
Statistics 3858 : Maximum Likelihood Estimators

1 Method of Maximum Likelihood

In this method we construct the so called likelihood function, that is

L(θ) = L(θ;X1, X2, . . . , Xn) = fn(X1, X2, . . . , Xn; θ)

The function fn is either the joint pdf or joint pmf of the random variables X1, X2, . . . , Xm, and the

notation denotes the dependence of this distribution on θ, where θ ∈ Θ.

The notation for the likelihood function L usually suppresses the random data X1, X2, . . . , Xn and

we usually write this as L(θ). Sometimes we also wish to denote the dependence on n and write

Ln(θ). When we want to denote the dependence on the random variables X1, X2, . . . , Xn we write

L(θ;X1, X2, . . . , Xn) = fn(X1, X2, . . . , Xn; θ).

When we have observed data X1 = x1, X2 = x2, . . . , Xn = xn, where the lower case letters denote the

specific observed data we then have the observed likelihood

L(θ) = L(θ;x1, x2, . . . , xn) = fn(x1, x2, . . . , xn; θ)

For given random variables the maximum likelihood estimator, say θ̂n is the argument θ ∈ Θ for which

L(θ̂n) = max
θ∈Θ

L(θ)

Notice this means that

θ̂n = θ̂n(X1, X2, . . . , Xn)

which says that θ̂n is a function of the random data or random variables X1, X2, . . . , Xn. Sometimes we

may find this explicitly by finding this function, say h so that

θ̂n = h(X1, X2, . . . , Xn)

For observed data x1, x2, . . . , xn this says

θ̂n = h(x1, x2, . . . , xn)

Mathematically this says we maximize over possible θ the function

L(θ) = L(θ;x1, x2, . . . , xn) = fn(x1, x2, . . . , xn; θ)

by treating this is a function with argument θ and treating x1, x2, . . . , xn as given and known numbers.
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The method of moments searches for a value of the parameter θ that matches the sample moments.

The method of maximum likelihood searches for the value of the parameter θ that gives the largest

probability (or density) for the observed data.

Since our goal is to maximize the likelihood can use anything proportional to the joint pdf or joint

pmf, provided the constant of proportionality does not involve θ. Therefore we use as the likelihood

function L anything positively proportional to the joint pdf or joint pmf

L(θ) = L(θ;x1, x2, . . . , xn) ∝ fn(x1, x2, . . . , xn; θ) (1)

The notation for (1) emphasizes that we are dealing with a function with argument θ ∈ Θ, and the

second expression is used when we need to emphasize that it also depends on the observed data (or the

observable r.v.s with X in place of x).

Let θ̂n be the element θ ∈ Θ which maximizes L(θ) = L(θ;X1, . . . Xn). We denote this value as

θ̂n = argmaxθ∈ΘL(θ) .

Sometimes we are interested in a particular subset of Θ and the maximization may be done over that

set. In any case the idea is the same but the maximization is restricted to θ in this particular subset. For

example in a normal model the parameter space is Θ = R × R+, but we may require the mean is 0 and

so compute a restricted MLE over the set Θ′ = {(0, σ2) : σ2 > 0} ⊂ Θ. Of course we could also work a

new statistical model with parameter space R+, where the parameter corresponds to σ2.

It is again worth pointing out that at this stage of finding the argument that maximizes the likelihood,

we find this formula by either working with L(θ,X1, . . . , Xn) or with L(θ, x1, . . . , xn), as either will give

the formula to produce the function that gives θ̂. One is the r.v.s θ̂(X1, . . . , X) and the other is simply

the function θ̂(x1, . . . , xn). Of course when we plug in the observed data both will give the same value, as

they are based on the same function. We had the same issue when working with the method of moments.

The most common setting is when the random variables are independent, and more specifically are

iid. In this case if the marginal distribution of Xi is f(·; θ) (either pdf of pmf) where θ is some value in

the parameter space, then the likelihood function is

L(θ) = L(θ;X1, X2, . . . , Xn) =

n∏
i=1

f(Xi; θ) .

This is because in the case that Xi are iid with distribution f(·; θ) the joint distribution of X1, X2, . . . , Xn

is given by the function (with arguments x1, x2, . . . , xn)

fn(x1, x2, . . . , xn; θ) =

n∏
i=1

f(xi; θ) .

If the Xi’s are dependent r.v.s, for example an AR(1) sequence of r.v.s or another Markov process,

then the joint distribution fn will be of a different form.
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2 Some Examples

Binomial

For data X ∼ Binom(n, θ) with θ ∈ Θ = [0, 1] the pmf is

f(x; θ) =

(
n

x

)
(1− θ)n−xθx

for x = 0, 1, . . . , n. The likelihood is then taken to be either

L(θ) =

(
n

X

)
(1− θ)n−XθX

or

L(θ) = (1− θ)n−XθX

How do we find θ̂n? L is a function of a single argument θ, it is differentiable, so we may use calculus

methods to find the MLE. For the purpose of finding this formula is does not matter whether we use X

as the random variable (or random vector as needed) or x as the observed data (usually vector of data)

xobs Our object in finding the formula for θ̂n is simply to find this formula, which will involve X or x.

When we wish to study θ̂n as a r.v. we need to use it in the form θ̂n(X) and when we wish to calculate

the observed value, that is the estimate, we use it in the form θ̂n(x). Once we find the formula h(x) we

then use it to obtain the estimate h(xobs) or the r.v. h(X).

dL(θ)

dθ
=

d{(1− θ)n−xθx}
dθ

= (n− x)(1− θ)n−x−1(−1)θx + x(1− θ)n−xθx−1

= {−(n− x)θ + x(1− θ)} (1− θ)n−x−1θx−1

Recall from calculus that the maximum value occurs either at θ̂ which (i) is the solution of

dL(θ)

dθ
= 0 (2)

or (ii) θ̂ is on the boundary of Θ, that is 0 or 1 in this case.

The student should review this maximization method from their calculus text or notes for their

calculus of one variable and calculus of several variables.

Consider solving (2). There are actually 3 solutions, say

r1 = 0, r2 = 1, r3 =
x

n
.

Notice that if x = 0 then r3 = 0 and if x = n then r3 = 1.

Consider the cases

• x = 0. The student should sketch the function L(θ) and verify there is an unique maximizer, θ̂n = 0.

You may also see the remark after this example. In this case

L(θ) = (1− θ)n .

Is there any θ which makes the derivative zero?
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• x = n. The student should sketch the function L(θ) and verify there is an unique maximizer,

θ̂n = 1.

• 0 < x < n. In this case L(0) = 0, L(1) = 0 and L( xn ) > 0, so that argmax = x
n .

Fortunately in all three cases we have

argmaxθ∈ΘL(θ) = θ̂n =
x

n

so we obtain the one algebraic solution.

Continuation

Since differentiating a sum is easier than differentiating products, we may use a strictly monotone

increasing transformation of L(θ) and maximize it instead. The argmax of this will be the same as the

argmax of L. Since log of a product is a sum of the logs we use a logarithmic transformation, specifically

the natural log, so that differentiation is easier. The so called log likelihood is then

Λ(θ) = log(L(θ)) = (n−X) log(1− θ) +X log(θ) + log

((
n

X

))
In this form Λ(X) is a random function, so the solution θ̂ = argmax(θ){Λ(θ)} is a random variable.

In order to find argmax(θ){Λ(θ)} we can equally well work with

Λ(θ) = log(L(θ)) = (n− x) log(1− θ) + x log(θ) + log

((
n

x

))
where instead of the r.v. X we use a generic value x or the appropriate type, in this case an integer from

0, . . . , n. Either of these forms allows us to find the formula for θ̂ = argmax(θ){Λ(θ)}. When we want

to study this as a r.v. we must work with θ̂(X), and when we just want to specify the function we can

work with θ̂(x). Notice these two, while looking similar, one is the r.v. that is a function of X whereas

the other is simply a function. The same notion applies to L(θ,X) and L(θ, x), where we explicitly put

in the dependence on the r.v. X or the (generic) argument x.

Now return to the log likelihood. The derivative wrt θ (when x 6= 0 or x 6= n) is

d log(L(θ))

dθ
=

d{(n− x) log(1− θ) + x log(θ)}
dθ

= −n− x
1− θ

+
x

θ

d log(L(θ))

dθ
= 0

yields

θ̂n =
x

n
.

Fortunately this formula does give the correct maximizer even in the cases x = 0, n.

Notice that we have the argmax is of the form h(x), that is a function of the data. To study this as

a r.v. we study h(X) and to obtain the estimate we use h(x).

Also notice that if we had used

Λ(θ) = log(L(θ)) = (n−X) log(1− θ) +X log(θ)
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we would get the same solution for argmax, that is we omit the term log
((
n
x

))
which is constant with

respect to θ.

The maximum likelihood estimator is

θ̂n =
X

n
= X̄n

In this statistical model the MLE is the same as the method of moments estimator.

End of Example

Remark

In the above example we use log likelihood since the algebra is easier. We do need to be careful how

we use calculus. In particular if x is not 0 or n then

L(0) = L(1) = 0

and so we cannot take logarithms when θ equals 0 or 1.

If x = 0 then

L(θ) = (1− θ)n−xθx

= (1− θ)n−0θ0

= (1− θ)n

In particular L(1) = 0. Taking logs we then have, except for θ = 1

log(L(θ)) = n log(1− θ)

Differentiating gives
d log(L(θ))

dθ
= − n

1− θ
and there is no solution to

d log(L(θ))

dθ
= − n

1− θ
= 0

According to the calculus method of finding maximizers then argmax(log(L(θ)) must occur at either 0

or 1. Since log(L(1)) = limθ→1− log(L(θ)) = −∞ and log(L(0)) = log(1) = 0 then argmax equals 0.

Before taking logs we could also have noted when x = 0 that L(·) is a strictly monotone decreasing

function of argument θ and so the maximum has to occur at 0.

Fortunately often the formal calculus does still give the correct answer, but not always. Later we will

have to consider a so called regular maximum likelihood case and the non-regular case. The binomial

example will be a regular case as we can obtain the MLE using calculus methods since since the two

special cases of x = 0 and x = n have a solution of the same form as all other 0 < x < n.

End of Remark

Remark Why do we use natural log for our log likelihood? Here we use log for natural log. Why not

log base 10? For x > 0

x = elog(x) = 10log10(x) =
(
elog(10)

)log10(x)

= elog(10) log10(x)
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Thus

log(10) log10(x) = log(x)

Therefore
d log10(x)

dx
=

1

log(10)

d log(x)

dx
=

1

x log(10)

Differentiating natural logs is algebraically more convenient than differentiating logs of another base.

End of Remark

Normal Example

For convenience we write either θ = (µ, σ2) = (θ1, θ2) in order to emphasize one aspect of our

calculation below. In this formulation we treat the parameter as (mean , variance). That means that

derivatives are with respect to (µ, σ2) and not with respect to (µ, σ).

L((θ1, θ2)) =
1

θ
n
2
2

e−
1

2θ2

∑n

i=1
(Xi−θ1)2

and the log likelihood is

log(L((θ1, θ2)) = −n
2

log(θ2)− 1

2θ2

n∑
i=1

(Xi − θ1)2

Again we note that for the next part, where we find the MLE it does not matter whether we replace

Xi with xi as we are just finding the formula for the MLE. It only makes a difference when we either

wish to study θ̂n as a random variable or as a estimate, that is when we need to distinguish the difference

between estimator and estimate.

∂ log(L(θ1, θ2))

∂θ1
=

1

θ2

n∑
i=1

(Xi − θ1)

∂ log(L(θ1, θ2))

∂θ2
= − n

2θ2
+

1

2θ2
2

n∑
i=1

(Xi − θ1)2

Setting

∂ log(L(θ1, θ2))

∂θ1
= 0

∂ log(L(θ1, θ2))

∂θ2
= 0

and solving gives

θ̂1n = X̄n

θ̂2n =
1

n

n∑
i=1

(Xi − θ̂n)2 =
1

n

n∑
i=1

(Xi − X̄n)2

Reverting to our usual parameter notation θ1, θ2) = (µ, σ2) we have

µ̂n = X̄n

σ̂2
n =

1

n

n∑
i=1

(Xi − θ̂n)2 =
1

n

n∑
i=1

(Xi − X̄n)2
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Notice σ̂2
n is not equal to the sample variance, and it is a biased estimator of σ2.

Continuation : What would happen if instead we used the parameterization for the normal family of

(mean, standard deviation)?

In that case we would be differentiating w.r.t. (µ, σ), but also our log likelihood would be

log(L((µ, σ)) = −n log(σ)− 1

2σ2

n∑
i=1

(Xi − µ)2 .

The student should work through this parameterization and find that

µ̂n = X̄n

σ̂n =

√√√√ 1

n

n∑
i=1

(Xi − X̄n)2 .

Aside : There is a property of likelihood estimation that as long as one reparameterizes by a 1 to 1

continuous form the MLE are equivalent for either form. Here above we see this is the case.

End of Example

In our calculations for MLE we will no longer concern ourselves with different parameterizations, and

just work with the one that is natural for our model. The point of this comment is that as long as we

work consistently it will not matter which possible parameterization we use.

Uniform( 0, θ) , θ ∈ Θ = (0,∞)

Here we consider an example this is not regular. It is not possible to find the MLE using the calculus

tool of differentiation to find local extremes.

Here we consider Xi, i = 1, 2, . . . , n iid from a Uniform(0, θ) distribution and θ ∈ Θ = (0,∞). Our

goal is to find the MLE.

The student should verify that the method of moments estimator is

θ̃n = 2X̄n

and that it is an unbiased estimator of θ. Also find the MSE of θ̃.

To motivate this consider first the case n = 1. It is not interesting in itself, but it will help us to

understand the likelihood function. Here

L(θ) = f(x; θ) =
1

θ
I(0 < x ≤ θ)

Note it does not matter if we include of exclude the endpoints in this function with argument x, but we

include it to simply some algebra.

In the pdf we treat x as the argument for a given parameter θ. In the likelihood we treat θ as the

argument for a given x. For θ = 2 the student should sketch the pdf. For xobs = 2 the student should

sketch the likelihood L(θ) = L(θ;x = 2). These are also plotted in Figures 1 and 2. Notice that L(θ) = 0

if θ < xobs and L(θ) = 1
θ if θ ≥ xobs.
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For n > 1 we have the a similar property. L(θ) evaluates to 0 for some θ, but which ones?

L(θ) = L(θ;x1, . . . , xn) =

n∏
i=1

{
1

θ
I(0 < xi ≤ θ)

}

=
1

θn

n∏
i=1

{I(0 < xi < θ)}

Can we simplify this expression, that is the product in the last line? This product is either 1 or 0. It

is one only if all the indicators evaluate to 1. This means that for every i we must have xi ≤ θ, or

equivalently θ ≥ max{x1, . . . , xn} = x(n), the maximum order statistic. The likelihood function is (using

xi > 0)

L(θ) = L(θ;x1, . . . , xn) =
1

θn
I(x(n) ≤ θ)

In this statistical model the MLE is θ̂n = X(n), the maximum order statistic, and the method of

moments estimator is θ̃n = 2X̄n. We see these two estimators are different.

Notice also that the likelihood function is not

L(θ) =
1

θn

as this expression is not complete. Suppose we did use this incorrect expression and tried to maximize

this using the usual calculus tool. Taking logs and differentiating we need to solve

0 =
d{n log(θ)}

dθ
=
n

θ

There is no solution. This does not mean that we cannot maximize L(θ) or log(L(θ)). The calculus

method of determining the maximum of the function L(θ) does not apply. The student should review

the calculus tool for maximizing functions.

At the beginning of this example it is stated this example is not regular. This term will be explained

later, but for practical purposes regular models will allow us to use calculus methods to find argmax, and

non-regular models require a non-calculus method to find argmax.

End of Example

Normal Regression Model

Our model is of the form, for given covariates x1, . . . , xn the r.v.s’s Yi are independent and satisfy

Yi = (β0 + β1xi) + εi

where εi are iid N(0, σ2). The data are of the form of pairs (xi, Yi) where the xi are specified numbers

(specified by the experimenter). The joint distribution of Y1, . . . , Yn for the given covariates x1, . . . , xn is

then determined by the n different marginal distributions

fYi(y;β0, β1, σ
2) =

1√
2πσ2

e−
1

2σ2
(y−β0−β1xi)

2

.

Since the εi are iid then Yi are independent, but they are not identically distributed, since they have

different means. We treat the parameter as θ = (β0, β1, σ
2) since these are the unknowns in the model
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that we want to estimate, while the x1, . . . , xn are a different type of object, similar to parameters but

are known or determined by the experimenter. The parameter space is Θ = R×R×R+.

The log likelihood is

log(L(β0, β1, σ
2) = −n

2
log(σ2)− 1

2σ2

n∑
i=1

(Yi − β0 − β1xi)
2

The MLE is the solution in terms of (β0, β1, σ
2) of

0 =
∂ log(L(β0, β1, σ

2)

∂β0
=

1

σ2

n∑
i=1

(Yi − β0 − β1xi)

0 =
∂ log(L(β0, β1, σ

2)

∂β1
=

1

σ2

n∑
i=1

xi(Yi − β0 − β1xi)

0 =
∂ log(L(β0, β1, σ

2)

∂σ2
= − 1

2σ2
+

1

2(σ2)2

n∑
i=1

(Yi − β0 − β1xi)
2

The student should finish this calculation to obtain the MLE.

End of Example

Gamma Model

Consider Xi, i = 1, . . . , n iid from a Gamma pdf, that is Xi has pdf

f(x;α, λ) =
λαxα−1

Γ(α)
e−λxI(x > 0)

where θ = (α, λ) ∈ Θ = R+ ×R+.

The likelihood function is

L(θ) =

n∏
i=1

λαXα−1
i

Γ(α)
e−λXi

Since Xi > 0 with probability 1 for every θ, we can calculate the log likelihood for any θ, and now write

θ = (α, λ)

log(L(α, λ)) = nα log(λ) + (α− 1)

n∑
i=1

log(Xi)− n log(Γ(α))− λ
n∑
i=1

Xi

Recall the function Γ is given through the formula

Γ(α) =

∫ ∞
0

xα−1e−xdx

Except for integer values of α there is no simple closed for expression to help us evaluate the Gamma

function. However one can show the Gamma function is differentiable with respect to its argument α,

and in fact has derivatives of higher order, so that in particular it has first and second derivatives wrt α.

Since Xi cannot be 0 or ∞ the argmax of the loglikelihood cannot occur on the boundary of Θ and

therefore the MLE satisfies

0 =
∂ log(L(α, λ)

∂α
= n log(λ) +

n∑
i=1

log(Xi)− n
d log(Γ(α))

dα
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0 =
∂ log(L(α, λ)

∂λ
=

nα

λ
−

n∑
i=1

Xi

We see that

λ̂n =
α̂n
X̄n

but of course we still need to find α̂n.

One thing that we can see is that the MLE is not the same as the method of moments estimator.

For given observed data x1, . . . , xn the MLE is calculated by a numerical method. The most common

method is the Newton-Raphson method, an iteration method. Computer programs or code are needed

to evaluate these MLE. Many programs and languages implement these, such as R, S, Mathlab as well

as many others. Sometimes stand alone code is available for programming in lower level languages such

as FORTRAN, C or C+.

End of Example

Remark

The functions

Γ(α) =

∫ ∞
0

xα−1e−xdx

digamma(α) =
d log(Γ(α))

dα

trigamma(α) =
d2 log(Γ(α))

dα2

are useful in solving for the MLE, but these are also not algebraic, that is there is not any simple closed for

expression for these. The functions are evaluated by numerical methods in computer code. In particular

these are implemented in many computer languages, such as R, S and Matlab.

End of Remark

Multinomial Model

Recall a multinomial random vector is the vector of counts in M catagories, say S = {1, 2, . . . ,M},
for n iid trials, and p = (p1, p2, . . . , pM ) is the probability distribution on the M categories so that for an

individual trial pj is the probability that the trial produces outcome in category j. This give a random

vector N = (N1, N2 . . . , NM ) with a multinomial distribution with parameter p.

The parameter p ∈ Θ, the set

Θ = {p = (p1, p2, . . . , pM ) : pj ≥ 0 , p1 + p2 + . . .+ pM = 1}

This set is often called the simplex of order M . It is a set with dimension M − 1. This is because there

are M − 1 degrees of freedom, in the sense that one must specify M − 1 numbers and the last one is then

determined, that is the last number has no freedom as to possible values.

For integers n1, . . . , nM such that nj ≥ 0 and n1 + . . .+ nM = n

P (N = (n1, n2 . . . , nM ); p) =
n!

n1!n2! . . . nM !
pn1

1 pn2
2 . . . pnMM
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For observed data N = (n1, n2 . . . , nM ) the likelihood is

L(p) = pn1
1 pn2

2 . . . pnMM

and the log likelihood is

log(L(p)) =

M∑
j=1

nj log(pj)

To calculate the MLE we need to maximize log(L(p)) over the parameter space Θ. Notice the M

parameters pj are not all algebraically free, so we must perform a constrained maximization.

The student should return to their advanced calculus notes or text and review the

method of Lagrange multipliers.

Lagrange multipliers is a very useful tool for maximization with equality of inequality constraints.

It involves making a new objective function by taking the original objective function and adding new

Lagrange parameters times the equality (or inequality) constraints.

In our problem we make the new objective function

g(p1, . . . , pM , λ) = log(L(p)) + λ

(
M∑
`=1

p` − 1

)
=

M∑
`=1

n` log(p`) + λ

(
M∑
`=1

p` − 1

)

It is a function with M + 1 arguments, which we treat as algebraically free arguments. We maximize this

using calculus tools. For this Lagrange problem we of course have the solution p̂1, . . . , p̂M , λ̂. Notice that

p̂j is then also an explicit function of λ̂, say p̂j(λ̂). In particular the p̂j(λ̂) satisfies the original constraint.

Langrange’s Theorem concludes that (p̂1(λ̂), . . . , p̂M (λ̂)) solves for argmax in the original constrained

maximization problem.

∂g

∂pj
=

nj
pj

+ λ

∂g

∂λ
=

M∑
ell=1

p` − 1

Multiplying the first by pj and then summing these over j = 1, . . . ,M gives

0 =

M∑
j=1

(nj + λpj) = n+ λ

M∑
j=1

pj = n+ λ

and where in the last part we use

0 =
∂g

∂λ
=

M∑
ell=1

p` − 1 .

Therefore λ = −n and hence

0 =
nj
pj

+ λ =
nj
pj
− n

Rearranging this last expression gives the solution for pj as p̂j,n =
nj
n .

Thus the maximum likelihood estimate is

p̂j,n =
nj
n
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and the maximum likelihood estimator is

p̂j,n =
Nj
n

End of Example

Aside

You can solve the above maximization without Lagrange multipliers by working with arguments

p1, . . . , pM−1 and the substituting pM = 1 − (p1 + . . . + pM−1). You then treat the log likelihood as a

function of M − 1 arguments and proceed with the maximization as usual. Of course you pay for this

with the complication of the care needed to calculate

∂ pM (p1, . . . , pM−1)

∂pj
=
∂(1− p1 − . . .− pM−1)

∂pj
= −1

for each j = 1, . . . ,M − 1. Much more care has to be taken in differentiating the log likelihood.

End of Aside

Multinomial M = 2

In this case for the random vector N = (N1, N2), the r.v. N2 equals the number of observations in

category 2. If the categories are 1 = failure and 2 = success, then N2 is the number of success in n iid

trials with outcomes failure or success. N2 then has a Binomial(n, p2) distribution. The r.v. N1 = n−N2.

In terms of the MLE we either

• maximize using Lagrange multipliers

g(p1, p2, λ) = n1 log(p1) + n2 log(p2) + λ(p1 + p2 − 1)

• using θ = p2, so that p1 = 1− θ, and note that n1 = n− n2, and the maximize

L(θ) ≡ L(1− θ, θ) = (n− n2) log(1− θ) + n2 log(θ)

Except for the change in notation this is the same as log likelihood for the binomial model.

End of Example

Multinomial with Further Constraints

Sometimes one is interested in a multinomial model in which p = (p1, . . . , pM ) is further restricted

than being a general member of the simplex of order M . For example it might be that (for M = 3) that

(p1, p2, p3) =
(
(1− θ)2, 2θ(1− θ), θ2

)
≡ p(θ) = (p1(θ), p2(θ), p3(θ))

where θ ∈ [0, 1]. It is worth noting that this also is the Binomial(2, θ) probability vector with 0 ≤ θ ≤ 1.

Continuing with multinomial example notation we then find the log likelihood is

L(θ) =

M∑
j=1

nj log(pj(θ)) = 2n1 log(1− θ) + 2n2 log(θ(1− θ)) + 2n3 log(θ) .
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Notice that this log likelihood maximization is an unconstrained maximization wrt θ ∈ Θ = [0, 1].

The student should complete this and find that

θ̂n =
2n3 + n2

2n
.

End of Example

See problem 8.10.55 and 8.10.56 for another example of this type of constrained multinomial.

3 Beginning of Distribution Theory and Applications

The general order of useful calculations for the distribution of an estimator θ̂n are

1. Exact distribution - analytic or algebraic determination of the distribtution

2. Approximate methods, usually giving a normal approximation. This means that one works with

either a centred or standardized distribution. Sometimes the standardization uses the population

variance and sometimes with an estimator or estimate of the population variance. That is one

typically works with √
n(θ̂n − θ)

or
√
n

(θ̂n − θ)
vn

where vn is an estimator (or estimate) of a population variance or
v2n
n is the estimated standard

error of the estimator. This also typically requires knowing that the sample size n is large enough

so that the normal approximation is reasonable, in the sense it can be used to give appropriate

quantiles or critical value as needed, for example for confidence intervals.

3. An iterative calculation to obtain the estimate for given data combined with an approximation,

again usually a normal approximation of a form as in 2 above

4. A parametric bootstrap approximation to the distribution of one of (i) θ̂n or (ii) a form as in 2

above.

One very important special case of the first type is when one observes iid data from a normal distri-

bution. Recall the MLE is this case is

µ̂n = X̄n

σ̂2
n =

1

n

n∑
i=1

(Xi − µ̂n)2 =
1

n

n∑
i=1

(Xi − X̄n)2

We also have some Theorems from Chapter 6 (the student should review Section 6.3, including conditions

for these theorems) so that in this case of iid N(µ, σ2) r.v.s

√
n(X̄n − µ)

σ
∼ N(0, 1)
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and ∑n
i=1(Xi − X̄n)2

σ2
∼ χ2

(n−1) (3)

and these two r.v.s are independent. Therefore

X̄n ∼ N(µ,
σ2

n
)

and
nσ̂2

n

σ2
∼ χ2

(n−1)

Also (Corollary B p 198)

t =

√
n(X̄n − µ)

Sn
∼ t(n−1) (4)

where S2
n is the sample variance. Notice also that

σ̂2
n =

n− 1

n
S2
n .

Formula (3) and (4) have some important implications in terms of obtaining a confidence interval.

This is because these distributions are independent of the parameter (µ, σ2) in the normal family. This

property is a pivotal property and the random variables with this property are called pivotal quantities.

The formula for a 100(1 - α)% confidence interval for µ is obtained as the set of µ satisfying

tα
2 ,(n−1) ≤

√
n(X̄n − µ)

Sn
≤ t1−α2 ,(n−1)

Since the t distribution for any degree of freedom is symmetric about 0, then

tα
2 ,(n−1) = −t1−α2 ,(n−1)

and the CI is

X̄n −
Sn√
n
t1−α2 ,(n−1) ≤ µ ≤ X̄ +

Sn√
n
t1−α2 ,(n−1)

Similarly a 100(1 - α)% confidence interval for σ2 is obtained as the set of σ2 satisfying

χ2
α
2 ,(n−1) ≤

∑n
i=1(Xi − X̄n)2

σ2
≤ χ2

1−α2 ,(n−1)

This may be rewritten in terms of the sample variance as

χ2
α
2 ,(n−1) ≤

(n− 1)S2
n

σ2
≤ χ2

1−α2 ,(n−1)

Solving for σ2 yields
(n− 1)S2

n

χ2
1−α2 ,(n−1)

≤ σ2 ≤ (n− 1)S2
n

χ2
α
2 ,(n−1)


