better?

We can also obtain a third estimator, using the property that Var(X) = 1
θ2 . This suggests, as an

estimator of θ based on the same general idea as the method of moments estimator, the following :

θ̃3,n =
1√
S2
n

where S2
n is the sample variance.

Which is the best estimator?

To answer this we need to think about what this question might mean and how we can proceed to

compare estimators.

The paradigm for determining properties of estimators is to to use the sampling distribution, for each

possible θ ∈ Θ, of an estimator. When possible we do this for each relevant sample size n, especially if we

can determine the sampling distribution of the estimator, say θ̂n. Often however the sampling distribution

of θ̂n is not easy to calculate. In this case we often use one of (i) asymptotic or approximate sampling

distribution for n large or (ii) for an appropriate and manageable set of values θ1, . . . , θk use simulation or

numerical methods or (iii) use non-parametric methods. (i) is often based on an approximation derived

from some methods related to the central limit theorem. (ii) typically uses Monte Carlo simulation

methods and is sometimes called the parametric bootstrap. (iii) there are some special methods such as

the Wilcoxon rank test and various so called permutation tests; the non-parametric bootstrap.

The non-parametric bootstrap is a very useful method in practice. However before trying to under-

stand some of the intuition behind the bootstrap method it is very helpful to understand parametric

estimation and the parametric bootstrap.

To compare two estimators, say θ̂1,n and θ̂2,n we use properties of their sampling distributions. Ideally

we would say θ̂1,n is a better estimator of θ that θ̂2,n if it is closer in probability, or more specifically if

Pθ

(
| θ̂1,n − θ |< a

)
> Pθ

(
| θ̂2,n − θ |< a

)
(2)

for every number a > 0. This is generally not the case, but it gives us way of contemplating better in a

probabilistic sense.

See the R script file for this example to see how we can use computer simulation to evaluate this, at

least for one specific parameter value.
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In general this is not easy to do. However if θ̂1,n and θ̂2,n are unbiased estimators of θ and are

approximately normally distributed this idea is easier to implement.

The R script file shows this for a sample size n = 40 for two estimators for an iid sample from an

exponential parameter λ family. For λ̂1,n = 1
X̄n

the delta method applies, giving

√
n(λ̂1,n − λ) → N(0, λ2)

in distribution as n → ∞. The R script shows this approximation is reasonable for n = 40. The same is

true for the estimator λ̂2,n = 1/
√
S2
n, but we need further properties about convergence to verify this.

In this case √
n(θ̂1,n − θ) → W1 ∼ N(0, γ2

1)

in distribution as n → ∞. In the above example the variance for the limit distribution would be λ2.

Therefore

Pθ

(
| θ̂1,n − θ |< a

)
= Pθ

(√
n | θ̂1,n − θ |

γ1
<

a
√
n

γ1

)

≈ P (|Z| < a
√
n

γ1
)

= P (|W1| < a
√
n)

Similarly √
n(θ̂2,n − θ) → W2 ∼ N(0, γ2

2)

in distribution as n → ∞. Therefore

Pθ

(
| θ̂2,n − θ |< a

)
= Pθ

(√
n | θ̂2,n − θ |

γ1
<

a
√
n

γ2

)

≈ P (|Z| < a
√
n

γ2
)

= P (|W2| < a
√
n)

Thus we can implement the idea behind (2) by comparing these two approximate normal probabilities.

In particular if Var(θ̂1,n) < Var(θ̂1,n) then estimator θ̂1,n is closer to θ than is θ̂2,n in this probability

sense.

If estimators have an approximate normal distribution, and are unbiased, then we can decide on the

better estimator by comparing variances. This single number, variance, replaces an in principle more

complicated comparison (2).

What happens if the estimators are not unbiased?

Eθ

(
(θ̂n − θ)2

)
= Eθ

(
(θ̂n − Eθ(θ̂n) + Eθ(θ̂n)− θ)2

)
add and subtract the mean of the estimator

= Eθ

(
(θ̂n − Eθ(θ̂n))

2
)
+ 2Eθ

(
(θ̂n − Eθ(θ̂n))

)
×
(
Eθ

(
θ̂n

)
− θ
)
+
(
Eθ

(
θ̂n

)
− θ
)2

= Eθ

(
(θ̂n − Eθ(θ̂n))

2
)
+
(
Eθ

(
θ̂n

)
− θ
)2

= Var(θ̂n) +
(
Bias(θ̂n)

)2
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We call this term the Mean Square Error (MSE) of θ̂n

MSE(θ̂n) = Var(θ̂n) +
(
Bias(θ̂n)

)2
Thus to compare two estimators that have a normal or approximate normal distribution, we can

compare them by comparing their MSE. The estimator with the smaller MSE is the better estimator.

We return to this idea in Rice Chapter 8.7.


