
Statistics 4657/9657 : Strong Law of Large

Numbers

The text gives an interesting proof of the Strong Law of Large Numbers
(SLLN). Here the classic proof is given. This is done since it involves a
number of tools that are useful in other settings, such as equivalent sequences
and truncation. This proof is not as elegant as the one given in the text.

Reference : R Durrett, Probability : Theory and Examples. See Section
1.8, p 81, and parts of Section 1.7.

Theorem 1 (Kolmogorov’s Inequality) Suppose X1, . . . , Xn are inde-
pendent r.v.s with E(Xj) = 0 and finite Var(Xj) = σ2

j . Let Sk = X1 + . . . +
Xk. Then

P

(
max

1≤k≤n
|Sk| ≥ x

)
≤ Var(Sn)

x2

Theorem 2 Suppose Xj are independent r.v.s with E(Xj) = 0. If
∑∞

j=1 Var(Xj) <
∞ then

∑∞
j=1 Xj exists almost surely.

Remark : This is proven by showing that Sn =
∑n

j=1 Xj is almost surely a
Cauchy sequence.
Proof Let WM = maxn,m≥M |Sm − Sn|.

For M < N

P (max
M≤N

|Sm − SM | ≥ ε) ≤ Var(SN − SM )
ε2

Letting N →∞ then

P (max
m≥M

|Sm − SM | ≥ ε) = lim
N→∞

P (max
M≤N

|Sm − SM | ≥ ε)

≤ lim
N→∞

∑∞
j=M σ2

j

ε2
< ∞ .

Notice that if maxm≥M |Sm − SM | ≥ ε then for all n,m ≥ M we have

|Sn − Sm| ≤ |Sn − SM |+ |Sm − SM | ≤ 2ε
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Thus P (WM ≥ 2ε) ≤ P (maxm≥M |Sm − SM | ≥ ε).
Let C = {ω : Sn(ω) converges }. If ω /∈ C, then there exists ε > 0 and

for any M ≥ 1, there exists m ≥ M , such that |Sm(ω)− S∞(ω)| ≥ ε. Thus

Cc ⊆ ∩k≥1 ∪∞m=M AM,k = ∩k≥1 ∪∞m=M {ω : WM (ω) ≥ 1/k}

Thus for fixed ε = 1/k, and for any M ≥ 1

P (Cc) ≤ P (AM,k) ≤ 1
1/k

∞∑

m=M

σ2
j .

Thus P (Cc) ≤ k lim supM P (AM,k) = 0, and hence P (C) = 1. Thus Sn

converges almost surely.
END of PROOF of Theorem 2.

Theorem 3 (Kronecker’s Lemma) Suppose an ≥ 0 and an monotoni-
cally increases to ∞. Suppose also that

∑∞
j=1 xj/aj converges. Then

1
an

m∑

j=1

xj → 0 .

Proof : Let a0 = b0 = 0 and for n ≥ 1

bn =
n∑

j=1

xj

aj

Then xn = an(bn − bn−1) for n ≥ 1. By the hypothesis bn → b∞ for some
finite limit. Also

1
an

n∑

j=1

xn =
1
an





n∑

j=1

ajbj −
n∑

j=1

ajbj−1



 = bn−

n∑

j=1

(aj − aj−1)
an

bj → b∞−b∞

Aside For the sum in the second last part, the student should use an idea
similar to a Cesaro mean to show it converges to b∞.

Theorem 4 Suppose Yj are independent random variables with E(Yj) = 0.
Let Tn = Y1 + . . . + Yn. If an > 0 increases to ∞ and

∑∞
j=1 E(Y 2

j )/a2
j < ∞

then
Tn

an
→ 0 a.s. as n →∞ .
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Proof :
By Theorem 2, there exists an A such that P (A) = 1 and ∀ω ∈ A ,∑n

j=1
Yj(ω)

aj
converges.

Thus by Theorem 3, for ω ∈ A,

1
an

n∑

j=1

Yj(ω) → 0

Theorem 5 (SSLN) Suppose Xj , j ≥ 1 are iid r.v.s with E(X1) = µ finite.
Write Sn = X1 + . . . + Xn. Then Sn

n → µ a.s. as n →∞.

Proof.
Define Yj = XjI(|Xj | ≤ j).
Notice that P (Xj 6= Yj) = P (|X1| > j) and hence

∑

j≥1

P (Xj 6= Yj) =
∑

j≥1

P (|X1| > j) ≤ E(|X1|) < ∞.

Thus {Xj} and {Yj} are equivalent sequences.
Next show that ∑

j≥1

Var(Yj)
j2

< ∞ .

Let µj = E(Yj)

∑

j≥1

Var(Yj)
j2

≤
∑

j≥1

E(Y 2
j )

j2

Note that Y 2
j = X2

j I(|Xj | ≤ j), thus for any y ≥ 0, if X2
j < y then

Y 2
j < y. Thus P (X2

j < y) ≤ P (Y 2
j < y) and hence P (|X1| < y) = P (|Xj | <

y) ≤ P (|Yj | < y) P (|X1| ≥ y) ≤ P (|Yj | ≥ y). Thus

E(Y 2
j ) =

∫ ∞

0
2ydP (|Yj | ≥ y) ≤

∫ j

0
2yP (|X1| ≥ y) .

Therefore

∞∑

j=1

E(Y 2
j )

j2
≤

∞∑

j=1

j−2
∫ j

0
2yP (|X1| ≥ y)

=
∫ ∞

0

∑

j:j≥y,j≥1

1
j2

2yP (|X1| ≥ y)
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≤
∫ ∞

0

2
y
2yP (|X1| ≥ y)

≤ 4
∫ ∞

0
P (|X1| ≥ y)

= 4E(|X1|) < ∞ .

Thus
1
n

n∑

j=1

(Yj − µj) → 0 a.s.

Notice that µj → E(X1) = µ as j →∞, thus by the Cesaro means property
1
n

∑n
j=1 µj → µ.
Thus

1
n

n∑

j=1

Xj =
n∑

j=1

(Xj − Yj) +
1
n

n∑

j=1

(Yj − µ) +
1
n

n∑

j=1

µj

→ 0 + 0 + µ a.s.


