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CHAPTER 9
SIMULATING
WITH
NONSEASONAL MODELS

9.1 INTRODUCTION

Two of the most important uses of time serics models in engineering are forecasting and
simulation. In water resources applications, simulated sequences can assist designers in deter-
mining the appropriate size of a system and estimating the associated benefits and costs. Once in
operation, reliable forecasts are required to ensure that the maximum benefits are obtained from
operating the system. Chapter 8 of Part IV of the book deals with forecasting whereas the pur-
pose of this chapter is to present flexible methods for simulating with ARMA and ARIMA
models. Table 1.6.3 indicates the locations in the book where explanations are given about the
theory and practice of both simulation and forecasting for different kinds of models.

The main objective of forecasting is to use the time series model fitted to a data set to
obtain the most accurate estimate or prediction of future unknown observations. The goal of
simulation is to employ the fitted model to generate a set of stochastically equivalent sequences
of observations which could possibly occur in the future. These simulated sequences are often
referred to as synthetic data by hydrologists because they are only possible realizations of what
could take place. As a matter of fact, the overall science of fitting stochastic models to hydrolo-
gic data and using these models for simulation purposes is often called synthetic hydrology.
Other titles for this field include stochastic and operational hydrology.

Simulation is now a widely accepted technique to aid in both the design and operation of
water resources systems. Vogel and Stedinger (1988), for instance, demonstrate that using syn-
thetic data generated by stochastic streamflow models can lead to improvements in the predic-
tion of reservoir design capacity estimates. Besides the design and operation of large-scale
engineering systems, another main use of simulation is to investigate theoretical properties of
stochastic models. Often it is analytically impossible to derive certain theoretical characteristics
of a given type of time series model. However, by using simulation one can determine these
theoretical properties to any desired level of accuracy. In Chapter 10, simulation is used with
ARMA models to study theoretical problems related to what is called the Hurst phenomenon.

When carrying out a simulation study, there are certain problems that should be avoided.
For instance, many current simulation methods that are widely accepted, do not use correct ini-
tial values. Although the effect of starting values is transitory, it could cause systematic bias in
a simulation study and, therefore, as pointed out by Moran (1959, Ch. 5) and Copas (1966), the
choice of initial values is important. To attempt to overcome this problem, some researchers dis-
card the first section of a synthetic time series to supposedly get rid of the effects of initial
values. However, exactly how many values of the generated series should be rejected and how
much computer time is wasted by generating data that is not used?
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As an example of a conservative approach to the effect of starting values, consider the
simulation study of Brown and Hardin (1973). These authors used deterministic starting values
for an AR model of order two and then generated a series with a length of 30,000 values. The
first 15,000 values of the synthetic trace were discarded to supposedly nullify the effects of using
non-random initial values.

The simulation procedures given in this chapter and also by McLeod and Hipel (1978) do
not require fixed starting values. They are designed in a manner such that random realizations of
the underlying stochastic process are used as initial values. Therefore, the results of a simulation
study are not significantly biased and it is not necessary to disregard any of the generated data.

Often it is required to generate k” time series of length k. Some researchers resort to pro-
ducing a single synthetic series of length k’-k and then splitting this long series into k’ series of
length k. If any serial correlation is present, then the results of any simulation study will be
biased by this rather crude procedure. To overcome this problem of bias, the authors recom-
mend generating k” separate time series of length k. If the generating procedures given in this
chapter are adopted, then each time another series of length & is obtained, new random realiza-
tions of the stochastic process are used as starting values.

Figure 9.1.1 displays the overall approach for using a time series model for simulating
data. If necessary, the given time series can be transformed using the Box-Cox transformation in
[3.4.30] in order to alleviate problems with non-normality and/or non-constant variance
discovered in the original data or the residuals of a model fitted to the untransformed time series.
Following the three stages of model construction presented in Part III and summarized in Figure
I1I.1, one can then develop an ARMA or ARIMA model for describing the transformed series or
the original series when a Box-Cox transformation is not needed. This fitted model can then be
used for generating synthetic sequences. When simulating data using a time series model, pro-
cedures described in Section 9.2 can be employed for generating the uncorrelated g, terms in the

ARMA or ARIMA model. The generated g,’s are used in either the WASIM1 or WASIM2 pro-

cedures of Sections 9.3 and 9.4, respectively, in order to simulate unbiased sequences from
ARMA models that use proper starting values. If one is using an ARIMA model for simulation
purposes, then the methods of Section 9.5 must be used to produce the nonstationary sequences.
Finally, if the simulation model was fitted to the transformed series, then one must take the
inverse Box-Cox transformation of the simulated values to obtain synthetic values that have the
same units as the original data, as explained in Section 9.6.

When the approach of Figure 9.1.1 is employed for obtaining simulated sequences, it is
assumed that the parameters of the model producing the synthetic data are known exactly. How-
ever, in practice one must estimate the model parameters and the uncertainty contained in the
parameter estimates is reflected by their standard errors. The WASIM3 procedure of Section 9.7
can be used for incorporating parameter uncertainty into a simulation study. Following this,
three practical applications are given in Section 9.8 to portray the effectiveness of the aforemen-
tioned simulation techniques.



Simulating with Nonseasonal Models 295

Box—Cox
transformation

|

Construct
time series
model

!

Simulate data in
transformed domain

l

Inverse
Box-Cox
transformation

{

Synthetic data
in original domain

Figure 9.1.1. Overall procedure for simulating data.

9.2 GENERATING WHITE NOISE

9.2.1 Introduction

As shown in Figure 9.1.1, when developing a model for use in simulation, the first step is,
if necessary, to transform the z, series using the Box-Cox transformation in [3.4.30] to obtain the
series 2™, If the series is nonstationary, and, for example, the level is increasing over time, one
can remove the nonstationarity using the differencing operator in [4.3.3] to obtain the stationary
w, series. As noted in Sections 2.4, 3.1, 4.1 and elsewhere in the book, often annual hydrological
time series of moderate length are stationary. However, usually socio-economic series such as
the water use, electricity consumption and Beveridge wheat price indices displayed in Figures
4.3.8, 4.3.10, and 4.3.15, respectively, are nonstationary. Whatever the case, one fits an ARMA
model from [4.3.4] to the stationary w; series which may be formed by first differencing the z,(")

series.

As an example as to how one would use an ARMA model for simulation, consider the
cases of an AR(1) model written following [3.2.1] as
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W =¢w_ +aq, [9.2.1]

where ¢, is the first order AR parameter and g, is the white noise sequence that is normal and
independently distributed with mean zero and variance c,z (i.e. NID(O,G})). For convenience, it
is assumed that the mean of w; in [9.2.1] is zero. If the w, series were formed by differencing the
w, series, the mean would be zero. However, if the z,m series were stationary and hence
z,m = w,, then the mean would probably be nonzero. In either case, one can use [9.2.1] to simu-
late the w; series. If there is a nonzero mean, it can simply be added to the simulated values.

Suppose one wishes to employ [9.2.1] to simulate 10 values of the w; series. Then
Wy =W +a,

Given that ¢; is estimated from the data or else known in advance, one would have to have a
starting value, w;, and a normal white noise term, a,, to simulate w,. To avoid bias caused by
using a fixed starting value for w;, one can employ WASIM1 or WASIM2 from Section 9.3 and
9.4, respectively to obtain w;. The white noise term a, is generated using an approach described
in this section. Next, one can obtain w; using

w3 = ¢1W2 +a;
where w; is known from the previous step and a; is generated by the computer. In general,
wi=0w;_+a;, j=23,...,10

to simulate the ten values of w,. If the w, were differenced, one would have to use the algorithm
of Section 9.5 to obtain the z,o‘) series. Finally, the inverse Box-Cox transformation would have
to be taken to get the simulated untransformed z,’s.

As shown in Figure 9.2.1, there are two main steps required to generate the a,’s which are
NID(O,G}). The first stage is to use an appropriate random number generator to produce

independent random variables that follow a uniform distribution on the interval from zero to one.
Random number generators are discussed in Section 9.2.2. The next step is to employ a tech-
nique that transforms the uniformly distributed variables to ones that follow the required distri-
bution such as a normal distribution. The approach for accomplishing this is presented in Sec-
tion 9.2.3. A classical text on generating independently distributed random variables is the one
by Knuth (1969) while the book of Yakowitz (1977) provides a well written and entertaining
account of this and other topics in computational probability and simulation.

9.2.2 Random Number Generators

Overview

As indicated in Figure 9.2.1, the first step in generating independently distributed random
variables that follow the same distribution is to produce independent variables that follow a uni-
form distribution on the interval (0,1). To obtain uniformly distributed variables one uses what
is called a random number generator. Following the instructions encoded into a computer
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program for the random number generator, a digital computer can produce the random numbers.

A digital computer follows a strictly deterministic process, since it exactly adheres to a
program’s precise instructions. Nonetheless, it is possible for a computer to generate a sequence
of numbers {u;} which appear to be independent values distributed on the unit interval. These
numbers are referred to as pseudo-random numbers. The probability density function (pdf), f(u),
and the cumulative distribution function, F(u), for a uniformly or rectangular distributed random
variable, u, on the interval (0,1), are shown in Figure 9.2.2.

Produce independent
and
uniformly distributed
random variables
on interval (0,1)

\. 1 _—
Tronsform these
to the
required
distribution
L J

Figure 9.2.1. Generating identically and independently
distributed random variables.

When employing a digital computer, some discrete approximation must be used in place of
a continuous random variable such as one following the uniform distribution in Figure 9.2.2.
Therefore, one may generate the first N terms of a decimal expansion of the value of a uniform
variable. In an experiment for generating uniform variables, let D ; denote the jth decimal of the

decimal expansion of an outcome. Foreachk =0,1,2,...,9,and j=1,2,..., the event D; =k
has a probability of -l% =0.1.

The main idea behind a pseudo-random number generator is that successive numbers hav-
ing the same length m are created in such a way that in the long run, each digit (i.e.
0,1,2,...,9) is expected to occur with probability 0.1 at each decimal place. Moreover, the
occurrence of a given digit at a specific decimal place is independent of the digits occurring at
other decimal places as well as previously generated random numbers.
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cumulative distribution function.
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Over the years a range of pseudo-random number generators has been developed. One of
the earliest random number generators is the middle-square random number generator of von
Neumann (1951). One of the problems with this generator is that it has short cycles because
after a certain length of time the uniform variables produced by the gencrator repeat themselves
over relatively short time periods. Consequently, researchers developed generators that would
have cycle lengths that are as long as possible.

Linear Congruential Random Number Generators

A particularly good family of pseudo-random number generator having maximum cycle
length is the linear congruential random number generator. The linear congruential generators,
originally suggested by Lehmer in 1948, form the most popular and highly studied class of
methods for generating a sequence of pseudo-random numbers. These techniques are based
upon the recurrence relationship

x; = (ax;_; +¢) (mod m) [9.2.2]

where a seed, x,,, is an integer 0 S x, < m that is required to start the generator; multiplier a is an

integer 0 < a < m; increment c is an integer 0 < ¢ < m. The symbol mod m stands for modulus
m and, therefore, x; is the remainder after ax;_; + ¢ is divided by the integer m where m > 0.

The sequence {x;} formed by allowing i to take on values i = 1,2, ..., is often called a linear
congruential sequence or a random number stream. In addition, when ¢ > 0 or ¢ =0, the linear
congruential generator is often referred to as a mixed congruential generator and a multiplicative
congruential generator, (Wichmann and Hill, 1982), respectively.

The modulo arithmetic in [9.2.2] guarantees that each entry in {x;} is an integer falling in
the interval (0,m — 1). Consequently, the set of numbers, {x;/m}, forms a sequence of uniformly
distributed random variables, {u;}.

One must carefully select the parameters a, ¢, m, and x,, in [9.2.2] for the linear congruen-

tial method in order to obtain a sequence that follows the distributional properties of independent
uniformly distributed random variables, has a sequence containing the maximum period length,
and achieves computational efficiency. The cycle length or period is some integer p such that
u; = u;,, for all i 20. Clearly, this cycle length cannot be greater than the modulus m. A large

period length and, hence, large m is required for achieving apparent randomness of the entries in
the sequence {l;} or, equivalently, {x;}. Hull and Dobell (1962) show that the linear congruen-

tial sequence {u;} has period m if and only if the following restrictions are satisfied:
1. ¢ is relatively prime to m (i.c. ¢ and m have no common factor other than unity).
2. a-1isamultiple of the period p, for every prime p dividing m.

3. a-1isamultiple of 4 if m is a multiple of 4.

Rules for finding the period for any choices of a, ¢ and m are presented by Marsaglia
(1972). Further detailed information regarding the selection of the parameter values in [9.2.2] is
given by Janson (1966), Knuth (1969), Dieter (1972), as well as many other authors.
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In summary, the algorithm for the linear congruential random number generator is as fol-
lows:

A. Input: Carefully select the parameters a, ¢ and m in [9.2.2], plus the starting value x, and
the length N of the sequence to be generated.
B. Calculations:

0. Seti=1

L. x;=(ax;_; +¢) (mod m)

2 u; = truncated decimal expansion of x;/m [9.2.3]
3. i=i+1

4. Ifi<N,gotol.

5. Stop.

C. Output: Sequence {u;} = uy,u,, . . ., uy, of independent uniformly distributed random vari-
ables on the interval (0,1).

Example:

To demonstrate how the linear congruential random generator works, consider a simple
illustration for whicha =3, ¢ =7, m =16 and x, = 2. Hence, equation [9.2.2] becomes

x;=(x;_ +7) (mod 16)
Using this equation, one calculates the sequence for x; as:
X, =2 (starting value or seed)
x1=3(2) + T)(mod 16) = 13(mod 16) =13
X3 =(3(13) + 7)(mod 16) = 46(mod 16) = 14
x3 =(3(14) + 7)(mod 16) = 49(mod 16) = 1
x4 = (3(1) + T)(mod 16) = 10(mod 16) = 10
x5 = (3(10) + 7)(mod 16) = 37(mod 16) =5
X = (3(5) + T)(mod 16) = 22(mod 16) =6
x7 = (3(6) + 7)(mod 16) = 25(mod 16) =9
xg = (3(9) + 7)(mod 16) = 34(mod 16) =2
X9 = (3(2) + T)(mod 16) = 13(mod 16) = 13
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Consequently, the sequence {x;} is:
{x;} =2,13,14,1,10,5,6,9,2,13, - - -

By dividing each entry in the x; set of numbers by the modulus, one obtains the u; sequence
according to [9.2.3] as:

{u; ——————————————

Notice that these two sequences repeat themselves after only eight terms. Because of this, the
entries in {u;} would not be independent. In addition, since the calculated values can only take

on discrete values that are integer multiples of -116- and many of these values such as —1:% and %

are missing, the u;’s are not uniformly nor continuously distributed. As noted earlier, to mimic

independence and a uniform distribution, the period has to be as large as possible and, hence, a,
¢, m and x, must be wisely selected.

Testing Random Number Generators:

As pointed out by Yakowitz (1977) and others, all feasible random number generators are
inherently faulty from a purely philosophical viewpoint. Nonetheless, when appropriate choices
of input parameters are made for the linear congruential random number generator, the generated
sequences can satisfy standard statistical tests and are adequate for use in engineering applica-
tions. Traditionally, one employs separate tests to ascertain if the sequence {u;} is independent
and also uniformly distributed. When using a random number generator on a given computer
facility for the first time, one should invoke a range of statistical tests to ensure that the indepen-
dence and uniform distribution assumptions of the u;’s are satisfied. Furthermore, one wishes to

employ a random number generator that is also computationally efficient.
9.2.3 Generation of Independent Random Variables

General Approach

As shown in Figure 9.2.1, sequences following distributions other than the rectangular or
uniform distribution are obtained by transforming rectangularly distributed random variables to
the required distribution. For almost all of the models discussed in this book, one assumes that
the a, innovations are normally independently distributed as NID(0,62). Therefore, when simu-
lating using an ARMA or ARIMA model, one wishes to transform the uniformly distributed
variables generated using the techniques from the previous section into a sequence which is
Gaussian or normally distributed and has uncorrelated elements.

More specifically, suppose one wishes to transform a sequence {u;} of independent uni-

formly distributed random variables to some other distribution such as a normal distribution. Let
the variable following the other distribution be denoted by w where f(w) and F(w) represent the



302 Chapter 9

probability density function and cumulative distribution function, respectively. A universal ran-
dom variable generator is available for transforming the uniform random variables to the
required distribution. Following Yakowitz (1977, p. 41) the main steps in this algorithm are as
follows:

A. Inputs: The sequence {u;} of independent uniformly distributed random variables and the

formula F(w) of the cumulative distribution for the distribution that one wishes the
transformed variables to follow. Also, one should fix the length, N, of the w sequence to

be generated.
B. Calculations:
0. Seti=1.
1.  For u = u;, determine w such that
w = minimum {y:F(y) 2u } [9.2.4]
2. Assignw;=w.
3. i=i+1
4, Ifi<N,gotol.
5. Stop.

Output: Sequence {w,- }= w,wy, ..., wy, which are independent and follow the required

distribution F(w). It can be proven that if the u;’s are uniform, the w;’s will follow the dis-
tribution F (w).

Simulating Independent Normal Sequences
The probability density function for a standard normal random variable having a mean of
zero and standard deviation of unity is defined by the probability density function
fO)=@m)2exp(-y42), o<y <oe [9.2.5]

In shortform notation, the distribution in [9.2.5] is written as N(0,1). If the y’s are also indepen-
dently distributed, then they are normally independently distributed as NID(0,1). A normally
distributed random variable, w, having a mean, y,,, and standard derivation, G,,, can be obtained

from the standard normal variable, y, using the transformation
w=0,y +1, [9.2.6]

The notation for the distribution of w is N (uw,cz). If the w’s are normally independently distri-
buted they are said to be NID(j.Lw,oi). This normal distribution is often referred to as the Gaus-
sian distribution in commemoration of the great German mathematician Karl Gauss.

A variety of approximate and exact algorithms are available for generating normally distri-

buted random variables from uniformly distributed ones. Box and Muller (1958) provide an
exact method for generating random variables. In particular, two random variables, ¥; and u,,
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that are independent and uniformly distributed on the interval (0,1) (see Section 9.2.2), are
transformed to NID(0,1) random variables, y; and y,, using the relationships

»n= (-21nu1)”2cos21w2
¥y, = (=2Inu;) Zsin2mu, [9.2.7]

One then uses the transformation in [9.2.6] to obtain the random variables w; and w; that are dis-
tributed as NID(i,,,02). The accuracy of the Box-Muller algorithm is determined by the com-

puter word length as well as the accuracy of the logarithmic and trigonometric routines that are
available on the computer. The calculations required in [9.2.7] can make this algorithm less
computationally efficient relative to other competing algorithms.

A highly recommended algorithm for exactly generating NID(0,1) observations from
independent uniformly distributed random variables is the method of Marsaglia and Bray (1964).
Marsaglia et al. (1964) and also Knuth (1969, pp. 105-112) provide detailed information about
how to encode the Marsaglia-Bray algorithm. Knuth (1969) thinks that the Marsaglia-Bray algo-
rithm is more efficient from a computational viewpoint than the other perfect generator of Box
and Muller (1958). However, the Marsaglia-Bray algorithm is more complicated and, therefore,
requires a greater programming effort.

Generating Other Distributions

As pointed out in the first part of Section 9.2.3, a general approach is available for
transforming random variables from a random number generator to any required distribution. In
the previous subsection, for example, techniques are discussed for generating random variables
that are NID(0,1). Methods are also available for generating independent variables which follow
distributions such as exponential, gamma or Poisson distributions.

One can generate some types of independently distributed variables directly from the
NID(0,1) variables. For instance, to generate independent log-normal random variables, the
procedure is as follows:

1. Generate NID(0,1) random variables y;, i =1,2,...,N.
2. Use the transformation
v; =exp(,, + G, ¥;) [9.2.8]
to obtain v;, i =1,2, ..., N, that are log normally distributed having parameters j,, and o,,
for the mean and standard deviation, respectively, of the NID(u,,,62) random variables.

Another example of generating a certain type of independent random variables directly
from the NID(0,1) variables is the generation of independent Pearson-type 1 variables. The for-
mula for the Pearson-type III distribution is

fv)= r(;)

where 0 SV <eo,..., p>1 and I'(p) is the gamma distribution. For generating independent
Pearson-type Il random variables, the procedure is as follows:

e Vw1 [9.2.9]
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1. Generate NID(0,1) random variables y;,i =1,2,...,N.

2.  Use the transformation

3
1 Yi
v;=p [1 % + 'ﬂ; [9.2.10]
to obtain v;, i =1,2,...,N, that are independent Pearson-type III distributed random vari-

ables.

Another approach for generating synthetic data is to use the empirical distribution of the
given observations or some transformation thereof to simulate possible future occurrences. In
Section 9.8.3, a case study is employed for explaining how the empirical distribution of the
estimated innovations of a fitted ARMA model can be used to simulate the innovations.

9.3 WATERLOO SIMULATION PROCEDURE 1

Following the titles used by McLeod and Hipel (1978), the simulation procedures of Sec-
tions 9.3 and 9.4 are referred as WASIM1 (Waterloo Simulation Procedure 1) and WASIM2
(Waterloo Simulation Procedure 2), respectively. Both of these techniques avoid the introduc-
tion of bias into a simulated sequence by producing starting values that are randomly generated
from the underlying stochastic process. WASIM1 consists of using the random shock or MA
form of an ARMA model to simulate the starting values and then using the original ARMA
model to simulate the remaining synthetic data.

Let w, be a stationary w, series for time ¢ = 1,2, ..., n, to which an ARMA model is fitted

as in [4.3.4] to produce the model

$(B)w, = 6(B)a, [9.3.1]
where

¢(B)=1-¢,B - ¢,B*— -+ —¢,B”

is the nonseasonal autoregressive (AR) operator or polynomial of order p such that the roots of
the characteristic equation ¢(B) = 0 lie outside the unit circle for nonseasonal stationarity and the
¢;,i=12,...,p, are the nonseasonal AR parameters;

8(8)=1-6,8 - 8,82~ --- -0 BY

is the nonseasonal moving average (MA) operator or polynomial of order ¢ such that the roots of
6(B) =0 lie outside the unit circle for invertibility and 6;, i =1,2,...,q, are the nonseasonal
MA parameters; the g,’s are identically independently distributed innovations with mean 0 and
variance c} [IID(O,Gf)] and often the disturbances are assumed to be normally independently
distributed [NID(0,62)].

For simulation purposes, the zero-mean stationary seasonal ARMA model of Chapter 12
can be considered as a natural extension of the nonseasonal process. Models with a non-zero
mean (or any other type of deterministic component) are simulated by first generating the
corresponding zero-mean process and then adding on the mean component.
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Suppose that the w,’s are expanded in terms of a pure MA process as in [3.4.18). This is

termed the random shock form of an ARMA process and is written as

0B
=X )a, =yB)a, =(1+Vy,B +y,B%+ - -)a, [9.3.2]

¢(B)
where yo=1. A method for calculating the y; parameters from the AR and MA parameters is
presented in Section 3.4.3. If an AR operator is present, y(B) forms an infinite series and there-
fore must be approximated by the finite series

\V(B)zl +VIB +w282+ cee +“’q'Bq' [9.3.3]

w;

It is necessary to choose ¢’ such that y -, |,y 2, - *, are all negligible. Since the model is

stationary, this can be accomplished by selecting ¢’ sufficiently large such that the error given
below is kept as small as desired.

’

q
Yo— X W’ < error [9.3.4]
i=0
where 7, is the theoretical variance of a given ARMA process with 62 =1 and is calculated

using the algorithm of McLeod (1975) presented in Appendix A3.2; error is the chosen error
level (ex. error = 10‘5).

To obtain a synthetic series of k observations, first generate k + g’ white noise terms

a_g'418-g' +2: - - -, G0,d1,0y, - . ., a;. Next, calculate
W=+ V18 +Vaa 0 +Ya o [9.3.5]
wheret=1,2,...,r,and r = max(p,q). The remaining w, are easily determined from [9.3.1] as
W =W+ 0w+ - + oW, +a,—-01g - - —8,a,_, [9.3.6]
wheret =r+1,r+2, .. . k.

The use of [9.3.6] avoids the truncation error present in [9.3.3]. Nevertheless if an AR
operator is present (i.e., p > 0), there will be some systematic error in the simulated data due to
the approximation involved in [9.3.5]. However, this bias can be kept to a tolerable level by
selecting the "error” term in [9.3.4] to have a specified minimum value. Of course, if the model
is a pure MA(g) model, then set ¢” = q and [9.3.5] is exact and can be utilized to generate all of
the synthetic data.

An inherent advantage of the WASIM1 simulation technique is that the only restriction on
the white noise terms is that they are IID(O,o}). Although in many situations it is often appropri-

ate to employ NID(0, 3) innovations, this simulation method does not preclude considering

other types of distributions. For instance, after modelling a relatively long hydrological time
series, the residuals from the historical data could be used to form an empirical distribution func-
tion for generating the white noise. This approach is illustrated in the application in Section
9.8.3. In other situations, it may be warranted to simulate the white noise by employing Johnson
variates (Johnson, 1949; Hill, 1976; Hill et al., 1976) which have been applied to hydrological
data by authors including Sangal and Biswas (1970), Stedinger (1980) and Kottegoda (1987).
Atkinson and Pearce (1976) discuss the computer generation of Beta, Gamma and normal
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random variables, while Delleur et al. (1976) suggest some distributions which can be employed
in hydrology. Techniques for generating independent normal and other random variables are
pointed out in Section 9.2.3.

9.4 WATERLOO SIMULATION PROCEDURE 2

9.4.1 WASIM2 Algorithm

WASIM2 (Waterloo Simulation Procedure 2) is based upon a knowledge of the theoretical
autocovariance or autocorrelation function (ACF). Following McLeod (1975), a method for cal-
culating the theoretical ACF for any ARMA process is presented in Section 3.4.2 and Appendix
A3.2. Simulation approaches based upon knowing the theoretical ACF’s of the underlying
processes can also be used for simulating using other types of stochastic models. For example,
in Section 10.4.6, the theoretical ACF of a fractional Gaussian noise model is used in the simula-
tion technique for that model.

Suppose that it is required to generate k terms of an ARMA(p,q) model with innovations
that are NID(0,02). The following simulation procedure is exact to simulate wy,wy, . . ., Wy, for

all stationary ARMA(p,q) models.
1. Obtain the theoretical autocovariance function ¥; for j=0,1,...,p-1 by using the algo-
rithm of McLeod (1975) with 03 = 1. (See Section 3.4.2 and Appendix A3.2.)

2. Following the approach of Section 3.4.3, determine the random shock coefficients y; for
j=12,...,(g-1)in [9.3.3].
3.  Form the covariance matrix Ac? of WpWpols -+ - WBplp_ 1o - - - s 8p_gyy.

() (9
) [v:-,- ]""P [5.-J]m PHXP+)

In the above equation, the (i,j) element and dimension of each partitioned matrix are indi-
cated. The values of §; ,j are 1 or 0 according to whether i=j or i#J, respectively. When

A [9.4.1]

i-j<O0,theny,_;j=Y; ;andy;_;=0.

4. Determine the lower triangular matrix M by Cholesky decomposition (see Ralston (1965,
p. 410), Healy (1968), or Hornbeck (1975)) such that

A=MM [9.4.2]
5. Generate e,e,...,€p.q, and @y, ...,4; Where the ¢, and g, sequences are
NID(0,62).

6. Calculate wy,wy, . .., w,, from
1
WP"'I_‘ = Zm,Jej , t=12,... D [9.4.3]
Jj=1

where m, ; is the ¢,j entry in the matrix M.
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7. Determine a,_g,1,dp—g42: - - - » Gp, from
pH
Gpi14 = Zlmt+pjej » t=12,....9 [9.44]
J:
8. Obtain Wy, ,Wp,2, . . ., Wy, Using
W =W 0w+ o F QW +a,-01a, 1 =00 5~ - —0.a,,
t=p+lp+2,... .k [9.4.5]

9. If another series of length k is required then return to step 5.

For a particular ARMA model, it is only necessary to calculate the matrix M once, no
matter how many simulated series are synthesized. Therefore, WASIM2 is economical with
respect to computer time required, especially when many time series of the same length are gen-
erated.

Often the white noise disturbances can be assumed to be NID(O,G,,z) and it is desirable to

have as much accuracy as possible in order to eliminate bias. For this situation, the authors
recommend using WASIM2 for a pure AR model or an ARMA process. When simulating a pure
MA process with innovations that are NID(O,G}), the WASIM1 and WASIM2 procedures are

identical.

9.4.2 Theoretical Basis of WASIM2
In Step 3 of the WASIM2 algorithm, one forms the covariance matrix Acsa2 of

WpWp_1s - - - »W1,8p.p_1, - - - 1 dp_g4, Which are contained in a vector W. ‘Next, one determines

the lower triangular matrix M for A in [9.4.2]. Following Steps 6 and 7, the starting values con-
tained in the vector W can be generated using

W=Me [9.4.6]
where the ¢,’s contained in the vector e are NID(0,62). In order to simulate exactly the starting
values contained in W, the covariance matrix of W must be Ac2. This can be easily proven as
follows:

Var[M e]=E[(M eM e)T]

=E[M e e’ M’} = MVar(eM”
=6 M M7 = Ac? [9.4.7)

where G,,z is a diagonal matrix for which each diagonal entry is c2.

9.4.3 ARMA(1,1) Simulation Example

The purpose of this section is to show in detail for a specific model how calculations are
made in the WASIM2 algorithm. Suppose one wishes to simulate 10 values with an ARMA(1,1)
model using WASIM2. For convenience, assume that the mean of the w, series in [9.3.1] is zero.

If the mean were nonzero, it could be added to each of the simulated values.
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The calculations for an ARMA(1,1) model using WASIM?2 are as follows:

For an ARMA(1,1) model p =1 and, hence, one only has to calculate Y, at step 1. From
[3.4.16]
_1+67-2¢,0;, ,

Yo= _'1':;'12_ a
Letting 62 =1
1+67-29,6,

1-¢f

Using the identity in [3.4.21] one can calculate the random shock coefficients. Only yo=1
is required for an ARMA(1,1) model.
The matrix A in [9.4.1] is

s-fore]-[0

Then Ac? is the covariance matrix for (w;,a;).

0=

In this step, one obtains the Cholesky decomposition matrix M for A such that
A=MMT
For the case of an ARMA(1,1) model

Yo1| |m myy my
L 1T |y myp [0 my

[Yo 1] mh  mymy

or

1 1|7

my My mzzl +m222

By equating (i,j) entries in the matrices on the left and right hand sides of the above equa-
tions, one can calculate m;, m,; and m,,. In particular, for the (1,1) element:

mf; =g
Therefore,

my; =VYo
For the (1,2) entry:

myymy; =1

Therefore,
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g = e =k
my ===

for the (2,2) element:

mi +mp =1
Therefore,

mE=1- mi=1- 71;
Therefore,

Mmyy = 1-—

2 Yo
Hence,
\/70 0
M=

T Y
5. The techniques of Section 9.2.3 can be used to generate (e;,e5) and (a,.a3, . . . ,a;¢) Where
the sequences are NID(0,62).
6. The starting value w, is calculated using [9.4.3] as
wy=mp e, = ‘j‘{_of-’l

7. The initial value for a, is found using [9.4.4] to be

=

8.  Use the given definition of the ARMA(1,1) model in [9.4.5] to get wy,ws, ..., w;. More
specifically,

1
a)=my1e) + mye, = q:{—oex +

wy=¢w; +a,-0,a;

where the starting values for w; and g, are calculated in steps 6 and 7, respectively. The
values for a, and also a3, gy, . . ., @y are determined in step 5. Next

w3=¢wy+a3-0,a;

where w, is calculated in the previous iteration and a3 and g, are generated at step 5. By
following the same procedure
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ws= w3 +a,—0a;

wio =Wy + a9 - 0,49

If w, has a mean level, this can be added to the above generated values. Notice that the
starting values w; and a, are randomly generated from the underlying ARMA(1,1) process.
Therefore, the simulated sequence is not biased because of fixed starting values.

9.5 SIMULATION OF INTEGRATED MODELS

9.5.1 Introduction

As discussed in 2.4 and elsewhere in the book, for annual geophysical time series of a
moderate length (perhaps a few hundred years), it is often reasonable to assume that a stationary
model can adequately model the data. In Section 10.6 and also in Hipel and McLeod (1978), for
example, stationary ARMA models are fitted to 23 time series which are measured from six dif-
ferent natural phenomena. Nevertheless, certain types of time series that are used in water
resources could be nonstationary. The average annual cost of hydro-electric power and the total
annual usage of water-related recreational facilities constitute two types of measurable processes
which possess mean levels and variances that could change significantly over time. Other exam-
ples of nonstationary annual series are given in Section 4.3.3. In general, time series that reflect
the socio-economic aspects of water resources planning may often be nonstationary, even over a
short time span. Consequently, in certain situations it may be appropriate to incorporate a non-
seasonal differencing operator into the nonseasonal model in order to account for the nonsta-
tionarity by following the approach of Section 4.3.

As explained in Chapter 12, if a seasonal ARIMA or SARIMA model is fit to seasonal
data, usually both nonseasonal and seasonal differencing are required to account for the nonsta-
tionarity. Consider the case of average monthly observations. If the monthly mean and perhaps
variance change from one year to the next for each specific month, then fitting a nonstationary
SARIMA model to the data may prove to be reasonable. For example, the average monthly
water demand for large cities tends to increase from year to year for each month. For the
aforementioned situations, the simulation procedures for integrated models presented in this sec-
tion could be useful.

As pointed out in Part VI, when considering seasonal hydrological data, such as average
monthly riverflows, the individual monthly averages may have constant mean values but the
means vary from month to month. Consequently, the time series of all the given data is by
definition nonstationary but it still may not be appropriate to employ a nonstationary SARIMA
model to describe the data. Rather, the given natural time series is firstly deseasonalized to pro-
duce a stationary nonseasonal data set and subsequently a nonseasonal model is fit to the desea-
sonalized data. For example, prior to fitting a nonseasonal ARMA model to the data, it is a com-
mon procedure to standardize average monthly riverflow time series to eliminate seasonality (see
Chapter 13). The WASIM1 and WASIM2 simulation procedures of this chapter can be used
with the deseasonalized models of Chapter 13 and the periodic models of Chapter 14. However,
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for both of these types of seasonal models, one does not have to difference the data and, hence,
the methods of Section 9.5 do not have to be used when using them for simulation.

Nonseasonal ARIMA and SARIMA models are presented in Chapters 4 and 12, respec-
tively. For completeness of presentation of this simulation chapter, simulating with both types
of models is discussed below.

9.5.2 Algorithms for Nonseasonal and Seasonal ARIMA Models

Although caution should be exercised when modelling nonstationary data, it is evident that
situations may arise when it is suitable to invoke differencing. Any seasonal ARIMA model
from [12.2.7] that contains a d1fferenc1ng operator is termed an integrated model. Suppose that
it is required to simulate k values of z® by using an integrated process. A stationary w, series is

related to the nonstationary z,® series by the equation
w,=VIVO N | r=d1d'2, .k [9.5.1]

where s is the seasonal length (s = 12 for monthly data); Ve = (1 - B)? is the nonseasonal dif-
ferencing operator of order d in [4.3.3] to produce nonseasonal stationarity of the dth differences
and usually d =0, 1 or 2; VD =(1-B*)? is the seasonal differencing operator of order D in

[12.2.3] to produce seasonal stationarity of the Dth differenced data and usually d =0, 1, or 2,
and for nonseasonal data D =0; d’ =d + sD.

Because of the differencing in [9.5.1], the d’ initial values wy,wy, . . ., w, which determine
the ‘‘current level”” of the process, are assumed known. Given the d’ initial values, the time
series integration algorithm forms the integrated series z,m for t=d'+1,d’+2,...,k. The
integrated series is derived theoretically from the relationship

z® = 595Py, [9.5.2]
where S=V!'=1+B+B%+---, is the nonseasonal summation operator;
S,=V;1=1+B°+B% + - - -, is the seasonal summation operator.

When employing [9.5.2] to obtain an integrated series, the methods of the previous sections
are utilized to determine the w, sequence. Then the integration algorithm that is developed

presently in this section, is used to evaluate [9.5.2]. The situation where it is required to simu-
late data from a nonseasonal model containing a differencing operator, is first considered. This
is followed by a discussion of the generation of synthetic data from a general seasonal model
that possesses a seasonal differencing operator and perhaps also a nonseasonal differencing
operator.

Nonseasonal Model:
The integration algorithm for a nonseasonal ARIMA model (i.e. s =D =0) is as follows:
Fori=1,2,...,d:

1. Determine the starting value V"“z,(") by differencing the given initial values
NS )
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2. Calculate V¥iz® for t =d+1,d+2, . . ., k, by employing the identity
Vi, = pdti=i B yd-ip [9.5.3]

Seasonal Model:
For a seasonal model, the integration algorithm is subdivided into two parts. The first stage
consists of performing the nonseasonal integration.
Fori=12,...,d:
1. Determine the starting value V/~“VPz/, by differencing the given initial values
2™ M, M.
2. Calculate V¥ V,Dz,m fort =d’'+1,d'+2, . . ., k, by using the equation
Vé-iyD; M) - ya+i-iyD, M) _yd _;yD, A [9.5.4]

In the second stage the seasonal integration is performed. Fori=1.2,...,D:
1. Determine the starting values V2™ for t = d’,d’-1, ..., d’ = s, by differencing the given
initial values zV,z{V, ...,z .

2. Calculate V2 "z,(") fort =d’'+1,d'+2, . ..,k by using the equation
V2B =yt M 4 v P-ig W) [9.5.5]

9.6 INVERSE BOX-COX TRANSFORMATION

As shown in Figure 9.1.1, before fitting a time series model to a given time series, one may
wish to transform the data using the Box-Cox transformation in [3.4.30]. The main purposes of
the Box-Cox transformation are to make the residuals of the fitted ARMA or ARIMA model (see
Section 3.4.5) to be normally distributed and homoscedastic (have constant variance). Subse-
quent to simulating data sequences using the fitted model and following the techniques from the
previous sections of this chapter, one must take the inverse Box-Cox transformation in order to
obtain synthetic data that have the same units as the original time series.

From [3.4.30] the Box-Cox transformation of the original z, series is

AN+ =11, ax0
o= In(z, +¢) *A=0 5:6.1]
where the constant ¢ is chosen to be just large enough to cause all of the entries of the z, series to
be positive. When the data are nonstationary, one may also wish to difference the 2‘0-) series to
obtain the w, series in [4.3.3]. Of course, if the z, or z,(") series are already stationary, the w,
series is the same as z,("). Whatever the case, after following the methods of the previous sec-
tions of Chapter 9 to obtain the simulated z,(") sequences, one must take the inverse Box-Cox
transformation to get the synthetic z, data. The inverse Box-Cox transformation is written as
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PP+ 11 ~c, 220

= cxp[z,m] —c ' A=0 [9.6.2]

where z® stands for the simulated sequence obtained directly from the ARMA or ARIMA
model. If the z,o') sequence possesses a mean level, one can add the transformed mean to each of
the generated z, values calculated using [9.6.2].

9.7 WATERLOO SIMULATION PROCEDURE 3

9.7.1 Introduction

In simulation studies, one usually employs a calibrated ARMA model to simulate possible
future sequences of the time series to which the model is fitted. One could, of course, assume a
given theoretical model having specified parameter values and then use this model in a simula-
tion study. However, when fitting the model to the series, one obtains maximum likelihood esti-
mates (MLE’s) and standard errors (SE’s) for the model parameters (see Section 6.2 and Appen-
dices A6.1 and A6.2). Because the time series used to calibrate the ARMA model is only one
finite realization of the underlying stochastic process that generated this observed sequence, the
population values of the model are not known. The MLE’s of the model parameters constitute
the best estimates of the population values given the available information. The uncertainties or
variations of these estimates are reflected by their SE’s. As explained in Appendix A6.2, the
SE’s are calculated as the square roots of the diagonal entries in the variance-covariance matrix
for the estimated parameters.

The WASIM3 (Waterloo Simulation Procedure 3) algorithm can be used in simulation stu-
dies where it is required to incorporate parameter uncertainty into the analysis. Suppose that it
is necessary to generate k’ synthetic traces of length k. When generating each series of length &,
different values of the model parameters are randomly selected if WASIM3 is employed. The
WASIM3 procedure is explained in this book only for a nonseasonal ARMA model, since exten-
sion to the seasonal case is straightforward. In terms of Figure 9.1.1, the WASIM3 algorithm is
used prior to taking the inverse Box-Cox transformation discussed in Section 9.6. Following the
presentation of the WASIM3 algorithm in the next subsection, it is explained how parameter
uncertainty is incorporated into reservoir design. Section 9.7.4 discusses how practitioners can
deal with model uncertainty.

9.7.2 WASIM3 Algorithm

Suppose that the historical time series containing N values is modelled as an ARMA(p,q)
model as in [9.3.1] that has an estimatgd mean level of u. The Gaussian white noise residuals
have an estimated variance denoted by oaz. Let the vector of the estimated ARMA parameters be

given by
ﬁ-: (61’62: e réprél’éZ’ oo téq) [97.1]

(see Section 6.2). The vector of the true model parameters is denoted by
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B = (¢1v¢2' e ¢p'el’62’ cee eq) [97.2]

The mean level of the true model is u while the variance of the white noise is G2,

If a non-informative prior distribution is used for the model parameters, then B, p and 0'3
are approximately independent with posterior distributions given by

B=N(B.vp [9.7.3]

where Vﬁ is the estimated variance covariance matrix of  which is usually calculated at the esti-
mation stage of model development (see Appendix A6.2) and N means normally distributed.

A A A .2 -
N R i B
=N |, - . — 9.7.4
S i 1-6,-6,—--- -6, N D74l
~4
an O,
G2=N [03,—2“— [9.7.5]

The findings given in [9.7.3] to [9.7.5] are based upon large sample theory. Nevertheless,
these results can be used to obtain some idea of the importance, if any, of parameter uncertainty
in a particular situation. It should be noted that if an informative prior distribution were used,
the variances of the parameters would be less and hence the parameter uncertainty would also
decrease.

The following algorithm for WASIM3 can be used to allow for parameter uncertainty when
k’ series of length k are to be generated from an ARMA(p,q) model.

1. Seti=1.

2. Randomly generate values for B, u and c} using the posterior distributions given in [9.7.3],
[9.7.4] and [9.7.5], respectively. Denote the generated parameter values as B,-, W; and c} e
Refer to the book by Janson (1966) for a method to obtain random values from a multivari-

ate normal distribution.
3. Use WASIM2 (or WASIM1) for an ARMA(p,q) process with parameters f3;, y;, and 0'} i
to simulate a synthetic series of length k that is represented by z{,z{", ..., z{). If the

model contains a Box-Cox transformation, the inverse transformation in [9.6.2] is required.

4. Seti=i+1. Ifi Sk’ then repeat steps 2 and 3 to obtain another possible realization of the
time series. When i > k’, the WASIM3 procedure is terminated.

9.7.3 Parameter Uncertainty in Reservoir Design

In this section, an algorithm is presented for estimating the expected utility of a reservoir
design given the specified ARMA(p,q) model for the riverflow data and a posterior distribution
p(B.u,62) for the parameters. For a given riverflow time series z,,2,, . . ., 2, and a particular

reservoir design D, the (vector-valued) net benefit function is given by
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NB =NB(zy, .. .,2;D) [9.7.6]
and the utility is
U =U(NB) ' [9.7.7]

The expected utility of D is then given by

u(D) =E{U(NB(z1J§, ... ,zk;D))}

=f[-Jff- [ [JumBGz, ... 5 D)

2z uPby Byugnol
p(1zy ..., 2 IB,u,cf)p (B.u,of)
dzidzy - - - dz,dBydp, - - B, dpdo? [9.7.8]
The best design, D,,, maximizes the value of u(D).

After an ARMA model s fit to the given time series of historical riverflows, the following
algorithm may be used to estimate u(D) and a confidence interval (or Bayesian prabability inter-
val) for u(D).

1. Seti=1,T,=0,T,=0. Letk’ be the number of series of length k that are to be generatcd

For example, k’ may have a value of 10,000.

2. Generate a synthetic time series, z{,2{", . .., z{®, using the WASIM3 algorithm.
3. Calculate u; =UWNB(z{0 25", . ..,2{% D)), set Ty =Ty +u;, and set T, =T, + u?.
4. Seti=i+landgotostep2ifi <k’ GotostepSifi >k’
5. Set
- 1
i=—T, [9.7.9]
k
and let
12
S;= | |51, | 9.7.10
a - k’ 2 -~ U [ ol ]

The calculated i provides an estimate of «(D) and a 95% confidence interval (or Bayesian
probability interval) for u(D) is given by i £ 1.96S;. Although the aforesaid algorithm is

explained for a nonseasonal ARMA(p,q) model, the same approach is valid for seasonal models.
The number of generated synthetic traces (i.e. k") can be increased if more accuracy is required
or decreased when less accuracy is needed.
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9.7.4 Model Uncertainty

In the synthetic hydrology approach to reservoir design and operation, an ARMA model
may be fit to a historical riverflow time series and then used to simulate other possible realiza-
tions of the riverflows. Two sources of possible error may arise. The model selected may be
inappropriate or the estimated parameters may be inaccurate. The procedures of Part III
emphasize techniques for selecting an appropriate model followed by efficient parameter estima-
tion and diagnostic checking for possible model inadequacies. It is thus reasonable to suppose
that the selected model is at least approximately valid and that the best possible estimates are
obtained for the model parameters by using the method of maximum likelihood (see Section
6.2). On the other hand, if a possible inappropriate model is fit to the data and no checks of
model adequacy are done, a seriously inadequate model may be chosen. It is demonstrated in
Section 10.4.6, for example, that the use of fractional Gaussian noise models may give poor fits
to annual riverflow time series when compared to ARMA models. If the methods of Part III are
used with a hydrologic time series of at least 50 observations, the selection of an inappropriate
model is not likely to occur. The reader may wish to refer to Section 5.2 for further discussions
of modelling philosophies and different kinds of uncertainties.

Given that the best possible model is identified for fitting to a series and efficient parameter
estimates are obtained, the WASIM3 algorithm can be used for simulation purposes in order to
take parameter uncertainty into account. This parameter uncertainty is caused by the finite sam-
ple length of the time series to which the model is fitted.

9.8 APPLICATIONS

9.8.1 Introduction

Three applications are presented to illustrate the advantages and usefulness of the simula-
tion procedures presented in this chapter. The first example demonstrates that the employment
of WASIM2 in simulation studies avoids bias that is due to fixed starting values. In the second
application, it is shown how the model residuals from the historical data can be used in conjunc-
tion with WASIMI for generating synthetic data. Finally, the third example demonstrates how
parameter uncertainty can be incorporated into a simulation study by using WASIM3.

9.8.2 Avoidance of Bias in Simulation Studies

The rescaled adjusted range (RAR) and the Hurst coefficient K defined in [10.2.9] and
[10.3.4], respectively, are two statistics that are important in problems related to the Hurst
phenomenon. In Chapter 10 the controversies surrounding the Hurst phenomenon are presented
and it is demonstrated that ARMA processes are superior to fractional Gaussian noise models for
explaining the Hurst phenomenon as well as modelling annual hydrological time series. In par-
ticular, it is shown in Section 10.6 that ARMA models statistically preserve the historical RAR
or equivalently K. Accordingly, ARMA models are important tools for utilization in hydrologi-
cal studies.

If the underlying process is an ARMA model, it can be shown theoretically that the RAR is
a function only of the sample size and the AR and MA parameters (Hipel, 1975, Appendix B).
In Section 10.6, it is demonstrated how to obtain the empirical cumulative distribution function
(ECDF) for the RAR when the generating process is a specified stochastic model. In particular,
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consider the ECDF for a Markov model (i.e. ARMA(1,0) process) with the AR parameter hav-
ing a value of 0.7. When the WASIM2 technique is employed to generate 10,000 sequences of
length 30, the value of the 0.95 quantile for the ECDF of the RAR is 12.15. The 95% confidence
interval for this value is calculated to be from 12.09 to 12.19 (see Conover (1971, p. 111) for the
method to calculate the confidence interval for a quantile).

If random realizations of the stochastic process are not utilized as starting values, sys-
tematic bias can be introduced into a simulation study such as the development of the ECDF for
the RAR. For the Markov model with an AR parameter having a magnitude of 0.7, 10,000
sequences of length 30 were generated and for each sequence the mean value of zero was used as
a starting value. In addition, exactly the same disturbances that were utilized in the simulation
study using WASIM2, were employed for the biased study. The value of the 0.95 quantile for
the biased ECDF of the RAR is 12.01. The 95% confidence interval for this quantile value is
from 11.97 to 12.05. Notice that the confidence interval for the biased result does not intersect
with the corresponding interval for the unbiased study. Consequently, fixed initial values should
not be used in the development of the ECDF for a specified statistic and generating mechanism.

9.8.3 Simulation Studies Using the Historical Disturbances

When using WASIMI, it is not necessary to assume that the model residuals are
NTD(O,G}). In fact, it is not required to determine any theoretical distribution for the distur-

bances to follow. Rather, in certain situations it may be advantageous to use the residuals from
the historical data to form an empirical distribution for generating the innovations. For example,
when a relatively large sample is available, it may be desirable to use the empirical distribution
of the residuals for simulation studies, no matter what theoretical distribution the empirical
results may most closely resemble. In other instances, it may be difficult to determine which
theoretical distribution to fit to the disturbances and, consequently, it may be profitable to
employ the empirical distribution of the residuals. However, it should be pointed out that when
the historical disturbances are employed, it is not possible to have a generated disturbance that is
more extreme than any of the calculated residuals. Nevertheless, because of the form of the
difference equation for an ARMA model in [9.3.1] that is fit to correlated data, it is possible that
values of the generated data may be more extreme than those in the given time series.

A riverflow time series is considered to demonstrate how the empirical distribution for the
residuals can be used in practice. The average annual flows of the Gota River in Sweden are
available from 1807 to 1957 in a paper by Yevjevich (1963). A model is fit to this data by fol-
lowing the identification, estimation, and diagnostic check stages of model construction
presented in detail in Part III of the book. The identification stage reveals that it may be
appropriate to estimate an AR model of order two. The parameter estimates and corresponding
SE’s listed in Table 9.8.1 were calculated using the unconditional sum of squares method
referred to in Section 6.2.3. At the estimation stage, the white noise residuals {d, .4, . . ., d, s}
are determined using the backforecasting technique of Box and Jenkins (1976, Ch. 7). Diagnos-
tic checks performed on the residuals confirm that the modelling assumptions are satisfied. In
particular, by calculating confidence limits for the residual autocorrelation function using the
technique of Section 7.3.2, the residuals are shown to be white noise.
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Table 9.8.1. Parameter estimates for an ARMA(2,0) model
fit to the Gota River data.

Parameters | MLE’s | SE’s
¢ 0.591 | 0.079
¢ 0.274 | 0.078

To obtain synthetic data using the Gota model, the WASIM1 method is employed and the
white noise terms are chosen by selecting at random an element of the set {d).d5, . . .,d;so).

After one of the historical innovations is utilized, it is put back into the set of historical distur-
bances. Therefore, selection is done with replacement and this method is equivalent to using the
empirical distribution of the residuals for the generation of the white noise terms.

As an example of a simulation study using the Gota model, consider the development of
the ECDF for the Hurst coefficient K. The historical disturbances and the WASIM1 technique
are used to generate 10,000 sequences, where each sequence contains 150 values. By calculating
K for each of the 10,000 traces, the ECDF for K can be obtained as shown in Table 9.8.2 for a
series length which is the same as the historical time series.

The historical value of K for the Gota River is calculated to be 0.689. Notice that the
observed K value does not lie in the tails of the ECDF for K in Table 9.8.2. The probability that
K for the Gota model is greater than the historical K is 0.281. In Section 10.6, this procedure is
applied to 23 natural time series and by invoking a particular statistical test, it is demonstrated
that ARMA models do statistically preserve the Hurst coefficient K or equivalently the RAR.

Table 9.8.2. ECDF of X for the Gota model.

Values of K for Empirical
Quantiles White Noise
0.025 0.556
0.050 0.571
0.100 0.590
0.200 0.613
0.300 0.630
0.400 0.645
0.500 0.658
0.600 0.671
0.700 0.686
0.800 0.703
0.900 0.725
0.950 0.744

0.975 0.757




Simulating with Nonseasonal Models 319

9.8.4 Parameter Uncertainty in Simulation Experiments

An average annual riverflow series having a length of 96 years is modelled to show how
parameter uncertainty can be brought into a practical simulation study. The yearly riverflows of
the Mississippi River at St. Louis, are available from 1861 to 1957 in an article by Yevjevich
(1963). By following the three stages of model development, the best process for modelling the
Mississippi flows is found to be an ARMA(0,1) model. The MLE for the MA parameter 6, is

-0.306 with a SE of 0.097.

By using WASIM1 (or equivalently WASIM2), the Mississippi model is employed to gen-
erate 10,000 series of length 96. The RAR is calculated for each of the 10,000 traces. The
expected value or mean of the RAR for the 10,000 series is 13.439 with a standard deviation of
0.030. -

The Mississippi model is used with WASIM3 to generate another 10,000 series of length
96. The innovations are different than those used for the simulation study with WASIM1. For
cach trace of length 96, the value of the MA parameter used in WASIM3 is determined by the
equation

8, =—0.306 + 0.097¢, [9.8.1]

where ¢t =1,23,...,10,000; € ~NID(0,1). Because the RAR is not a function of the mean

level of the process or the variance of the model residuals, it is only necessary to randomly vary
the MA parameter for this particular simulation study. The expected value of the RAR for the
10,000 synthetic data sets is 13.443 with a standard deviation of 0.031. A comparison of the
results for the simulation experiment using a constant MA parameter with those utilizing a vary-
ing model parameter, reveals that there is no significant difference between the two expected
values of the RAR. Hence, for this particular study, parameter uncertainty is not a crucial factor.

9.9 CONCLUSIONS

Improved simulation procedures are available for generating synthetic traces from ARMA
and ARIMA models. Because random realizations of the underlying stochastic process are used
as starting values, bias is not introduced into the simulated sequences. Furthermore, these tech-
niques can be used in conjunction with models containing differencing operators or data that has
been transformed by a Box-Cox transformation. The overall procedure for utilizing the simula-
tion techniques are depicted in Figure 9.1.1 while detailed explanations are presented in Sections
9.2t0 9.7. Three representative applications of the simulation methods are given in Section 9.8.

If the WASIM1 method of Section 9.3 is utilized, it is not necessary that the distribution of
the residuals be Gaussian. As shown by an example in Section 9.8.3, the empirical distribution
of the residuals can be used for generation purposes. In addition, WASIM1 is exact for a pure
MA process. On the other hand, the WASIM2 technique of Section 9.4 is an exact simulation
procedurg for any ARMA model. The only restriction with WASIM?2 is that the residuals are
NID(0,6;).

When incorporating parameter uncertainty into a simulation study, the WASIM3 procedure
of Section 9.7 is the proper method to implement. If it is deemed necessary to consider parame-
ter uncertainty in reservoir design, one can employ the algorithm given in Section 9.7.3 for link-
ing WASIM3 with the design problem. As discussed in Section 9.7.4, to circumvent difficulties
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with model uncertainty, it is recommended that a proper ARMA model be fit to the given data
set by following three stages of model development presented in Part III.

In Section 9.5, it is explained how the simulation techniques can be used with integrated
models. The simulation methods can be extended for use with the three types of seasonal
models of Part VI. For example, by writing the seasonal ARIMA model in the unfactored form
shown in [12.2.11], one can directly employ the simulation methods of Chapter 9.

As explained in Section 9.7.3, simulation can be used in reservoir design. Simulation can
also be employed for studying the theoretical properties of a given type of stochastic model. In
Section 10.6, simulation is employed to demonstrate that ARMA models preserve statistically
two important historical statistics called the Hurst coefficient and the rescaled adjusted range
(also see Section 9.8). This forms the basis for the explanation of what is called the Hurst
phenomenon. The Hurst phenomenon and related developments in long memory modelling are
presented in Chapters 10 and 11, respectively, in Part V of the book.

PROBLEMS

9.1 Explain why it is not ‘‘completely correct’’ to employ statistical tests for checking
the statistical properties of sequences generated by a random number generator.

9.2 Briefly outline at least two statistical tests for determining whether or not a random
number generator produces independent observations. List the relative merits and
disadvantages of these tests.

93 Briefly describe at least two statistical tests for checking if a random number gen-
erator produces uniformly distributed variables. Compare the relative advantages of
these tests.

94 In Section 9.2.3, a universal random variable generator is presented for transforming

independent uniform random variables to independent random variables following
any required distribution. Prove that this algorithm is correct.

9.5 (@) Provide a numerical example to demonstrate how the mixed linear congruen-

tial random number generator works.

(b) Use a numerical illustration to explain how the steps of the multiplicative
linear congruential random number generator are carried out.

9.6 Describe detailed guidelines regarding the choice of the coefficients a, ¢ and m in
the linear congruential random number generator in [9.2.2].

9.7 In Section 9.2.3, references are given for the Marsaglia-Bray algorithm which can be
used to generate random variables that are NID(0,1). After referring to these refer-
ences, describe the main steps in this algorithm. Discuss the main advantages and
drawbacks of the Marsaglia-Bray algorithm.

9.8 Three algorithms for generating NID(0,1) random variables from independent uni-
formly distributed random variables are the central-limit algorithm, Teichroew
method and Box-Muller generator (see, for example, Knuth (1969)). Briefly
describe how each algorithm works and point out any overlap in the techniques.
Compare their relative advantages and disadvantages from both theoretical and com-
putational viewpoints.
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9.9 Describe an approach for generating independent gamma random variables.
9.10 Draw a flow chart to outline how one can employ simulation in reservoir design.
9.11 Suppose that one wishes to simulate 10 values from an ARMA(2,2) model using

WASIM1. Write down how each of these 10 values are calculated using the
WASIM]1 algorithm.

9.12 (@) Suppose that one wishes to use WASIM2 to simulate 10 values from an
ARMA(2,1) model. Show all the calculations for generating this data.

(b) Prove that the random starting values in part (a) are from an ARMA(2,1) pro-

cess.
9.13 Refer to appropriate references for explaining how to simulate from a multivariate
normal distribution. Describe in detail how this is done within the WASIM3 algo-
rithm.
9.14 Suppose that one wishes to simulate 10 values of a series to which an

ARIMA(1,1,1) model was fitted to the square roots of the observations. Write down
all of the detailed calculations for producing simulated values in the untransformed
domain.

9.15 (a) Using annual time series from your field of interest, carry out a simulation
experiment to demonstrate that ARMA models statistically preserve the histor-
ical autocorrelation function at lag 1.

(b) Incorporate parameter uncertainty into the simulation experiment executed in
part (a).
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