
Properties of Estimators

We study estimators as random variables. In this setting we suppose X1, X2, . . . , Xn are random

variables observed from a statistical model F with parameter space Θ.

In our usual setting we also then assume that Xi are iid with pdf (or pmf) f(·; θ) for some θ ∈ Θ.

Also in our usual setting Θ ⊂ Rd for some finite d, that is a finite dimensional parameter model. In this

case then X1, X2, . . . , Xn has joint pdf (or pmf) given by the function

fn(x1, x2, . . . , xn) =

n∏
i=1

f(xi; θ) .

In our statistical inference setting the specific value of the parameter θ is not known and is the object to

be estimated form observable data. If the statistical model is correct then there is one special value of

the parameter that is the true value of the parameter, say θ0, so that

fn(x1, x2, . . . , xn) =

n∏
i=1

f(xi; θ0) .

Aside : Unless we need this extra notation we do not use the subscript 0 to designate the true value θ0

of the parameter.

Definition 1 Consider an experiment with random data (r.v.s) X1, X2, . . . , Xn from a statistical model

F and parameter space Θ. Consider a random variable

T = h(X1, X2, . . . , Xn)

for some function h. We say T is a statistic if T can be calculated from the observable data only, and

does not require knowing which parameter value θ is the true value of the parameter.

Examples of Statistics: Xi are iid from a distribution f . In some the examples below we need

n ≥ 2.

The following are statistics

1.

X̄n =
1

n

n∑
i=1

Xi

2.

µ̂k,n =
1

n

n∑
i=1

Xk
i

1
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3.

S2
n =

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
4. If P (Xi > 0) = 1, let

Tn =
1

n

n∑
i=1

log(Xi)

Wn =
1

X̄n

5.

Tn =

n∏
i=1

Xi

6.

median(X1, X2, . . . , Xn)

End of Example

Example of a RV that is not a statistic

The following is not a statistic : Suppose Xi are iid exponential, parameter λ. Notice that the

population median is given by x which solves

F (x) =
1

2

Therefore x solves
1

2
= 1− e−λx

and hence x = 1
λ log(2). For convenience of notation let m be the population median. Notice it changes

depending on the value of the parameter.

Let T = the number of the random variables Xi greater than the median m.

T is not a statistic, since its value cannot be calculated from the observed data x1, x2, . . . , xn from an

experiment, without knowing the value of the parameter (or number in this example) λ. However it is a

random variable, just not a statistic.

Notice that if Xi are iid exponential λ then the distribution of T is easy to obtain. It is Binomial(n, 1
2 ).

This is because

T =

n∑
i=1

I(Xi > m)

and I(Xi > m) are iid Bernoulli( 1
2 ).

End of Example
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Estimators of a parameter θ are of the form θ̂n = T (X1, . . . , Xn) so it is a function of r.v.s X1, . . . , Xn

and is a statistic. Hence an estimator is a r.v. As such it has a distribution. This distribution of course

is determined the distribution of X1, . . . , Xn. If these r.v.s are iid, say distribution of(·; θ0), then the

distribution of θ̂n is determined by the distribution f(·, θ0). Here we are using θ0 to represent the true

parameter value θ inΘ, the parameter space. Generally in this course we will just use θ instead of θ0.

Sometimes we also wish to find an estimator of a function of a parameter. For example for a Poisson,

parameter λ, we might wish to estimate λ, be we also might wish to estimate a function of λ such as

h(λ) = e−λ, which happens to be the probability of a Poisson r.v. taking the value 0.

Terminology. Since T is a function, it gives a number for given values x1, . . . , xn. We refer to the r.v.

θ̂n = T (X1, . . . , Xn) as an estimator and refer to the observed value θ̂n = T (x1, . . . , xn) (for observed

data x1, . . . , xn) as the estimate or the observed value of the estimator. This is the same role as in

earlier courses where we refer to Y as a random variable and also need to consider the observed value

y from a given experiment. We also refer to an estimator as an estimator of θ when this estimator is

chosen for the purpose of estimating a parameter θ. In principle any statistic can be used to estimate

any parameter, or a function of the parameter, although in general these would not be good estimators

of some parameters. For example the sample variance is generally not a very estimator of the population

mean parameter.

The distribution of the estimator, that is the distribution of θ̂n = T (X1, . . . , Xn) will play a key role

in statistical inference.

Sample Variance

Suppose Xi, i = 1, . . . , n are iid r.v.s with finite mean µ and finite variance σ2.

Consider the statistic

S2
n =

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
We now calculate E

(∑n
i=1

(
Xi − X̄n

)2)
.

E

(
n∑
i=1

(
Xi − X̄n

)2)
=

n∑
i=1

E
[(
Xi − X̄n

)2]
For a given i

E
[(
Xi − X̄n

)2]
= E

[(
Xi − µ− (X̄n − µ)

)2]
= E

[
(Xi − µ)

2
]
− 2E

[
(Xi − µ)(X̄n − µ)

]
+ E

[(
(X̄n − µ)

)2]
= σ2 − 2

n

n∑
j=1

E [(Xi − µ)(Xj − µ)] +
σ2

n

= σ2 − 2

n
σ2 +

σ2

n

= σ2

(
1− 1

n

)
= σ2n− 1

n
.
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Notice we are using the fact that independent r.v.s with finite variances have covariance equal to 0. We

are also using linearity properties of expectation.

Thus we can now complete the calculation of the expected value of s2
n

E(S2
n) =

1

n− 1
E

(
n∑
i=1

(
Xi − X̄n

)2)

=
1

n− 1

n∑
i=1

σ2n− 1

n

= σ2

End of Example

Gaussian (or Normal) Example

Suppose that Xi, i = 1, . . . , n are iid N(µ, σ2). The parameter space is

Θ = {(θ1, θ2) = (µ, σ2) | θ1 ∈ R , θ2 > 0 } .

Consider the statistic

S2
n =

1

n− 1

n∑
i=1

(
Xi − X̄n

)2

Eθ(S
2
n) = σ2 .

The student should also verify that

Eθ(X̄n) = µ

Remark : These two properties hold for any iid random variables with mean µ and variance σ2, no

just normal r.v.s. The student should verify this. There is a subscript θ for the expectation operator.

This is used with the meaning that the expectation is with respect to the normal distribution with this

particular parameter θ, that corresponds to the parameter value for the (specific) distribution of the Xi’s.

To help to clarify this, if X ∼ N(2, 9) then E(X) = µ = 2, E(X2) = σ2 + µ2 = 13, and these

expectations are not given by any other value of θ = θ 6= (2, 9).

Since this property in our example holds for all θ we say that X̄n is an unbiased estimator of the

parameter µ. To be more precise it is an unbiased estimator of µ = h(θ) = h(µ, σ2) where h is the

function that maps the pair of arguments to the first element of this pair, that is h(x, y) = x.

Similarly S2
n is an unbiased estimator of σ2.

End of Example

The notation Eθ means to calculate the expectation with respect to the distribution with parameter

value θ. Notice that the expectation is different for each θ. We use this notation to emphasize the

dependence of these calculations on the true parameter θ. When this is not needed then typically we do

not use the subscript.
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Definition 2 (Unbiased Estimator) Consider a statistical model. Let T be a statistic. T is said to

be an unbiased estimator of θ if and only if Eθ(T ) = θ for all θ in the parameter space.

More generally we say T is an unbiased estimator of h(θ) if and only if Eθ(T ) = h(θ) for all θ in the

parameter space.

This property may apply only to an estimator of one of the components of vector valued parameter.

Thus we also want to consider the part of the definition h, so for example

µ = h(µ, σ2)

where h(x, y) = x.

Notice that the property of unbiasedness is a property determined by the distribution of the statistic T

and the statistical model. The distribution of the statistic T , which is a function of the observable r.v.’s,

is one of the main topics of study in our previous course. It is referred to as the sampling distribution of T

and is obtained for each possible parameter θ in the parameter space Θ. Sometimes these properties can

be verified generally, for example sample means. Other times it requires specific and special properties

of the sampling distribution of T ; see for example the Poisson example below and the estimator of e−θ.

Suppose Xi are iid from a distribution with finite k-th moment, that is µk = E(Xk) is finite.

For any positive integer k consider the sample k-th

µ̂k,n =
1

n

n∑
i=1

Xk
i

Verify that E(µ̂k,n) = µk. Thus for any statistical model, and appropriate finite moments, we obtain for

iid samples that sample k-th moments are unbiased estimators of the population k-th moments.

Since Var(X) = E(X2)− (E(X))
2
, one might consider as an estimator of population variance

V̂ar(X) = µ̂2,n − (µ̂1,n)
2

=
1

n

n∑
i=1

X2
i − X̄2

n

Show this estimator is not unbiased (show it is biased) for σ2 = Var(X). How can you modify this

estimator to produce a new estimator that is an unbiased estimator of σ2?

Aside : Calculate the expectation. You will find that you can multiply this by a constant, which does

involve n, to obtain σ2. Call this constant an. Then the estimator

1

an
V̂ar(X)

will have expectation σ2 and hence be an unbiased estimator of σ2. This method uses the linearity of

expectation, and does not work very generally.

Poisson Example

Consider the Poisson model with parameter space Θ = R+ = (0,∞). Suppose Xi are iid Poisson with

parameter θ. X̄n is an unbiased estimator of θ.
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There are various functions of θ that are also interesting. For X ∼ Poisson, θ, we have Pθ(X = 0) =

e−θ. If we consider the function h(θ) = e−θ and the statistic Tn = e−X̄n , is Tn unbiased for h(θ)?

To answer this we need to calculate Eθ(Tn) and determine if this is equal to e−θ for every possible

θ ∈ Θ. In general this may not be easy to calculate but we can take advantage of some special properties

of sums of iid Poisson random variables.

Let Y =
∑n
i=1Xi. Using MGFs we can then determine that Y ∼ Poisson, nθ. Again using MGFs we

then for any number t

Eθ(e
tY ) = MY (t) = enθ(e

t−1)

Using this we then note that

Eθ(e
−X̄n) = Eθ(e

− 1
nY ) = MY (− 1

n
)

Thus

Eθ(e
−X̄n) = exp

{
nθ
(
e−

1
n − 1

)}
.

Notice that this is not equal to e−θ. Therefore for any n the random variable Tn is not an unbiased

estimator of e−θ.

This example is interesting in that we may have an unbiased estimator of a parameter but functions

of this estimator might not be unbiased estimators of the corresponding function of the parameter.

End of Example

Terminology [This is also given earlier in this note.] An estimator is a random variable that is a

statistic which is a function of the observable data, that is of the form

T = h(X1, X2, . . . , Xn) .

We study the properties of the random variable T and use these to make statistical inference rules or

procedures. On the other hand, after we have conducted an experiment or observational study we have

observed data x1, x2, . . . , xn. In this case we have an observed value of T , namely h(x1, x2, . . . , xn). This

observed value of T is called the estimate or observed value of the estimator. The distinction is that the

estimator is a random variable and the estimate is the observed value of the random variable.
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Definition 3 (Consistent Estimator) Consider a statistical model. Let Tn be an estimator of θ.

(more specifically Tn is a sequence of estimators indexed by n the sample size.)

We say that Tn (more specifically the sequence Tn, n ≥ 1) is a consistent estimator of θ iff Tn → θ in

probability as n→∞.

Recall the definition of convergence in probability to a constant. Thus an estimator is consistent for

θ iff and only if for every ε > 0

P (|Tn − θ| > ε)→ 0

as n→∞.

Comments

1. In our earlier courses we studied a result of this type, namely convergence in probability. In the

case of a sequence of iid r.v.s Xi, i ≥ 1, we used the Law of Large Number to show, under some

conditions (the student should review the LLN and these conditions) to show

1

n

n∑
i=1

Xi → E(X) = µ

in probability as n→∞.

2. This property of estimators is perhaps one of the most important properties. If an estimator does

not have this property it is not a very good estimator.

An estimator with this property is guaranteed to be close to the population parameter θ provided

there is a big enough sample size.

A related notion is of course to know something about how big the sample size should be.

3. Sample moments are consistent estimators of the corresponding population moments.

A method of moments estimator for the (vector valued) parameter θ is of the form

θ̂n = g(µ̂1,n, . . . , µ̂K,n)

where g is a continuous function.

It is then the case that

θ̂n = g(µ̂1,n, . . . , µ̂K,n)→ g(µ1, . . . , µK) = θ

where the convergence is in probability as n→∞. Recall that g is chosen so that g(µ1, . . . , µK) = θ

holds.

This property of convergence is studied in Problem 5.4.7 in Rice, one of the problems from Stat

3657.

Can one obtain estimators that are not consistent? This is actually quite easy, but generally these

are not sensible estimators. As an example consider the following :

Consider Xi, i ≥ 1 iid with mean µ and finite variance σ2 > 0. This last part is just to rule out a

simple trivial example of Xi = µ with probability 1. Also to rule out another non interesting trivial case
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we suppose that X has a positive density in the neighbourhood of µ. For example and to be specific we

can take the example of Xi iid exponential mean µ.

Xi, i = 1, . . . , n is the sample of the first n of these. Let

Tn(X1, . . . , Xn) = Xn

that is the last of these n r.v.s. Then

E(Tn) = E(Xn) = µ

so this is an unbiased estimator. However, except in the trivial case when X is constant with probability

1, ie Var(X) = 0,

P (|Tn − µ| > ε) = P (|X1 − µ| > ε) > 0

for any n greater than or equal to 1. (Technical aside : If X is a continuous r.v. this will hold for all

ε > 0. If X is discrete this will hold, but with some minor constraints on ε > 0.) Thus this probability is

the same positive number for every n and hence the sequence of numbers P (|Tn−µ| > ε) cannot converge

to 0.

This example, while not particularly interesting gives a sequence of unbiased estimators that are not

consistent.


