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Previous research related to the controversial Hurst phenomenon is reviewed and evaluated. Because of
the inherent statistical properties of the rescaled adjusted range (RAR) statistic it is suggested that
research primarily be devoted to this statistic rather than to the various definitions of the Hurst
coefficient. Simulation studies reveal that for independently distributed random variables the RAR does
not significantly depend on the underlying distribution of the random variables but is a function of the
sample size. For modeling correlated data the statistical attributes of a discrete fractional Gaussian noise
(FGN) process are studied and also improved. An efficient maximum likelihood estimation technique is
developed for the FGN model, and it is shown how the residuals of the fitted model can be calculated and
then subjected to diagnostic checks. An exact simulation procedure is developed for simulating FGN in
such a way that synthetic traces from the mode! lic outside the Brownian domain. The Akaike informa-
tion criterion (AIC) is suggested as a method for choosing between a FGN and a Box-Jenkins model. For
the six annual river flow series that are considered the AIC selects the best Box-Jenkins model in
preference to the FGN process for each data set. Because Box-Jenkins models can be shown to preserve
the historical RAR, in many practical applications it may be advantageous to use a Box-Jenkins model

instead of a FGN process.

INTRODUCTION

Since the original empirical studies of Hurst [1951] the
Hurst phenomenon has caused extensive research with accom-
panying academic controversies right up to the present time.
The purpose of this paper is to review, to appraise, and to
suggest how to improve the research related to Hurst’s work.
The views presented in this paper and the two associated
articles [Hipel and McLeod, 1978a, b] in some ways represent a
fresh approach to the study of the Hurst phenomenon and the
related problem of the preservation of historical statistics by
stochastic models.

Definitions related to the cumulated range first are clearly
defined. Then the various types of Hurst coefficients that have
been developed for use in formulae involving the rescaled
readjusted range (RAR) are evaluated. Because of the flexible
statistical properties of the RAR it is suggested that this is the
Hurst statistic of primary concern in water resource appli-
cations related to storage.

The roles of both identically independently distributed (11D)
variables and correlated random variables for explaining prob-
lems related to the Hurst phenomenon are thoroughly investi-
gated. Simulation studies are used to demonstrate that the
RAR is nearly independent of the type of underlying distribu-
tion of the random variables and is also a function of the
sample size. Of particular importance for correlated processes
are stochastic models that can easily be fit to geophysical time
series and at the same time retain relevant historical statistical
characteristics of the data such as the RAR and other related
statistics. Box-Jenkins models [Box and Jenkins, 1970] consti-
tute one family of stochastic models which possess the poten-
tial for continued extensive utilization in hydrology. The dis-
crete fractional Gaussian noise (FGN) model is a process that
was developed mainly within the hydrological literature [ Man-
delbrot and Wallis, 1968, 196%a, b, ¢, d, e¢] as a means for
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possibly accounting for the Hurst phenomenon. Although
some of the inherent drawbacks of this model are discussed,
significant contributions are formulated toward the further
statistical maturity of the FGN model.

When any type of stochastic model is being developed to
model a given time series it is recommended to follow the
identification, estimation, and diagnostic check stages of
model construction [Box and Jenkins, 1970; Box and Tiao,
1973]. Because this modeling philosophy previously has not
been adhered to strictly for a FGN process, important devel-
opments are presented for this model. An efficient maximum
likelihood (ML) procedure is derived for use at the estimation
stage. Simulation studies reveal that the ML approach is supe-
rior to a previous estimation method. A technique for calcu-
lating the model residuals is presented, so that the statistical
properties of the residuals can be tested by specified diagnostic
checks. If, for example, the residuals fail to pass the whiteness
criterion, another type of model should be chosen in order to
satisfy this important modeling assumption. Finally, an exact
simulation procedure is given for simulating FGN, and the
use of this technique is demonstrated in a simulation study.
This new method eliminates the need for approximating FGN
by other types of stochastic processes. The standard Fortran
computer algorithms and accompanying documentation for
these improvements in FGN modeling are listed by Hipel and
McLeod [1978b] (part 3 of this set).

In Box-Jenkins modeling, additional procedures have re-
cently been presented for use at the three modeling stages
[Hipel et al., 1977a], and these advanced techniques have
successfully been applied to water resource problems {McLeod
et al., 1977]. If one has to select between a Box-Jenkins or a
FGN process to model a given data set, the Akaike informa-
tion criterion (AIC) [dkaike, 1974] is suggested as a means of
model discrimination. For the six annual river flow time series
considered, the AIC selects the Box-Jenkins model in prefer-
ence to the FGN process in each case. Fitting Box-Jenkins
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autoregressive moving average (Arma) models to 23 geophysi-
cal time series and using Monte Carlo techniques, Hipel and
McLeod [1978a] demonstrate in part 2 of this set that Box-
Jenkins models do preserve the RAR. Because of the afore-
mentioned facts, in many practical situations it may be advis-
able to utilize Arma models rather than FGN processes.

DEFINITIONS

Consider a time series zy, 25, -+, zy. Define the kth general
partial sum as

&
Se' = 8e' + (zp — dZy) = Z z; — akzy (N
i=1

where S, equals 0, zy equals 1/N),_,Vz,, the mean of the
first N terms of the series, and « is a constant satisfying 0 <
< 1. The general (cumulative) range Ry’ is defined as

Ry' = My — my' 2)
where My' equals max (0, S/, S), ---, Sy'), the general
surplus, and my' equals min (0, S/, S.', - -, Sx'), the general

deficit. Thus Ry’ is the range of cumulative departures of the
random variables z;, z,, -, zy from aZy. When random
variables such as z,, z,, - -+, zy are employed in summation
operations, they are often referred to as summands. The re-
scaled general range Ry’ is given as

RN' = RyN'/Dy' 3)
where Dy’ equals N““[Z,-=1‘V(zi — aZy)*]V? is the general
deviation.

The constant « can be thought of as an adjustment factor, or
in storage theory, it can be thought of as the degree of develop-
ment of reservoir design. Two special cases for « are of partic-
ular importance in water resources. For @ = 0 (no adjustment)
the kth general partial sum S, is replaced by the crude partial
sum Sy, which is defined by

k
Sk=Sk_1+zk=Zzt k=l!2§.'.,N (4)
i=1
where S, equals 0. The crude range Ry is defined analogous to
Ry as
RN = MN - My (5)

where My equals max (0. S, S,, - - -, Sy), the crude surplus,
and my equals min (0, S,, S,, -+, Sy), the crude deficit.
Similarly, the rescaled crude range is

RN = RN/DN (6)

where Dy equals N“”Z[Z[,l‘”z,-z]”2 is the crude deviation.
When a = | (maximum adjustment or development) the kth
adjusted partial sum S,* is given by

k
Se* =8 ¥+ (2 —Zy) = Z z; — kiy (N

i=1

k=1,2,"-,N

where S,* equals 0 and Sy* equals 0. The adjusted range Ry*
is defined as

Ry* = My* — my* (8)

1
Fig. 1. Adjusted range.
where My* equals max (0, S,*, Sp*, -+ -, Sy*), the adjusted
surplus, and my* equals min (0, §,*, S,*, :--, Sy*), the

adjusted deficit. Finally, the rescaled adjusted range is
R-N* = Ry*/Dpy* 9

where Dy* equals N"‘/Z[Z,-=1N(z[ — Zx)*]"/% is the sample stan-
dard deviation. Figure I graphically illustrates the concepts of
Se*, My*, my*, and Ry*.

The statistics described in this section are extremely useful in
reservoir design. If the z, are average annual volumes of river
flow, then Z,=1"zl is the inflow into a reservoir in k years, and
akiy is the outflow at a level of development a. S, in (1)
represents the storage after k years. Ry’ is the minimum reser-
voir capacity required to satisfy a constant draft of aZy without
experiencing shortages or spills over the period spanned by the
inflow sequence z,, z,, -, zy. When a = 1, the water in the
river would be used to its full potential. v

The time series z,, z,, ---, zy is said to be covariance
stationary if the mean

u = E(z) (10)
and the theoretical autocovariance function (TACVF)
Ye = Ej(ze — u)ziox — )] (11)

both exist and do not depend on ¢. The statistical properties of
any covariance stationary Gaussian time series are completely
determined by its mean g, variance v,, and theoretical auto-
correlation function (TACF),

P = Ye/Ye (12)

Klemes [1974] discusses the physical interpretations of the
stationary assumptions.

Often it seems reasonable to assume that recent values of the
time series contain more information about the present and
future values than about those values in the remote past.
Accordingly, it is assumed that the TACVF is summable as
defined by [Brillinger, 1975]

@

Zm [yel < @ (13)

A covariance stationary time series model is said to have a
short or a long memory according to whether the TACVF (or
equivalently the TACF} iz summable. Thus the FGN model
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has a long memory (for the parameter H in the range 0.5 < H
< 1), whereas the Arma models have a short memory.

HISTORICAL R ESEARCH
The Hurst Phenomenon and Hurst Coefficients

Hurst [1951, 1956] stimulated interest in the RAR statistic
by his studies of long-term storage requirements on the Nile
River. On the basis of a study of 690 annual time series
comprising streamflow, river and lake levels, precipitation,
temperature, pressure, tree ring, mud varve, sunspot, and
wheat price records, Hurst implied that Ry* varies with N as

Ry* o« N* (14)

where £ is the generalized Hurst coefficient. The above equa-
tion can be written in the general form

Ry* = aN* (15)
where g is a coefficient that is not a function of V. It should be
noted that Hurst did not explicitly state the generalized Hurst
law of (15) in his research papers. However, by choosing the
coefficient g to have a value of (4)*, Hurst in effect estimated 4
by the Hurst coefficient K in the empirical equation

Ry* = (N/2)¥ (16)

By taking logarithms of (16), an explicit relationship for X is
then

log R-N*

_ _ log Ry* — log Dy*
log N — log 2

log N —log 2

(17

Employing series that varied in length from 30 to 2000 years,
Hurst found K to range from 0.46 to 0.96 with a mean of 0.73
and a standard deviation of 0.09.

Assuming a normally independently distributed (NID)
process, Hurst [1951] utilized some coin-tossing experiments
to develop the theoretical asymptotic relationship for the ex-
pected value of the adjusted range as

E(Ry*) = (xNvo/2)"?
or

E(Rn*)/(y,)? = 1.2533N* (18)

Using the theory of Brownian motion, Feller [1951] rigorously
established the above asymptotic formula for any sequence of
IID random variables possessing finite variance. It follows
from a standard convergence theorem in probability theory
[Rao, 1973, p. 122] that for large N,

E(Rx*) = 1.2533NV2 (19)

Even though Hurst studied the RAR for small N and not for
the adjusted range, the form of (18) prompted him to use K in
(17) as an estimate of 4 and also to assume K to be constant
over time. However, for 690 geophysical time series, Hurst
found K to have an average of 0.73, while the asymptotic, or
limiting, value of K given by (19) is 0.5. This discrepancy is
referred to as the Hurst phenomenon. The search for a reason-
able explanation of the Hurst phenomenon and the need for
methods whereby the statistics related to Hurst’s work can be
incorporated into mathematical models have intrigued re-
searchers during the past quarter of a century.

In addition to K, other estimates of the generalized Hurst
coefficient 4 in (15) have been formulated. Based upon the
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structure of (19), Gomide [1975] suggested estimating h by the
YH that is given in the following equation:

Ry* = 1.2533N7H (20)

The average value of YH for the 690 series considered by
Hurst is 0.57 rather than 0.73.

Siddiqui [1976] proposed a method of evaluating 4 if the
underlying process is assumed to be an Arma process. The
estimate of Siddiqui is the result of a comparison between an
asymptotic result for calculating E(Ry*) for Arma processes
and the form of (15). Siddiqui’s estimate of 4 and the statistic
YH of Gomide [1975] are calculated for the 23 geophysical
time series considered by Hipel and McLeod [1978a]. Appro-
priate conclusions are drawn regarding the behavior of these
statistics in relationship to K and whether they exhibit the
Hurst phenomenon. For the case of a white noise process,
Siddiqui’s estimate of 4 is identical with Gomide’s statistic YH
in (20).

For NID random variables, Anis and Lloyd [1976) have
suggested a specific estimate of A that is a function of the
sample size. By taking logarithms of (15) for the expected
value of the RAR, the following equation is obtained.

log E(Ry*) =loga + hlogN (21)
Anis and Lloyd [1976] defined the local Hurst exponent A(N) as
the derivative

h(N) = d[log E(Ry*)]/8(log N) (22)

The exponent A{N) can be tabulated approximately from the
equation

lOg E(RN+1*) - lOg E(R-N—x*)
log(MN+ 1) —log (N — 1)

h(N) = (23)

where E(Rx*) is calculated exactly by using the formula of
Anis and Lloyd [1976] that is also given in (28). It should be
noted that previously Salas-La Cruz and Boes [1974] had
defined an exponent similar to A(N) for the general range
where 0 < o < 1.

Because the entries for the expected value of the RAR on the
right-hand side of (23) are calculated directly from a theoreti-
cal formula, A(N) is not a function of the data and is therefore
not a statistic. Nevertheless, it would be possible perhaps to fit
some type of stochastic model to a given time series and then
to derive the RAR terms in (23) by using simulation. Most
likely, this type of procedure may not be a worthwhile venture,
and hence A(N) probably will have limited use in practical
hydrological problems.

Anis and Lloyd [1976, p. 115, Table 1] list values of (V) for
N ranging from 5 to 10°. Although the magnitude of A(N)
asymptotically approaches 0.5 for increasing N, at lower val-
ues of N, A(N) is significantly larger than 0.5. For instance,
when N possesses values of S, 40, 100, 200, and 500, A(N) has
magnitudes of 0.6762, 0.5672, 0.5429, 0.5315, and 0.5202, re-
spectively.

In the development of an estimate for the parameter H in
FGN models, Mandelbrot and Wallis [1969d] assumed a form
of the Hurst law that is identical with (15). For a given time
series zy, 22, ‘' °, zn, let R.*(t, r) denote the RAR of the
subseries z;, 2,4, -, z,and let ¥ = r — ¢ + 1. When examining
scatter plots (or ‘pox diagrams’) of log R,*(z, r) versus log r'
for a number of selected values of ¢ and r, Mandelbrot and
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Wallis [19694] were using for each subseries a Hurst law given
by

R.*(t, r) = a(r'y

Wallis and Matalas [1970] have suggested the G Hurst estima-
tor for estimating the parameter H in FGN models and also A
in (24). This procedure estimates 4 by calculating the slope of
the regression of the averaged values of log R,.*(¢t, r) on log r'
for specified values of ¢ and r.

When Hurst originally formulated (16) there is no doubt
that he was attempting to derive an empirical law that would
be valid for a wide range of geophysical phenomena. In partic-
ular, an equation such as (16) would be extremely useful for
reservoir design if the phenomenon being modeled were aver-
age annual river flows. However, the distribution of K plus the
other types of Hurst exponents summarized in this section are
a function of the sample size N. For example, in part 2, Hipel
and McLeod [1978a] give the empirical cumulative distribution
functions of K for various values of N for certain types of
Arma processes. In addition, as shown by Hipel and McLeod
[1978a, Table 4], when K is estimated for 23 given geophysi-
cal time series, K seldom has exactly the same value for any
given pair of data sets. Because of the aforementioned facts the
empirical law of Hurst in (16) loses much of its simplicity and
also its potential for being a universal law. This inherent lack
of universality of Hurst’s law may be due to the fact that the
general form of (16) resembles the asymptotic formula given in
(19), whereas in practice it is necessary to deal with small and
moderate sample sizes.

Because the RAR possesses many attractive statistical fea-
tures, Hurst perhaps should have concentrated his efforts on
studying the properties of Rx* rather than those of K. The
RAR statistic is independent of the magnitude of the mean
level and standard deviation of a time series. If the data are
modeled by an Arma process, Ry* is only a function of the
sample size N and the autoregressive (AR) and moving aver-
age (MA) parameters and is independent of the variance of the
innovations [Hipel, 1975, Appendix B]. From (17) it can be
seen that K is simply a transformation of Ry* and therefore
also possesses the aforementioned properties of the RAR.
Nevertheless, the formulation of K in (17) as a function of Ry*
only introduces an unnecessary transformation and does not
give K any additional advantageous statistical properties that
are not already possessed by the RAR. The authors of this
paper therefore recommend that future research should con-
centrate on the RAR rather than on the various types of Hurst
exponents discussed in this section.

Because the concept of the Hurst coefficient is so entrenched
in the literature, it is widely quoted in the remainder of this
paper. The reader should be aware that the statistic of primary
concern is the RAR. Even the use of the G Hurst statistic
[Wallis and Matalas, 1970], which was primarily developed as
an estimate for the parameter H of FGN models, is question-
able. It is demonstrated later in this article that a maximum
likelihood estimate (MLE) of H is a more efficient procedure
to employ.

(24)

The Hurst Phenomenon and Independent Summands

Besides the results of Feller [1951], Hurst’s work influenced
other researchers to develop theoretical derivations for statis-
tics related to the cumulative range. Because of the mathemati-
cal complexity in deriving theoretical formulae for the mo-
ments of statistics connected with the range a large portion of
the research was devoted to the special case of independent
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summands. Anis and Lioyd [1953] developed a formula for the
expected value of the crude range for standard NID variates.
Anis [1955] derived the variance of My and subsequently a
method for obtaining all the moments of My [4nis, 1956].

Solari and Anis [1957] determined the mean and variance of
the adjusted range for a finite number of NID summands.
Feller [1951] had noted that the sampling properties of the
adjusted range were superior to those of the crude range. The
results of Solari and Anis [1957] for the variance of My*
substantiated the conclusion of Feller when this variance was
compared to that of My [Anis, 1956].

Moran [1964] initiated a new line of development when he
observed that the expected value of cumulative ranges could
easily be derived from a combinatorial result known as Spit-
zer’s lemma. He showed that for moderate N, distributions
with very large second moments about the mean could cause
the E(My) to increase more quickly than N2, This, in turn,
implied that the crude range would do likewise.

For independently stably distributed summands with the
characteristic exponent v, Boes and Salas-La Cruz [1973]
showed that asymptotically

E(Ry*) « NV (25)

where I < » < 2. The general stable distribution with charac-
teristic exponent » is defined for 1 < » < 2 in terms of its
characteristic function

w(u) = E(e'#) (26)

by

log w(u) = iuu + o*|ul*{l + iBu/|u]) tan [(x/2)]} (27)
where

= (-1

u location parameter for the random variable z,;

o  scale parameter for the random variable z;
8 measure of skewness.

For 8 = 0and v = 2 the normal distribution is obtained. Stable
distributions with characteristic exponent 1 < v < 2 generate
more extreme observations than the normal distribution.
Granger and Orr [1972] have suggested that economic time
series are best modeled by a stable distribution with character-
istic exponent 1.5 < » < 2. From (25) it could be suggested
that a stable distribution with » = 1.37 (approximately) for
geophysical time series could explain Hurst’s findings. How-
ever, because for the case of stable distributions with 1 <» <2
the sample variance is not a consistent estimator of the scale
parameter ¢, it does not follow that (25) will hold for the
RAR. In fact, simulation experiments reported later in this
paper show that the expected value of the RAR for independ-
ently stably distributed summands with characteristic ex-
ponent » = 1.3 very nearly equals the expected value of the
RAR for NID summands.

All the aforesaid research was influenced by the original
work of Hurst. However, mathematicians have for a long time
been investigating the crude range of independent summands
independently of Hurst’s empirical research. Anis and Lloyd
[1976] give a brief survey of mathematical studies of the crude
range. Further references can also be found in a paper by
Berman [1964].

Unfortunately, none of the foregoing theoretical investiga-
tions discussed in this section have dealt with the RAR. How-
ever, for a NID process. Axis and Lloyd [1976] have success-
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fully proved the following exact equation to be the expected
value of the RAR:

TN - D] "N N—r
(m)*TAN) /= s

E(Rw*) = (28)

The Hurst Phenomenon and Correlated Summands

When Hurst [1951] theoretically derived (18) for the ad-
justed range, he assumed normality of the process, he devel-
oped that equation as an asymptotic relationship, and he
assumed independence of the time series. As was pointed out
by Wallis and Matalas [1970], these three facts respectively
caused the following three possible explanations of the Hurst
phenomenon: (1) nonnormality of the probability distribution
underlying the time series, (2) transience (i.e., N is not large
enough for the Hurst coefficient to attain its limiting value of
0.3), and (3) autocorrelation due to nonindependence.

For independent summands, nonnormality of the under-
lying process has largely been discounted as a possible ex-
planation of the Hurst phenomenon. If a very large sample is
being considered, the asymptotic expression in (19) has been
shown to be valid for IID random variables. For samples of
small and moderate length, simulation studies later in this
paper (see Table 5) reveal that the RAR is very nearly inde-
pendent of the distribution of the random variables. Because
the Hurst coefficient K is definitely a function of N for inde-
pendent summands (see, for example, Table 6 for the NID
case), then transience constitutes a plausible explanation to
Hurst’s dilemma.

For the autocorrelated case, Wallis and O’Connell [1973]
correctly concluded that transience is obviously connected
with the autocorrelation structure of the generating process,
and therefore these two effects must be considered simultane-
ously when attempting to account for the Hurst phenomenon.
As is illustrated by simulation studies in part 2 [Hipel and
McLeod, 1978a] for Arma models, both transience and auto-
correlation form an explanation of the Hurst phenomenon. In
this section the roles of both short-memory and long-memory
processes for explaining and modeling the Hurst phenomenon
are examined.

Hurst [1951] actually conjectured that K had a value of 0.73
and not 0.5 because of persistence. This is the tendency for
high values to be followed by high values and low values
by low values. Persistence is caused by the dependence of
naturally occurring time series as exhibited in their serial
correlation structure. For reservoir design this means that for
a given value of N the size of a reservoir that releases the mean
flow each year would need to be larger than the capacity
corresponding to an uncorrelated series of inflows,

Short-memory models. Barnard [1956] and Moran [1959]
observed that for the standard short-memory time series mod-
els the following asymptotic formula is valid:

E(Ry*) = aN'? (29)
where a is a coefficient that does not depend on N. Mandelbrot
and Van Ness [1968] proved that for large N, (29) holds for any
short-memory time series model. Siddigui [1976] demonstrated
that for any model with a summable TACVF,

(30)
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It has been argued by some authors that because short-
memory models, such as the Arma processes, imply a limiting
value of K equal to 0.5 and since the observed K in annual
geophysical time series is about 0.7, short-memory models are
not appropriate models for synthetic streamflow generation. It
should therefore be emphasized that asymptotic results are
only relevant in that they provide an approximation to the
exact results for the true (finite) series length.

Anis and Lloyd [1976] showed that (28) also holds exactly
for symmetrically correlated normal summands. But such a
time series has a long memory, since its TACVF is not sum-
mable. Because (28) is also valid for short-memory NID ran-
dom variables, this fact provides a counterexample to the
claim of some researchers that long-memory models are a
necessary explanation of the Hurst phenomenon. Conversely,
Klemes [1974] has shown that zero-memory nonstationary
models could produce the Hurst phenomenon. By simulation
experiments with white noise, he varied the mean level in
different manners and showed how K increased in value due to
this type of nonstationarity. Klemes also demonstrated by
simulation that random walks with one absorbing barrier,
which often arise in natural storage systems, could cause the
RAR to have certain properties related to the Hurst phenome-
non.

Hurst [1957] was the first scientist to suggest that a non-
stationary model in which the mean of the series was subject to
random changes could account for higher values of the Hurst
coefficient K and hence the Hurst phenomenon. Similar mod-
els have been studied by Klemes [1974] and Porter [1976].
However, such processes do not seem to be appealing for use
in synthetic streamflow generation, since they would be diffi-
cult to fit properly to a given historical time series. Hipel et al.
[1975, 1977b] have described how known changes in the mean
level of a river flow time series can be modeled by intervention
analysis.

Matalas and Huzzen [1967)] performed statistical experi-
ments to determine whether X is preserved by Markov models.
For values of the lag | autocorrelation coefficient p; ranging
from 0 to 0.9 they calculated the £(K) based upon 10¢ simula-
tions for particular values of N and p,. For values of N and p,,
compatible with what occurs in annual river flows if those
flows are assumed Markov, they found K to have an average of
about 0.7. Because a mean of approximately 0.7 for K occurs
in natural time series, they implied that perhaps the small
sample properties of K are preserved by a Markov model.
Nevertheless, a later simulation study of Wallis and Matalas
[1970] suggested that the observed sample lag 1 autocorrela-
tions for flows in the Potomac River basin were too low for a
first-order AR process adequately to preserve the Hurst K.
However, a Markov model may not necessarily be the best
short-memory model to fit to a given time series. Rather, it is
recommended to select the proper Arma model by adhering to
the identification, estimation, and diagnostic check stages of
model construction [Box and Jenkins, 1970; Hipel et al., 1977a;
McLeod et al., 1977; McLeod, 1977, 1978; McLeod and Hipel,
1978a]. In some cases the appropriate model may indeed be a
Markov model. Hipel and McLeod [1978a] demonstrate that
for 23 geophysical time series ranging in length from ¥ = 96 to
N = 1164 properly fit Arma models do adequately preserve K.

Several other authors have also suggested that short-mem-
ory models may preserve K. Gomide [1975] has completed
further simulation studies of the RAR for Markov models.
O’Connell [1974a, b] advocated employing an Arma model
with one AR and one MA term (Arma (1, 1)) to approximate
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the long-memory FGN and thereby perhaps to preserve K. To
accomplish this, the AR parameter must have a value close to
unity, so that the autocorrelation function (ACF) of the proc-
ess will attenuate slowly and hence approximate the FGN
TACF. In practice, this approach may not be viable. The
proper Arma model that is fit to the data may not be Arma (1,
1), and even if it is Arma (1, 1), an efficient MLE of the
parameters may not produce an estimate of the AR parameter
that is close to |. This parameter estimation problem is ac-
knowledged by O'Connell [1976]. In addition, it is no longer
necessary to approximate FGN by a short-memory model
such as an Arma (1, 1) model because as is shown later in this
paper it is now possible to simulate FGN exactly.

Long-memory models.
FGN was developed perhaps in order to explain the Hurst
phenomenon. The link with Hurst’s law is the parameter H in
FGN that is often estimated by the Hurst coefficient X in (17).
The FGN model was first proposed by Mandelbrot [1965], and
a mathematical derivation was given by Mandelbrot and Van
Ness [1968] and Mandelbrot and Wallis [1969¢]. The literature
concerning the FGN model has recently been summarized by
Wallis and O’ Connell [1973], O’Connell [1974b, chapter 2], and
Lawrance and Kottegoda {1977). Consequently, only the main
historical points of practical interest will be discussed. This
will be followed in the next section by a presentation of new
advancements in FGN modeling that include exact simulation,
efficient parameter estimation, and model diagnostic checking.

In the development of FGN processes, Mandelbrot [1965]
considered a continuous time process By(¢) that satisfied the
self-similarity property such that for all r and ¢ > 0, By(t + 1)
— Bu(t) has exactly the same distribution as [Bu(t + 7¢) —
Br(1)]/e". It can be shown that the sequential range of By(r)
will increase proportionally to N%, where the sequential range
is defined by

max Bu(r) —
t<r<t+N

min  By(r)
t<r<t+N

31

where ¢ is continuous time and H is the model parameter.
When the process By(f) is Gaussian, it is called fractional
Brownian motion. Discrete time fractional Gaussian noise is
defined for discrete time ¢ by the increments

7 = By(t + 1) — Bu(1) (32)

FGN is what Mandelbrot and Wallis [1969¢] consider to be a
model of Hurst’s geophysical time series.

Mandelbrot and Van Ness [1968] and M andelbrot and Wallis
[1969a, b, c] have derived a number of properties of FGN.
First, the parameter H must satisfy the inequality 0 < H < 1.
The sample mean and variance of FGN are consistent estima-
tors of the true mean and variance, and FGN is covariance
stationary. The expected values of the crude and adjusted
ranges for FGN are the asymptotic relationships

E(Ry) = auN¥* 0<HCI (33)

and

LR, byNT O H ) (34)

where ay and by are coefficients that do not depend on N. It
can also be shown that for large N [Rao, 1973, p. 122],

E(Ry*) = aN" (35)

Although the above asymptotic formulae are correct mathe-
matically, they may possess limitations with respect to mod-
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eling Hurst’s findings. Of foremost importance is the fact that
Hurst examined Ry* for small N and not the asymptotic
expected values of Ry, Ry*, and Ry*. Behavior of any of the
range statistics for large N does not necessarily infer the struc-
ture of Ry* for small and moderate N. Even though (33)-(35)
are asymptotically valid, in reality the Hurst coefficient is a
function of ¥ and is not a constant as is the parameter H in
FGN. For example, as is shown by simulation experiments for
NID random variables in Table 6, the expected value of the
Hurst coefficient X is significantly larger than 0.5 for small
N. A sequence of NID random variables is equivalent to a
FGN process with H = }.
The TACF at lag k£ of FGN is given by

pr = MUk + 1P = 267 + (k — 1] (36)
0<HKI k=1
For large lags, (33) may be approximated by
o = HQQH — 1)k®i-2 (37

An examination of (36) and (37) reveals that p, — O as k — o,
but p, is not summable if $§ < H < 1. Therefore for} < H < 1,
FGN is a long-memory process. When 0 < H < §, FGN
constitutes a short-memory model.

For many geophysical phenomena the estimates for H are
greater than } but less than 1. Because FGN is summable for H
in this range, the statistical effect of past events on present
behavior attenuates very slowly. Therefore long-term per-
sistence, as described by the TACF, is synonymous with } < H
< 1. Some hydrologists claim that the form of the TACF for }
< H < lis explained by the physical existence of an extremely
long memory in hydrologic and other processes. But, as was
pointed out by Klemes [1974], making inferences about phys-
ical features of a process based on operational models can be
not only inaccurate but also misleading. Klemes correctly
states that *. . . it must be remembered that the mathematical
definition of FGN did not arise as a result of the physical or
dynamic properties of geophysical and other processes but
from a desire to describe an observed geometric pattern of
historic time series mathematically . . . Thus FGN is an opera-
tional, not a physically founded model.’ Kiemes demonstrates
that the Hurst phenomenon could be due to zero-memory
nonstationary models and also specific types of storage sys-
tems. However, although physical interpretations that use op-
erational models should be formulated and interpreted with
caution, one criterion that is essential is that the statistical
properties of any historical time series be incorporated prop-
erly into the stochastic model.

The appropriateness of long-memory processes for mod-
eling annual river flow and other types of natural time series
has been questioned previously by various hydrologists [Schei-
degger, 1970; Klemes, 1974]. Moreover, later in this paper it is
shown that the FGN model can fail to provide an adequate
statistical fit to historical annual river flows.

IvrroOVED FGN TECHNIQUES

The FGN model for a time series z,, 1 = 1, 2, --+, can be
specified in terms of the three parameters u, v,, and H, where
E(z;) = u, Var (z,) = v,, and the TACF of z, is given by (36).
From these specifications, improved simulation and estima-
tion procedures can be developed. Complete Fortran com-
puter algorithms for these new methods are given by Hipel and
McLeod [19785b].
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When determining a long-memory or a short-memory
model or in general any type of stochastic process for mod-
eling a given data set, it is recommended to adhere to the three
stages of model development {Box and Tiao, 1973, Box and
Jenkins, 1970; Hipel et al., 1977a; McLeod et al., 1977]. The
first step consists of identifying, or choosing, the type of model
to fit to the time series. If circumstances warrant the employ-
ment of a FGN process, then at the estimation stage, efficient
MLE of the model parameters can be procured by using the
technique developed in this section. It is also shown how the
model residuals of FGN can be calculated after the model
parameters have been estimated. If diagnostic checks of the
residuals reveal that modeling assumptions such as residual
whiteness, normality, and homoscedasticity (i.e., constant var-
iance) are not satisfied, then appropriate action can be taken.
For example, a transformation of the data prior to fitting a
FGN process may rectify certain anomalies in the residuals. In
some cases a short-memory model such as an Arma process
may provide a better statistical fit while at the same time
preserve important historical statistics such as the RAR. The
AlIC [Akaike, 1974] is recommended as a means of selecting
the best model from a set of tentative models that may consist
of both short-memory and long-memory processes.

Simulation of FGN

Historically, researchers have not developed an exact tech-
nique for simulating FGN. Instead short-memory approxima-
tions to FGN models have been utilized to generate synthetic
traces. The methods used for obtaining approximate realiza-
tions of FGN include (1) type | [Mandelbrot and Wallis,
1969¢], (2) type 2 [Mandelbrot and Wallis, 1969c¢], (3) fast
FGN [Mandelbrot, 1971], (4) filtered FGN [Matalas and Wal-
lis, 1971],(5) Arma (1, 1) [O’Connell, 1974a, b), (6) broken line
[Rodriguez-Iturbe et al., 1972; Mejia et al., 1972; Garcia et al.,
1972; Mandelbrot, 1972], and (7) Arma-Markov [Lettenmaier
and Burges, 1977].

Various papers have been written that include surveys and
appraisals of one or more of the short-memory approxima-
tions to FGN [see Lawrance and Kottegoda, 1977; Lettenmaier
and Burges, 1977; O'Connell, 1974b; Wallis and O’Connell,
1973]. Although the underlying drawback of all these approxi-
mate processes is that the simulated data does not lie outside
the Brownian domain (see Mandelbrot and Wallis [1968] for a
definition of Brownian domain), additional handicaps of some
of the models have also been cited in the literature. For in-
stance, Lawrance and Kottegoda [1977] mention that the lack
of a suitable estimation procedure for the parameters of a
broken line process is the greatest deterrent to the utilization
of that model by hydrologists.

When generating synthetic traces from a short-memory ap-
proximation to FGN or any other type of stochastic model,
proper simulation procedures should be adhered to. If more
than one simulated time series from a certain model is needed,
then it would be improper to first simulate one long synthetic
time series and then to subdivide this longer trace into the
required number of shorter time series. Rather, it would be
more efficient to generate the shorter series independently, so
that the resulting estimates from each of the shorter series
would be statistically independent. Furthermore, the standard
errors of the particular parameters being estimated by the
simulation study can be calculated if the estimates are statisti-
cally independent, but if they are correlated, the standard
errors are not easily estimated.

Instead of the employment of short-memory approxima-
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tions for simulating FGN it is possible to generate exact reali-
zations of FGN. Suppose that a FGN series z;, z,, - - -, zy With
parameters g, v,, and H is to be simulated. First, by utilizing
an appropriate standard method generate a Gaussian white
noise sequence e,, e, - - -, ey that is NID (0, 1). Next calculate
the N X N correlation matrix,

Cv(H) = [o1i-s]

where p, equals 1 and p, is calculated from (36) for k = 1.
Then the Cholesky decomposition [Healy, 1968] of Cy(H) is
determined in such a way that

Cn(H) = MMT (39)

where M equals (m,,) is the N X N lower triangular matrix,
Exdct realizations of FGN are calculated from

¢
z =pu+ < Z My, 91)(')’0)“2
=1

fort=1,2,---, N and for 0 < H < 1, where z, is the FGN
time series value that is N, v,). [f the model parameter H is
in the range 0.5 < H < 1, then the synthesized data will lie
outside the Brownian domain.

The computer algorithm for exactly simulating FGN is
listed in standard Fortran by Hipel and McLeod [1978b]. This
algorithm requires only about $N(NV 4 2) storage locations to
simulate a FGN series of length N. Thus a modest requirement
of about 5000 words is required to handle a series of length
100.

(38)

(40)

Maximum Likelihood Estimation

In addition to the mean and variance, an estimate of the
parameter H forms the only link that a FGN model has with
the real world as represented by the historical data. Previously,
various estimates for H have been formulated. Some research-
ers employ K in (17) as an estimate of H. Wallis and Matalas
[1970] recommend the G Hurst statistics as an estimate of H.
Unfortunately, little is known about the theoretical distribu-
tion of this estimate, and the G Hurst statistic in effect consti-
tutes only an ad hoc method of calculating H. Young and
Jettmar [1976, p. 830, equation (4)] suggest a moment estimate
for H based on an estimate of the historical ACF at lag 1 and
(36). They also develop a least squares estimate for H that is
formulated by using the sample ACF and (36) [Young and
Jettmar, 1976, p. 831, equation 6]. However, McLeod and
Hipel [1978a] question the theoretical basis and efficiency
of Young and Jettmar’s least squares estimate for H.

An alternative approach to estimating the parameters of a
FGN model is to employ the method of ML. The ML estima-
tion procedure is widely used for the estimation of parametric
models, since it often yields the most efficient estimates. Duns-
muir and Hannan [1976] have shown that the MLE of the
parameters of time series models often yield optimal estimates
under very general conditions which include the FGN model
as a special case,

Given a historical time series z,, z,, * * -, zy the log likelihood
of u, v,, and H in the FGN model is

log L(u, o, H) = —} log |Cn(H)| = (2v0) 'Sy, H)
— (N/2) log 7,

where Cy(H) is the correlation matrix given by (38). The
function S(u, H) in (41) is determined by

(41)

S(u, H) = (z = pl)"[Cy(H)]7'(z ~ u1) (42)
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TABLE 3. Estimated Statistics for the Annual River Flows
Data Set H* GH(10) K
Mstouis 0.674 0.580 0.648
(0.082)
Neumunas 0.591 0.520 0.660
(0.067)
Danube 0.548 0.560 0.633
(0.063)
Rhine 0.510 0.592 0.614
(0.058)
Ogden 0.949 0.868 0.894
(0.047)
Gota 0.839 0.523 0.689
(0.073)

*The parenthetical values are standard deviations.

each of these time series the MLE of H in the FGN model and
its standard error are calculated by using the Fortran com-
puter programs given by Hipel and McLeod [1978b]. The cal-
culations require only about 11 min of computer time on a
Honeywell 6060 Computer System. Table 3 lists the MLE and
standard errors (in parentheses) of / and also the Hurst K and
GH(10) estimates for each of the time series.

In Table 3 notice the difference between the three estimates
of the FGN parameter H for each of the data sets. For in-
stance, H for the Gota River has a magnitude of 0.839 with a
corresponding standard error of 0.073. Both the GH(10) and K
estimates for the Gota River are more than 2 times the stan-
dard error less than the MLE of H.

The parameter estimates for the proper Arma models that
are fit to the time series in Table 2 are given by Hipel and
McLeod [1978a, Table 3]. Both the Danube River and the
Rhine River time series are simply white noisg. If a time series
is NID, the theoretical value of H for a FGN model is 0.5. For
both the Danube River and the Rhine River, Table 3 reveals
that the MLE of H is closer to 0.5 than either the GH(10) or
the K estimate. In addition, for each of the two data sets, H is
easily within I standard error of 0.5.

In order to determine whether a short-memory or a long-
memory model should be selected for each of the six time
series, the AIC can be implemented. Table 4 lists the values of
the AIC for the FGN models by using H and the best fitting
Box-Jenkins Arma model. For each of the six cases the AIC
for the Arma model has a magnitude less than that for the
FGN model. Therefore, on the basis of a combination of best
statistical fit and model parsimony the Arma model should be
chosen in preference to the FGN process for the time series
considered,

The Gota River is instructive for portraying possible prob-
lems that may arise when using FGN models in practice, since
it appears that no FGN model can give an adequate fit to this
time series. After a FGN model has been fit to a given data set
it is reccommended to implement appropriate diagnostic checks

TABLE 4. AIC of the Fitted FGN and Arma Models
Data Set FGN Models Arma Models
Mstouis 1400.0 1395.8
Neumunas 1207.5 1198.2
Danube 1666.7 1389.0
Rhine 1531.8 1529.8
Ogden 1176.9 1172.1
Gota 1350.6 1331.0
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Fig. 2. Gota River residual cumulative periodogram for the FGN

model using H.

for testing model adequacy. It is of utmost importance that the
residuals of FGN given by (51) be white noise. Accordingly,
plots of the cumulative periodogram for the residuals of the
FGN models for the Gota River obtained by using H, GH(10),
and K are displayed in Figures 2-4, respectively. The 1%, 5%,
10%, and 25% significance levels are indicated on the plots. As
is shown in the figures, the cumulative periodogram test is
significant in all three cases at the 1% level, although the
departure from whiteness is not as great for the FGN model
when using A as it is for the other two cases. Therefore the
whiteness diagnostic checks indicate that because of the depen-
dence of the model residuals the FGN processes provide a
poor statistical fit to the given data. Hence it would be advis-
able to consider another type of process to model the annual
river flows of the Gota River. _

When selecting a process to describe a given time series, it is
highly desirable that important historical statistics such as the
ACF at various lags (especially at low lags for nonseasonal
models) be preserved. The inability of the three FGN models

CUMULATIVE PERIODOGRAM

l | | ]
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Fig. 3. Gota River residual cumulative periodogram for the FGN

model using GH(10).
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processes preserve the RAR or equivalently K. This procedure
could also be adopted for statistics such as various lags of the
ACF to show quantitatively whether these statistics are pre-
served by the models.

The inability of a FGN process to preserve the ACF and
perhaps other historical statistics in some practical appli-
cations could be due to the inherent mathematical structure
and underlying properties that were discussed previously. An-
other obvious drawback of FGN is the dependence of the
model on only a few parameters. In addition to the mean and
variance an estimate of the parameter H forms the only actual
link between the theoretical model and the real world as repre-
sented by the data. This renders FGN processes highly inflex-
ible. On the other hand, in Box-Jenkins modeling the form of
the model is tailored specifically to fit a given set of data. At
the identification stage the general structure of the data is
determined by observing the shape of the ACF and other
graphs such as the partial ACF (PACF), the inverse ACF
(IACF), and the inverse PACF (IPACF) [Hipel et al., 1977a;
McLeod et al., 1977]. An appropriate number of AR and MA
parameters are chosen in order that the chosen Arma model
fits the data as closely as possible. Rigorous checks are per-
formed to insure that the white noise component of the model
is not correlated. If all the modeling assumptions are satisfied,
this guarantees that important historical statistics such as the
ACF, the RAR, and K will be preserved reasonably well by the
model.

SIMULATION STUDIES

When studying statistics such as the RAR and X, informa-
tion is required regarding first-, second-, and perhaps higher-
order moments of the statistics. In general, it would be most
advantageous to know the exact distribution of the statistic
under study. Three approaches are available to obtain knowl-
edge regarding the mathematical properties of a specified
statistic. One method is to derive an exact analytical ex-
pression for the moments and perhaps the distribution of the
statistic. Except for special cases of the lower-order moments
of a statistic, this precise procedure is often analytically
intractable. Only recently, Anis and Lloyd [1976] were able to
derive in (28) the exact expression for the expected value of the
RAR for NID summands.
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A second approach is to develop asymptotic formulae for
the distributional properties of a given statistic. This approxi-
mate procedure may yield results that are useful in certain
situations, while in other circumstances the output may suffer
from lack of accuracy, especially for small N. Feller [1951], for
example, proved an asymptotic relationship that is valid for
the expected value of the adjusted range and also the RAR of
11D random variables (see (18) and (19), respectively). Siddiqui
[1976] derived asymptotic expressions for calculating the ex-
pected value of the RAR for any short-memory process.

In the third approach, simulation is used to determine as
accurately as desired the distributional attributes of a given
statistic. Hipel and M cLeod [1978a] utilize Monte Carlo proce-
dures to obtain the empirical distribution of the RAR and X.
AMhough some researchers may argue that simulation may be
relatively costly with respect to computer usage, the fact of the
matter is that answers are needed now to help solve present-
day engineering problems. In addition, because of the vast
mathematical complexity that is often required to prove exact
analytical solutions, simulation results may help to economize
academic endeavors by delineating the more promising ave-
nues of research that could also be scrutinized analytically.
Finally, it should be borne in mind that in comparison with an
exact analytical solution, simulation provides a straight-
forward but equally correct resolution to the problem of the
distributional characteristics of a particular statistic.

The simulation investigations of this section deal primarily
with the estimated mean and variance of a certain statistic.
Suppose that N independent simulations of a time series z,, z,,
-+ +, zy are obtained and that astatistic T = T(zy,2zq, * = =, Zy) IS
calculated in each simulated series. The empirical mean of T is
then given by

_ 1 X

T=— T
where T, is the value of T in the ith simulation. If each
successive realization of the sequence z,, z,, -, zy is inde-
pendent of previous realizations so that the 7; are statistically
independent, then the variance of T can be estimated by

(52)

1 X -
Vp=—= T, - Ty
T s 1,;( )

(53)

By the central limit theorem, T will be distributed very nearly
normally with mean equal to £(T) and with variance approxi-
mately equal to Vy/N. Thus the standard deviation and con-
fidence intervals for the expected value being estimated are
readily obtained.

If N white noise series of length N are being simulated, then
it is correct to simulate a single time series of length NN and
then subdivide it into N series with N values in each series.
However, if a correlated series is being simulated, the afore-
mentioned procedure should not be followed. For instance, if
N FGN series with 0.5 < H < | are being formulated by first
generating a long series of length NN and then subdividing this
into N subsequences of length #, then the resuiting 7; will in
general be correlated. Therefore the resulting estimate for E(T)
in (52) will be less precise (i.e., have larger variance), and the
estimate of the variance of T in (53) will be underestimated, so
that correct standard deviations and confidence intervals for
E(T) will not be available.

Simulation of Independent Summands

The rescaled adjusted range. Mandelbrot and Wallis [1969¢]
reported simulation experiments which indicated that the ex-
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TABLE 5.
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Expected Value of the RAR for Some IID Summands

Analytical Results

Simulation Results*

Anis and Lloyd Feller

N [1976]) [1951] Normal Gamma Stable Cauchy
5 1.9274 2.8025 1.9273 1.9851 1.9264 1.9506
(0.0027) (0.0018) (0.0022) (0.0026)

10 3.0233 3.9633 3.0302 3.0330 2.9699 3.0556
(0.0060) (0.0039) (0.0047) (0.0056)

15 3.8812 4.8541 3.8826 3.8356 3.7571 3.8987
(0.0084) (0.0056) (0.0064) (0.0079)

20 46111 5.6050 4.6047 4.5141 4.4408 4.6214
(0.0100) (0.0071) (0.0075) (0.0098)

25 5.2576 6.2666 5.2540 5.1213 5.0044 5.2889
(0.0116) (0.0085) (0.0088) 0.0119)

30 5.8443 6.8647 5.8770 5.6709 5.5681 5.8767
(0.0131) (0.0097) (0.0098) (0.0130)

35 6.3851 7.4147 6.4214 6.1707 6.0090 6.3974
(0.0145) (0.0109) (0.0106) (0.0143)

40 6.8895 7.9267 6.8920 6.6605 6.5037 6.9075
(0.0158) 0.0121) (0.0118) (0.0155)

45 7.3640 8.4075 7.3595 7.0938 6.9010 7.3934
(0.0169) (0.0132) (0.0125) (0.0166)

50 7.8133 8.8623 7.7785 7.5012 7.3184 7.8540
(0.0180) (0.0141) (0.0132) (0.0178)

60 8.6502 9.7081 8.6246 8.3061 8.0670 8.6263
(0.0198) (0.0159) (0.0148) (0.019%)

70 9.4210 10.4860 9.4453 9.0632 8.7242 9.4454
(0.0215) (0.0178) (0.0158) 0.0211)

80 10.1392 11.2100 10.1349 9.7327 9.3732 10.1336
(0.0233) (0.0194) (0.0172) (0.0232)

90 10.8143 11.8900 10.8208 10.4068 9.9544 10.8857
(0.0248) (0.0209) (0.0183) (0.0248)

100 11.4533 12.5331 11.4775 10.9769 10.5593 11.4546
(0.0262) (0.0224) (0.0196) (0.0258)

125 12.9243 14.0125 12.9617 12.4280 11.8353 12.9619
(0.0299) (0.0255) (0.0220) (0.0292)

150 14.2556 15.3499 14.1956 13.6864 13.0622 14.2636
(0.0323) (0.0285) (0.0240) (0.0323)

175 15.4806 16.5798 15.4198 14.8752 14.1069 15.4971
(0.0349) (0.0315) (0.0261) (0.0354)

200 16.6214 17.7245 16.5938 15.9992 15.1381 16.6259
(0.0376) (0.0337) (0.0281) (0.0376)

*The parenthetical values are standard deviations.

pected value of the RAR for IID summands is virtually inde-
pendent of the underlying distribution. However, as was
pointed out by Tagqu [1970], the simulation study of Mandel-
brot and Wallis [1969¢] contained a serious programing error
in the calculation of the RAR. Accordingly, another study of
the robustness of the expected value of the RAR with respect
to the underlying distribution is required.

A simulation study is performed for various types of white
noise series varying in length from N = 5to N = 200. For each
value of N the number of series of length N that are generated
is N = 10,000. The expected values of the RAR are determined
by using (52) for the following independent summands: (1)
normal, (2) gamma with shape parameter 0.1, (3) symmetric
stable with characteristic exponent a = 1.3, and (4) cauchy. In
Table 5 are listed the simulation results for E(Ry*) at specific
values of N for the aforementioned summands. The standard
deviations of the estimated values of E(Ry*) are determined by
using the square root of (53) and are given in parentheses
below the estimates in Table 5. The exact values of E(Ry*) for
NID random variables are calculated by using the formula of
Anis and Lloyd [1976] that is written in (28). A comparison of
columns 2 and 4-7 reveals that the expected value of the RAR
is indeed rather insensitive to the underlying distribution for

the values of N that are considered. Even for cauchy sum-
mands the expected value and variance of the RAR are quite
similar to the NID case. The asymptotic results of Feller [1951]
for E(Rx*) of 11D summands are determined by using (19) and
are tabulated in Table 5. A perusal of the asymptotic and other
entries in the table discloses that the approximation given by
Feller’s results improves with increasing V.

Anis and Lloyd [1975] developed analytical formulae for the
expected value of the crude and adjusted ranges of independ-
ent gamma random variables. For highly skewed independent
gamma summands the local Hurst coefficient for the crude and
adjusted ranges possessed values greater than 0.5 for N less
than 1000. However, the results of Table 5 indicate that the
expected values of the RAR for 11D summands are approxi-
mately independent of the underlying distribution even if that
distribution is gamma. Therefore as was confirmed by
O’Connell [1976], Anis and Lloyd’s [1975] results do not hold
for the RAR. In addition, Hurst studied K for the RAR and
not the Anis and Lloyd local Hurst coefficient for the crude
and adjusted ranges.

The Hurst coefficient. As was mentioned previously, the
Hurst statistic of primary import is the RAR. Nevertheless,
because the Hurst coefficient K has been extensively investi-
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TABLE 6. Hurst Coefficients for NID Summands
N X' E(K)* YH'
5 0.7161 0.7032 0.3375
(0.0016)
10 0.6874 0.6750 0.4315
(0.0013)
15 0.6731 0.6629 0.4591
(0.0011)
20 0.6638 0.6540 0.4725
(0.0010)
25 0.6571 0.6469 0.4805
(0.0009)
30 0.6519 0.6420 0.4859
(0.0008)
35 0.6477 0.6385 0.4897
(0.0008)
40 0.6442 0.6365 0.4926
(0.0007)
45 0.6413 0.6335 0.4948
(0.0007)
50 0.6387 0.6305 0.4967
(0.0007)
60 0.6344 0.6270 0.4994
(0.0007)
70 0.6309 0.6235 0.5014
(0.0006)
80 0.6279 0.6213 0.5029
(0.0006)
90 0.6254 0.6186 0.5040
(0.0006)
100 0.6233 0.6156 0.5049
(0.0006)
125 0.6189 0.6129 0.5066
(0.0005)
150 0.6154 0.6100 0.5078
(0.0005)
175 0.6127 0.6070 0.5086
(0.0005)
200 0.6103 0.6051 0.5092
(0.0005)

*The parenthetical values are standard deviations.

gated during the past quarter of a century, this fact may insure
the survival of K as an important hydrological statistic for
some time to come. Therefore some statistical properties of K
and other exponents are investigated.

First, it should be noted that because of the research results
of Anis and Lloyd [1976] in (28), K can be evaluated analyti-
cally for NID summands. Let K’ be the Hurst coefficient
calculated by using

K' = log E(Rx*)/(log N — log 2) (54)

where E(Ry*) is determined exactly by using (28). It follows
from Jensen’s inequality [Rao, 1973, p. 57] that for finite N,

EK) <K' (55)

In Table 6 the magnitudes of K’ from (54) are listed for the
length of series N ranging from 5 to 200. When 10,000 series
are generated for NID random variables for each N, then the
expected value of K can be estimated by utilizing (52), while
the standard deviation of E(K) can be calculated by using the
square root of (53). In Table 6 the estimated values of E(X) for
various time series lengths are cataloged. The standard devia-
tions of the estimates are contained in the parentheses below
each estimate. A comparison of columns 2 and 3 in Table 6
demonstrates that the inequality in (55) is valid. However, the
difference between E(K) and K' is negligible. Therefore (54)
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provides a viable means for estimating the expected value of K
for NID summands. In addition, the Hurst coefficient K is
obviously a function of the sample size, and for increasing ¥
the coefficient K attenuates toward its asymptotic value of 0.5.
However, for small and moderate values of N, K is signifi-
cantly larger than 0.5.

The coefficient K constitutes one method of estimating the
generalized Hurst coefficient & in (15). Another approach is to
evaluate h by using the estimate YH of Gomide [1975] that is
given in (20). By taking logarithms of (20) an explicit ex-
pression for YH is

YH = (log Ry* — log 1.2533)/log N (56)

Although the expected value of YH could be determined from
simulation experiments, an alternative analytical procedure is
to substitute E(Ry*) from (28) for Rx* in (56) and then to
estimate YH by YH' by using (56). In Table 6 the values of
YH' are tabulated for different time series lengths. It is obvious
that YH' is a function of the sample size and that YH’ provides
a closer approximation to the limiting value of 0.5 than does
K.

Simulation of Correlated Summands

Long-memory models. By utilizing (40) and the accom-
panying Fortran computer algorithms of Hipel and McLeod

TABLE 7. Expected Value of the RAR for FGN Models
FGN Model*

N H=07 H=0J9
5 1.9682 2.0100
(0.0026) (0.0025)

10 3.2716 3.5031
(0.0062) (0.0061)

15 4.3946 4.8751
(0.0091) (0.0094)

20 5.3972 6.1579
(0.0116) (0.0125)

25 6.3351 7.4051
(0.0141) (0.0155)

30 7.2066 8.6032
(0.0165) (0.0187)

35 8.0515 9.7839
(0.0188) (0.0216)

40 8.8767 10.9431
(0.0205) (0.0241)

45 9.6650 12.0926
(0.0227) (0.0271)

50 10.4007 13.2284
(0.0247) (0.0298)

60 11.8233 15.3575
(0.0280) (0.0352)

70 13.2003 17.4965
(0.0322) (0.0413)

80 14.5205 19.5945
(0.0356) (0.0461)

90 15.7709 21.6075
(0.0389) (0.0518)

100 16.9241 23.5818
(0.0420) (0.0573)

125 19.8877 28.5197
(0.0494) (0.0700)

150 22,6178 33.2646
(0.0571) (0.0831)

175 25.2291 38.0410
(0.0638) (0.0964)

200 27.7601 42.6710
0.0701) (0.1080)

*The parenthetical values are standard deviations.
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TABLE 8. Expected Value of the RAR for a Markov Model
With ¢, = 0.3
E(RN*)

N Asymptotic Simulated*
5 3.8192 1.9875
(0.0026)

10 5.4011 3.3410
(0.0062)

15 6.6150 4.4633
(0.0089)

20 7.6383 5.4261
(0.0114)

25 8.5390 6.2853
(0.0135)

30 9.3550 7.0666
(0.0156)

35 10.1045 7.7976
(0.0175)

40 10.8022 8.5022
(0.0188)

45 11.4575 9.1493
(0.0205)

50 12.0772 9.7347
(0.0221)

60 13.2299 10.8709
(0.0242)

70 14.2900 11.9207
(0.0273)

80 15.2766 129177
(0.0296)

90 16.2033 13.8181
(0.0317)

100 17.0798 14.6243
(0.0335)

125 19.0958 16.6970
(0.0380)

150 20.9184 18.5288
(0.0424)

175 22.5944 20.1758
(0.0459)

200 24.1545 21.7339
(0.0491)

*The parenthetical values are standard deviations.

[1978b] it is possible to simulate exactly synthetic traces of
FGN. Because only short-memory approximations to FGN
processes were previously available for simulation purposes,
the exact method should prove useful for checking former
FGN simulation studies and also for exploring new avenues of
research for long-memory models. Of particular importance
are Monte Carlo studies to investigate the statistical properties
of FGN processes. Consider, for example, the behavior of the
RAR for FGN models. For time series varying in length from
N = 5to N = 200 a total of 10,000 simulated sequences are
generated for each value of N. Because the RAR statistic is not
a function of the mean and variance of a FGN process, it is
convenient to assign the mean a value of zero and the variance
a magnitude of 1 when performing the simulations by using
(40). By utilizing (52) and (53) the expected values of the RAR
and variances, respectively, are calculated. Table 7 records the
estimate of E(Ry*) and the corresponding standard deviations
in brackets for FGN models with H = 0.7 and 0.9. From an
inspection of the entries in Table 7 it is obvious that E(Ry*)
increases in magnitude for larger N. Furthermore, at a given
value of N the expected value of the RAR is greater for a FGN
model with # = 0.9 than it is for a FGN process with H = 0.7.

Short-memory models. MclLeod and Hipel [1978b] have
recently developed improved simulation procedures for gen-
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erating synthetic traces for Box-Jenkins models. These tech-
niques have been called WASIMI (Waterloo simulation
procedure 1) and WASIM2 (Waterloo simulation procedure
2). The standard Fortran programs for WASIM1 and
WASIM2, along with other supporting subroutines and docu-
mentation, are listed in the microfiche edition of the paper
by McLeod and Hipel [1978b). When either WASIMI or
WASIM?2 is employed, random realizations of the process un-
der consideration are used as starting values. Since fixed initial
values are not utilized, systematic bias is avoided in the gen-
erated data.

As a typical example of a short-memory process, consider
the Markov model given by

Z, = gz toa (57)

where r equals 1, 2, -+, N, ¢, is the AR parameter, and a, is
the white noise that is NID (0, 0,?). By using WASIM2 a total
of 10,000 synthetic sequences are generated for specific values
of N for Markov processes with ¢, = 0.3, 0.5, and 0.7. Because
the RAR is independent of the variance of the innovations, a
value such as unity may be used for ¢,? in the simulation study.
In Tables 8-10 the expected values of the RAR and corre-
sponding standard deviations in parentheses are given for the
three Markov models. A comparison of the third column in

TABLE 9. Expected Value of the RAR for a Markov Model
With ¢, = 0.5
E(Ry*)

N Asymptotic Simulated*
5 4.8541 2.0194
(0.0025)

10 6.8647 3.5438
(0.0061)

15 8.4075 4.8738
(0.0092)

20 9.7081 6.0432
(0.0120)

25 10.8540 7.1131
(0.0147)

30 11.8900 8.0779
(0.0171)

35 12.8426 8.9858
(0.0194)

40 13.7294 9.8655
(0.0212)

45 14.5622 10.6837
(0.0233)

50 15.3499 11.4170
(6.0252)

60 16.8150 12.8455
(0.0283)

70 18.1622 14.1721
(0.0320)

80 19.4163 15.4320
(0.0350)

90 20.5941 16.5726
(0.0376)

100 21.7080 17.5991
(0.0400)

125 24.2703 20.2124
(0.0459)

150 26.5868 22.5342
(0.0515)

175 28.7170 24.6356
(0.0562)

200 30.6998 26.6039
(0.0603)

*The parenthetical values are standard deviations.
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these tables reveals that the expected value of the RAR in-
creases for increasing N and ¢,.

It is also possible to compare the estimated expected value
of the RAR for a Markov model to an analytical large-sample
approximation that is given by Siddiqui [1976] as

E(Ry*) = {(xN/D)[(1 = ¢:2)/(1 — ¢, 117 (58)

In Tables 8-10 the output from (58) for the three Markov
models are cataloged. A perusal of these tables demonstrates
that Siddiqui’s approximation for E(Rx*) is not too accurate
for the cases considered, and the precision decreases for in-
creasing ¢,.

CONCLUSIONS

There is no doubt that the pursual of possible explanations
to the Hurst phenomenon has stimulated valuable research
both in hydrology and in mathematical statistics. In addition
to the Hurst coefficient K defined in (17), other coefficients
have been suggested to model the generalized Hurst coefficient
h given in (15). For example, Gomide [1975], Siddiqui [1976],
Anis and Lloyd [1976], and Wallis and Matalas [1970] pro-
posed alternative procedures to model A. One of the major
reasons for developing alternative exponents to K was to pro-
duce a coefficient that would reach its limiting value of 0.5
more quickly than K would. Nevertheless, it must be borne in
mind that the definition of the Hurst phenomenon is based on
a comparison of the value of K in small and moderate samples
to its large sample value of 0.5. If the empirical, or theoretical,
value of another estimate of A is compared for finite time series
length to its asymptotic magnitude of 4, the Hurst phenome-
non should probably be redefined in terms of that statistic.
However, because of the inherent statistical properties of the
RAR the authors recommend that future research primarily be
devoted to the study of this statistic and that less emphasis be
put on the various definitions of the Hurst coeflicient.

Feller [1951] proved that the asymptotic formula for the
expected value of the adjusted range in (18) is valid for 11D
random variables. As is shown in (19) for large samples,
Feller’s equation is also correct for the expected value of the
RAR for 11D summands. The exact analytical expression for
the expected value of the RAR for NID summands was de-
rived by Anis and Lloyd [1976] and is written in (28). For finite
samples the simulation and analytical results of Table 5 indicate
that the expected values of the RAR and hence K are functions
of the sample size but are virtually independent of the under-
lying distribution for [ID summands. Accordingly, it has been
suggested that the Hurst phenomenon could be explained by a
combination of transience and autocorrelation [Wallis and
O’Connell, 1973]. This implies that perhaps either a short-
memory or a long-memory model that takes into account the
autocorrelation structure of a time series may explain the
Hurst phenomenon. Perhaps a better way to phrase this is that
if a given stochastic model that is fit to a given data set
preserves the important historical statistics such as the RAR
and K, then that model may indirectly account for the Hurst
phenomenon. Therefore it can be argued that a resolution to
the controversies related to the Hurst phenomenon boils down
to determining stochastic models that preserve the RAR, as
well as other relevant historical statistics.

If a stochastic model is to retain the historical statistical
characteristics of a time series, then the model must provide a
good statistical fit to the data. This can be accomplished in
practice by following the identification, estimation, and diag-
nostic check stages of model construction. For long-memory
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TABLE 10. Expected Value of the RAR for a Markov Model

With ¢, = 0.7
E(Ry*)

N Asymptotic Simulated*

S 6.6713 2.0435
(0.0025)

10 9.4346 3.7235
(0.0059)

15 11.5550 5.2915
(0.0091)

20 13.3425 6.7304
(0.0123)

25 14.9174 8.0874
(0.0154)

30 16.3412 9.3309
(0.0184)

35 17.6505 10.5117
(0.0212)

40 18.8692 11.6603
(0.0235)

45 20.0138 12.7462
(0.0262)

50 21.0964 13.7239
(0.0286)

60 23.1100 15.6339
(0.0331)

70 24.9616 17.4191
(0.0378)

80 26.6851 19.1225
(0.0419)

90 28.3038 20.6666
(0.0454)

100 29.8348 22.0685
(0.0490)

125 33.3564 25.6001
(0.0570)

150 36.5401 28.7578
(0.0648)

175 39.4678 31.6509
(0.0716)

200 42.1928 34.3412
(0.0772)

*The parenthetical values are standard deviations.

FGN processes the authors have suggested an efficient estima-
tion procedure that uses the method of ML, and they also have
developed a technique for calculating the model residuals so
that they can be tested by appropriate diagnostic checks. In
addition, (40) provides a means for exactly simulating FGN
such that the synthetic traces will be outside the Brownian
domain for the parameter H in the range 0.5 < H < 1. The
Fortran computer algorithms for these improved FGN proce-
dures are listed by Hipel and McLeod [1978b] in part 3.

Short-memory models provide an alternative approach to
FGN processes for modeling hydrological time series. In par-
ticular, the Box-Jenkins family of short-memory models pos-
sesses great potential for widespread applications to water
resource and other geophysical problems. Hipel et al. [1977a]
have provided some new procedures in Box-Jenkins modeling
to simplify and also substantiate the three stages of model
development. McLeod et al. [1977] have demonstrated the
utility of the contemporary Box-Jenkins modeling techniques
of Hipel et al. [1977a] by applying these procedures to both
nonseasonal and seasonal time series. In addition, McLeod
and Hipel [1978b] have developed improved simulation tech-
niques for Box-Jenkins models and have provided the Fortran
computer listings for the simulation methods.
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The question arises of whether a short-memory or a long-
memory process should be selected to model a given time
series. The AIC provides one means of model discrimination
based on the principles of good statistical fit and parsimony of
the model parameters. For the six annual river flow time series
considered in this paper the results of Table 4 show that in all
six cases the AIC chooses the best fitting Arma model in
preference to the FGN process. Although there may be certain
situations where the FGN model is appropriate to use, the
inherent inflexibility of a FGN process may limit the use of
this model in many types of practical applications. Rather
than allowing for a choice of the required number of model
parameters to use in a given situation as is done in Box-Jenkins
modeling, the FGN model is always restricted to just three
parameters (i.., the mean, the variance, and H).

In part 2, Hipel and McLeod [1978a] demonstrate that Arma
models do preserve the RAR or equivalently K. By fitting
Arma models to 23 geophysical time series and by using
Monte Carlo techniques it is shown that the observed RAR or
K is retained by the models. Therefore in many practical
situations it may be unnecessary to employ FGN models in
order to preserve the RAR.

NOTATION

a coefficient used with the RAR in (15).

a, white noise component in an Arma model
ay coefficient used in (33).
by coefficient used in (34).

By(t) fractional Brownian motion.
Cn(H) correlation matrix for a FGN process.
Dy' general deviation.
Dy crude deviation.
Dy*  standard deviation.

e, white noise thatis NID (0, 1).
e column vector containing the time series e,, e;, * * *,

én.
E(z,) expected value of z,.
FGN discrete fractional Gaussian noise.
G Hurst estimate for H in a FGN model.
GH(10) type of G Hurst estimate for H.

h generalized Hurst coefficient.

GH, magnitude of GH(10) for the ith simulated series of
length V.
AN) local Hurst exponent of Anis and Lloyd {1976).

H parameter in a FGN model.
H, MLE of H for the ith simulated series of length N.
identically independently distributed random vari-
able.
K Hurst estimate of A.

K' Hurst coefficient calculated by using (54).
log L(u, v, H) log likelihood of u, v,, and H.
log Lmax(H) maximized log likelihood function of H.

m,, typical element of M.

my'  general deficit.
my  crude deficit.
my*  adjusted deficit.

M lower triangular matrix obtained from Cy(H) by
Cholesky decomposition.

My' general surplus.
My crude surplus.
My*  adjusted surplus.
MLE maximum likelihood estimate.
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MSE mean square error.
N number of data in the z, series.
N number of sequences of length N.

NID normally independently distributed variable.
Ry’ general range.
Ry' rescaled general range.

Ry cruderange.
Ry rescaled crude range.

Ry*  adjusted range.
_ Ry*  rescaled adjusted range.
R.*(t, r) RAR of thesubseries z;, 2,44, " *, 2,, Where 7/ = r
—t+ 1.
RE relative efficiency.

Sk’ kth general partial sum.
S, kth crude partial sum.

Sx* kthadjusted partial sum.
S(u, H) function defined in (42).
¢t discrete time, continuous time when dealing with
Bu(?).
T statistic time.
T meanofT.

T, value of T for the ith simulated sequence.

Vr varianceof T.

Gomide estimate of A.

Gomide estimate of 4 obtained by using (28) and
(56).

z, timeseries value at time ¢.

v mean of the series z,, z; ** -, Zn.
2,0, zn.
Zz column vector containing z,, z3, - * -, Zn.

a adjustment factor.
8 measure of skewness in a stable distribution.
vo population variance.
v TACVF atlagk.
I' gamma function.
u population mean; location parameter for a stable
distribution.
pr TACF atlagk.
o scale parameter for a stable distribution.
o,¢ variance of a,.
v characteristic exponent of a stable distribution.
¢: nonseasonal autoregressive parameter at lag 1.
characteristic function of a stable distribution.
1 column vector with N values of unity.

Acknowledgments. The authors are grateful for the interest and
encouragement given by G. A. Barnard, W. C. Lennox, T. E. Unny,
and P. M. Reilly, all from the University of Waterloo, and also V. T.
Chow of the University of lllinois and N. C. Matalas of the U.S.
Geological Survey. E. H. Lloyd of the University of Lancaster and
P. E. O’Connell of the Institute of Hydrology in England provided the
authors with copies of their research results that dealt with the Hurst
phenomenon. The mathematics faculty at the University of Waterloo
generously provided free use of the Mathematics Faculty Computer
Facility for the computational work. The National Research Council
of Canada funded a portion of this research. Finally, the authors
wish to thank Sheila Hipel for the typing and editing of this paper.

REFERENCES

Akaike, H., A new look at the statistical model identification, /EEE
Trans. Automat. Cont., AC-19(6), 716-723, 1974.

Anis, A. A, The variance of the maximum of partial sums of a finite
number of independent normal variates, Bismetrika, 42, 96-101,
1955.

Anis, A. A., On the moments of the maximum of partial sums of a



McLeop aND HiPEL: STOCHASTIC HYDROLOGY

finite number of independent normal variates, Biometrika, 43, 70~
84, 1956.

Anis, A. A, and E. H. Lloyd, On the range of partial sums of a finite
number of independent normal variates, Biometrika, 40, 35-42,
1953.

Anis, A. A, and E. H. Lloyd, Skew inputs and the Hurst effect, J.
Hydrol., 26, 39-53, 1975.

Anis, A. A., and E. H. Lloyd, The expected value of the adjusted
rescaled Hurst range of independent normal summands, Biomet-
rika, 63, 111-116, 1976.

Barnard, G. A., Discussion on methods of using long-term storage in
reservoirs, Proc. Inst. Civil Eng., 1, 552-553, 1956.

Berman, S. M., Limiting distributions of the maximum of a diffusion
process, Ann. Math. Statist., 35, 319-329, 1964.

Boes, D. C., and J. D. Salas-La Cruz, On the expected range and
expected adjusted range of partial sums of exchangeable random
variables, J. Appl. Probab., 10, 671-677, 1973.

Box, G. E. P., and G. M. Jenkins, Time Series Analysis: Forecasting
and Control, Holden-Day, San Francisco, Calif., 1970.

Box, G. E. P, and G. C. Tiao, Bayesian Inference in Statistical
Analysis, Addison-Wesley, Reading, Mass., 1973.

Brillinger, D. R., Time Series Data Analysis and Theory, Holt, Rine-
hart, Winston, New York, 1975.

Dunsmuir, W., and E. J. Hannan, Vector linear time series models,
Advan. Appl. Probab., 8, 339-364, 1976.

Feller, W., The asymptotic distribution of the range of sums of inde-
pendent random variables, Ann. Math. Statist., 22, 427-432, 1951.

Garcia, L. E., D. R. Dawdy, and J. M. Mejia, Long-memory monthly
streamflow simulation by a broken line model, Water Resour. Res.,
8(4), 1100-1105, 1972.

Gomide, F. L. S., Range and deficit analysis using Markov chains,
Hydrol. Pap. 79, Colo. State Univ., Fort Collins, 1975.

Granger, C. W.J., and D. Orr, Infinite variance and research strategy
in time series analysis, J. Amer. Statist. Ass., 67(338), 275-285, 1972.

Healy, M. J. R, Algorithm AS 6, triangular decomposition of a
symmetric matrix, J. Roy. Statist. Soc., Ser. C, 17, 195-197, 1968.

Hipel, K. W., Contemporary Box-Jenkins modelling in hydrology,
Ph.D. thesis, Univ. of Waterloo, Waterloo, Ont., Canada, 1975.

Hipel, K. W., and A. 1. McLeod, Preservation of the rescaled adjusted
range, 2, Simulation studies with Box-Jenkins models, Water Re-
sour. Res., 14, this issue, 1978a.

Hipel, K. W, and A. 1. McLeod, Preservation of the rescaled adjusted
range, 3. Fractional Gaussian noise algorithms, Water Resour. Res.,
14, this issue, 19785.

Hipel, K. W., W. C. Lennox, T. E. Unny, and A. I. McLeod, Inter-
vention analysis in water resources, Water Resour. Res., 11(6), 855~
861, 1975.

Hipel, K. W., A. [. McLeod, and W. C. Lennox, Advances in Box-
Jenkins modeling, 1, Model construction, Water Resour. Res.,
13(3), 567-576, 1977a.

Hipel, K. W., A. 1. McLeod, and E. A. McBean, Stochastic modelling
of the effects of reservoir operation, J. Hydrol., 32, 97-113, 1977b.

Hurst, H. E., Long-term storage capacity of reservoirs, Trans. Amer.
Soc. Civil Eng., 116, 770-808, 1951.

Hurst, H. E., Methods of using long-term storage in reservoirs, Proc.
Inst. Civil Eng., [, 519-543, 1956.

Hurst, H. E., A suggested statistical model of some time series which
occur in nature, Nature, 180, 494, 1957,

Jenkins, G. M., and D. G. Watts, Spectral analysis and its appli-
cations, Holden-Day, San Francisco, Calif., 1968.

Klemes, V., The Hurst phenomenon—A puzzle?, Water Resour. Res.,
10(4), 675-688, 1974.

Lawrance, A.J., and N. T. Kottegoda, Stochastic modelling of river-
flow times series, J. Roy. Statist. Soc., Ser. A, 140, 1-47, 1977.
Lettenmaier, D. P., and S. J. Burges, Operational assessment of hydro-
logic models of long-term persistence, Water Resour. Res., 13(1),

113-124, 1977.

Mandelbrot, B. B., Une classe de processus stochastiques homo-
thetiques a soi: Application a la loi climatologique de H. E. Hurst,
Compt. Rend. Acad. Sci., 260, 3274-3276, 1965.

Mandelbrot, B. B., A fast fractional Gaussian noise generator, Water
Resour. Res., 7(3), 543-553, 1971.

Mandelbrot, B. B., Broken line process derived as an approximation
to fractional noise, Water Resour. Res., 8(5), 1354-1356, 1972.
Mandelbrot, B. B., and J. W. Van Ness, Fractional Brownian mo-
tions, fractional noises and applications, Soc. Ind. Appl. Math. Rev.,

10(4), 422-437, 1968.

507

Mandelbrot, B. B., and J. R. Wallis, Noah, Joseph and operational
hydrology, Water Resour. Res., 4(5), 909-918, 1968.

Mandelbrot, B. B., and J. R. Wailis, Computer experiments with
fractional Gaussian noises, 1, Averages and variances, Water Re-
sour. Res., 5(1), 228-241, 1969a.

Mandelbrot, B. B., and J. R. Wallis, Computer experiments with
fractional Gaussian noises, 2, Rescaled ranges and spectra, Water
Resour. Res., 5(1), 242-259, 1969b.

Mandelbrot, B. B., and J. R. Wallis, Computer experiments with
fractional Gaussian noises, 3, Mathematical appendix, Water Re-
sour. Res., 5(1), 260-267, 1969c.

Mandelbrot, B. B., and J. R. Wallis, Some long-run properties of
geophysical records, Water Resour. Res., 5(2), 321-340, 19694.

Mandelbrot, B. B., and J. R. Wallis, Robustness of the rescaled range
R/S in the measurement of noncyclic long-run statistical depen-
dence, Water Resour. Res., 5(5), 967-988, 1969¢.

Matalas, N. C., and C. S. Huzzen, A property of the range of partial
sums, paper presented at the International Hydrology Symposium,
Colo. State Univ., Fort Collins, 1967.

Matalas, N. C., and J. R. Wallis, Statistical properties of mulitivariate
fractional noise processes, Water Resour. Res., 7(6), 1460-1468,
1971.

McLeod, A. I, Contributions to applied time series, masters thesis,
Univ. of Waterloo, Waterloo, Ont., Canada, 1974.

McLeod, A. I., Derivation of the theoretical autocovariance function
of autoregressive-moving average time series, J. Roy. Statist. Soc.,
Ser. C, 24(2), 255-256, 1975.

McLeod, A. I., Improved Box-Jenkins estimators, Biometrika, 64(3),
531-534, 1977.

McLeod, A. 1., On the distribution of residual autocorrelations in
Box-Jenkins models, J. Roy. Statist. Soc., Ser. B, 1978.

MeLeod, A. I., and K. W. Hipel, Comment on ‘Modeling monthly
hydrologic persistence’ by G. K. Young and R. U. Jettmar, Water
Resour. Res., 14, this issue, 1978a.

McLeod, A. 1., and K. W. Hipel, Simulation procedures for Box-
Jenkins models, Water Resour. Res., 14, in press, 1978b.

McLeod, A. 1., K. W, Hipel, and W. C. Lennox, Advances in Box-
Jenkins modelling, 2, Applications, Warer Resour. Res., 13(3), 577-
586, 1977.

Mejia, J. M., 1. Rodriguez-Iturbe, and D. R. Dawdy, Streamflow
simulation, 2, The broken line process as a potential model for
hydrologic simulation, Water Resour. Res., 8(4), 931-941, 1972,

Moran, P. A. P., The Theory of Storage, Methuen, London, 1959.

Moran, P. A. P., On the range of cumulative sums, Ann. Inst. Statist.
Math., 16, 109-112, 1964. :

O’Connell, P. E., A simple stochastic modelling of Hurst’s law, Pro-
ceedings of Imternational Symposium on Mathematical Models in
Hydrology, Publ. 100, pp. 169-187, Int. Ass. of Sci. Hydrol., War-
saw, 1974a.

O’Connell, P. E., Stochastic modelling of long-term persistence in
streamflow sequences, Ph.D. thesis, Imperial Coll., London, 19745,

O’Connell, P. E., Skew inputs and the Hurst effect—A comment, J.
Hydrol., 31, 185-191, 1976.

Potter, K. W, Evidence for nonstationarity as a physical explanation
of the Hurst phenomenon, Water Resour. Res., 12(5), 1047-1052,
1976.

Rao, C. R., Linear Statistical Inference and Its Applications, 2nd ed.,
John Wiley, New York, 1973.

Rodriguez-Iturbe, 1., J. M. Mejia, and D. R. Dawdy, Streamflow
simulation, 1, A new Jook at Markovian models, fractional Gaus-
sian noise, and crossing theory, Water Resour. Res., 8(4), 921-930,
1972.

Salas-La Cruz, J. D., and D. C. Boes, Expected range and adjusted
range of hydrologic sequences, Water Resour. Res., 10(3), 457-463,
1974.

Scheidegger, A. E., Stochastic models in hydrology, Water Resour.
Res., 6(3), 750-755, 1970.

Siddiqui, M. M., The asymptotic distribution of the range and other
functions of partial sums of stationary processes, Water Resour.
Res., 12(6), 1271-1276, 1976.

Solari, M. E., and A. A. Anis, The mean and variance of the maximum
of the adjusted partial sums of a finite number of independent
normal variates, Ann. Math. Statist., 28, 706-716, 1957.

Taqqu, M., Note on evaluation of R/S for fractional noises and
geophysical records, Water Resour. Res., 6(1), 349-350, 1970.

Wallis, J. R., and N. C. Matalas, Small sample properties of H and K




508 McLeop aND HipeL: StocHAsTIC HYDROLOGY

estimators of the Hurst coefficient , Water Resour. Res., 6(6), 1583~
1594, 1970.

Wallis, J. R., and P. E. O’Connell, Firm reservoir yield—How reliable
are hydrological records?, Hydrol. Sci. Bull., 39, 347-365, 1973.
Young, G. K., and R. U. Jettmar, Modeling monthly hydrologic

persistence, Water Resour. Res., 12(5), 829-835, 1976.
Yevjevich, V. M., Fluctuation of wet and dry years, 1, Research data

assembly and mathematical models, Hydrol. Pap. 1, Colo. State
Univ., Fort Collins, 1963.

(Received January 20, 1976;
revised May 15, 1977,
accepted June 6, 1977.)



