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PART1V
FORECASTING
AND
SIMULATION

Within Part II of the book, two useful classes of nonseasonal models are defined and some
of their theoretical properties are derived. In particular, the ARMA family of models of Chapter
3 are defined for fitting to stationary time series while the ARIMA class of models presented in
Chapter 4 are designed for use with nonstationary data sequences. A sensible and systematic
approach for fitting these and other kinds of models to a given data set is described in Part III.
More specifically, by following the identification, estimation and diagnostic check stages of
model construction explained in Chapters 5 to 7, respectively, one can develop the most
appropriate model to describe the data set being studied.

A particular ARMA or ARIMA model which has been fitted to a time series can serve a
variety of useful purposes. For example, the calibrated model provides an economic means of
encoding the basic statistical properties of the time series into a few model parameters. In the
process of carrying out the model building procedure, one obtains a better understanding about
the key statistical characteristics of the data set. Besides the insights which are always gained
when fitting a model to a time series, there are two important types of applications of time series
models which are in widespread use by practitioners. These application areas are forecasting and
simulation. The objectives of Part IV are to explain how ARMA and ARIMA models can be
used for forecasting and simulation, and furnish case studies for demonstrating how forecasting
and simulation are executed in practice. '

The general purpose of forecasting or prediction is to provide the best estimates of what
will happen at specified points in time in the future. Based upon the model fitted to a series and
the most recent observations, one can obtain what are called minimum mean square error
forecasts of future observations. Because forecasting is concerned with using the fitted model to
extrapolate the time series into the future, it is often called extrapolation. Moreover, since fore-
casting, prediction or extrapolation provides an estimate of the future behaviour of a system, it is
essential in the operation and control of the system. For example, forecasts for a riverflow
series could be used for deciding upon the long range operating rules of a large reservoir. Fore-
casting can also be employed for model discrimination. When models from a variety of dif-
ferent classes are fitted to time series, one can select the model which provides the most accurate
forecasts. The theory and practice of forecasting with nonseasonal models are presented in
Chapter 8.

The overall objective of simulation is to use a fitted model to generate possible future
values of a time series. These simulated or synthetic sequences can be used in two main ways.
Firstly, simulated sequences can be utilized in engineering design. For instance, when design-
ing a reservoir complex for generating hydroelectrical power, one can use both the historical
flows and simulated data for obtaining the most economical design. Simulated sequences are
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employed in the design process because when the reservoir comes into operation the future flows
will never be exactly the same as the historical flows. Therefore, one wishes to subject tentative
designs to a wide variety of stochastically possible flow scenarios. Secondly, simulation can be
employed for studying the theoretical properties of a given model. In many cases, it is very
difficult or, for practical purposes, impossible, to determine precise analytical results for a given
theoretical property of the model. When this is the situation, simulation can be used for obtain-
ing the theoretical results to a specified desired level of accuracy. The theory and practice of
simulating with nonseasonal models are explained in Chapter 9.

The forecasting and simulation techniques presented in the next two chapters are explained
in terms of ARMA and ARIMA models. However, these methods can be easily extended for use
with other models such as the different seasonal models of Part VI and the transfer function-
noise models of Part VII. Table 1.6.3 lists the locations in the book where contributions to fore-
casting and simulation are given for a wide range of time series models.
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CHAPTER 8
FORECASTING
WITH
NONSEASONAL MODELS

8.1 INTRODUCTION

In the design, planning and operation of water resources systems, one often needs good
estimates of the future behaviour of key hydrological variables. For example, when operating a
reservoir to serve multiple purposes such as hydroelectrical power generation, recreational uses
and dilution of pollution downstream, one may require forecasts of the projected flows for
upcoming time periods. The objective of forecasting is to provide accurate predictions of what
will happen in the future.

In practical applications, forecasts are calculated after the most appropriate time series
model is fitted to a given sequence of observations. Figure III.1 summarizes how a model is
developed for describing the time series by following the identification, estimation and diagnos-
tic check stages of model construction. Figure 6.3.1 outlines how an automatic selection cri-
terion such as the AIC (Akaike information criterion) can be utilized in model building. After
obtaining a calibrated model, one can calculate forecasts for one or more time steps into the
future. Figure 8.1.1 displays the overall procedure for obtaining forecasts. Notice that the origi-
nal data set may be first transformed using an appropriate transformation such as the Box-Cox
transformation in [3.4.30]. Whatever the case, subsequent to constructing a time series model to
fit to the series by following the procedures of Part III, one can use the calibrated model and the
most recent observations to produce forecasts in the transformed domain. If, for example, an ori-
ginal data set of annual riverflows were first transformed using natural logarithms, then the fore-
casts from the ARMA model fitted to the logarithmic data would be predictions of the loga-
rithmic flows. As indicated in Figure 8.1.1, one would have to take some type of inverse data
transformation of the forecasted flows in the transformed domain in order to obtain forecasts in
the original domain. These forecasts could then be used for an application such as optimizing
the operating rules of a reservoir.

When calculating forecasts, one would like to obtain the most accurate forecasts possible.
However, the question arises as to how one quantifies this idea of accuracy. One useful criterion
for defining accuracy is to use what is called minimum mean square error. The theoretical defin-
ition of what is meant by minimum mean square error forecasts and the method of calculating
them for ARMA and ARIMA models are presented in the next section. In addition, the method
for calculating confidence limits for the forecasts is described.

Forecasting can be used as an approach for model discrimination. A variety of time series
models can be fitted to the first portion of one or more time series and then used to forecast the
remaining observations. By comparing the accuracy of the forecasts from the models, one can
determine which set of models forecasts the best. In Section 8.3, forecasting experiments are
carried out for deciding upon the best types of models to use with yearly natural time series.
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Figure 8.1.1. Overall procedure for obtaining forecasts.

When comparing one step ahead forecasts, some statistical tests are described for determining if
one model forecasts significantly better than another.

Chapter 8 deals with forecasting using nonseasonal ARMA and ARIMA models. Forecast-
ing with other kinds of models is described in other chapters of the book. In Chapter 15, the pro-
cedures for forecasting with three types of seasonal models are presented. Forecasting experi-
ments are also given in Sections 15.3 and 15.4 for comparing the forecasting abilities of different
seasonal models. Procedures for combining forecasts from distinctly different models in order to
obtain overall better forecasts are described in Section 15.5. Similar approaches could also be
used for combining forecasts from different nonseasonal models. Finally, Chapter 18 describes
how one can obtain forecasts using a transfer function-noise model. As explained in Chapter 17,
a transfer function-noise model is a time series model that can describe situations where there is
a single output and multiple inputs. For example, the output series may be riverflows whereas
the input or covariate series are precipitation and temperature measurements. Table 1.6.3
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summarizes where material on forecasting can be found in the book.

Besides hydrology, forecasting experiments have been carried out in other disciplines to
compare the forecasting ability of models. In economics, one important forecasting study was
completed by Newbold and Granger (1974). In their investigation these authors used one hun-
dred and six economic time series to compare three types of forecasting models. The time series
were split into two parts and ARIMA, Holt-Winters, and stepwise autoregressive models were
fitted to the first portion of the data. The three models were then used to forecast the remainder
of the data for various lead times. The forecasting ability of the three models was judged on the
basis of the mean squared error (MSE) of the forecasts. Newbold and Granger (1974) found that
the ARIMA forecasting procedure clearly outperformed the other two methods for short lead
times but the advantage decreased for increasing lead time.

Madridakis et al. (1982) reported on a recent forecasting competition. The forecasting abil-
ity of over twenty models was tested using 1001 time series. The time series were of different
length, type (i.c., monthly, quarterly, and annual) and represented data ranging from small firms
to nations. Different forecast horizons were considered and several criterion were employed to
compare the forecasts from the various models. In general, no one specific model produces
superior forecasts for all types of data considered. However, some improvement may be
achieved if the forecaster selected certain classes of models for forecasting specific types of data.

Because of the great import of forecasting in water resources engineering as well as many
other disciplines, there have been many research papers, conference proceedings and books writ-
ten on forecasting. Most of the water resources and time series analysis books referred to in
Chapter 1 of this book contain chapters on forecasting. The Hydrological Forecasting Sympo-
sium (International Association of Hydrological Sciences, 1980) held in Oxford, England, cer-
tainly confirms the usefulness of forecasting in hydrology. For forecasting in economics, readers
may wish to refer to texts listed in the references under economic forecasting at the end of
Chapter 1. Within this book, recent practical developments for forecasting in water resources
engineering are presented.

8.2 MINIMUM MEAN SQUARE ERROR FORECASTS

8.2.1 Introduction

Let z, represent a known value of a time series observed at time ¢. For convenience of

explanation, assume for now that the data have not been transformed using an appropriate data
transformation. In Section 8.2.7, it is explained how the Box-Cox transformation in [3.4.30] is
taken into account when forecasting. As shown in Figure 8.2.1, suppose that the observations
are known up until time ¢. Given an ARMA or ARIMA model that is fitted to the historical
series up to time ¢, one wishes to use this model and the most recent observation to forecast the
series at time ¢ + . Let the forecast for the unknown observation, z,,;, be denoted by 7 (!), since
one is at time ¢ and would like to forecast / steps ahead. The time ¢ is referred to as the origin
time for the forecast while / is the lead time which could take on values of / =1,2,.... Conse-
quently, in Figure 8.2.1, the forecasts from origin ¢ having lead times of /=1, 2, and 3, are
denoted by %(1), %(2), and 7,(3), respectively. The forecast, 7(1), at lead time 1, is called the
one step ahead forecast and is frequently used in forecasting experiments for discriminating
among competing models.



260 Chapter 8

OBSERVATIONS . i
AND =— Observations —e—te—— Forecasts ———=
FORECASTS !
i
A
o t2 (1) t
2 I t X
t-2 ¢ X
(o] lo} : Z,
r 4 2_1 !
t-3 t E x forecast
| O observation
Il ! | | | ! |
Origin
t-3 t-2 t-1 t t+1 t+2 t+3
TIME

Figure 8.2.1. Forecasts from origin ¢.

One would like to produce forecasts which are as close as possible to what eventually takes
place. Another way to state this is that one would like to minimize the forecast errors. This is
because larger forecast errors can lead to poor decisions which in turn can cause more excessive
costs than would be necessary. For example, if a hydroelectric complex were operated ineffi-
ciently because of poor forecasts, the utility could lose large sums of money.

To appreciate what is meant by forecast errors, refer once again to Figure 8.2.1. After the
observation at time t+1 becomes known, the one step ahead forecast error from origin t is calcu-

lated as
(1) =2, - 4(1)
Likewise, the forecast errors for lead time two and three are determined, respectively, as
€2)=24-4Q2)
&) =2,3-40)
In general, the forecast error at lead time / is given as
eD=z4-41) 1=1.2,. [8.2.1]

Decision makers would like to minimize forecast errors in order to keep the costs of their
decisions as low as possible. However, when calculating forecasts for lead times / =1,2, ... ,k,
how should one define the forecast error that should be minimized? For example, one approach
is to minimize the mean error given by
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e () [8.2.2]
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Another would be to minimize the mean absolute error (MAE) written as
k
Mw=%zmm| | (8.2.3]
I=1
A third alternative is to minimize the mean square error (MSE) defined as
k
Mﬂ:%zmm [8.2.4]
I=1

One could easily define other criteria for defining forecast errors to be minimized. For instance,
one could weight the forecast errors according to their time distance from origin ¢ and then use
these weighted errors in any of the above types of overall errors. As pointed out in the next sub-
section, minimum mean square error forecasts possess many attractive properties that have
encouraged their widespread usage in practical applications.

8.2.2 Definition

As explained in Sections 3.4.3 and 4.3.4 for ARMA and ARIMA models, respectively,
these two classes of models can be written in any of the three equivalent forms:

1.  difference equation form as originally defined,
2. random shock format (i.e. as pure MA model)
3. inverted form (i.e. as a pure AR model).

Any one of these three forms of the model can be used for calculating the type of forecasts
defined in this section. However, for presenting the definition of what is meant by a minimum
mean square error (MMSE) forecast when using an ARMA or ARIMA model the random shock
model, is most convenient to use.

From [3.4.18] or [4.3.9], at time ¢, the random shock model is written as
z, =y(B)a,
=1+ B +VB+ -+ ),
=0, +VY 8tV t (8.2.5]

where y(B)=(1+vyB + WZBZ + --+) is the random shock or infinite MA operator for which
v; is the ith parameter and g, is the innovation sequence distributed as NID(0,62). When stand-
ing at time ¢ + /, the random shock model is given as

Z = V(B)ayy
=(L+yiB +yB>+ -y

=y +V1G141-1 T V20412t
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+ Wi + Vi1 + Vi o0 (8.2.6]

For simplifying the explanation, the mean of the series is omitted in the above two equations and

ensuing discussions. However, when there is a nonzero mean for z;, all of the upcoming results
remain exactly the same.

Suppose that standing at origin ¢, one would like to make a forecast 7,(/) of z,,; which is a

linear function of current and previous observations z;,z._1,z-2, - - . » - This in turn implies that

the forecast is a linear function of current and previous innovations a;,d,_1,8;_2, - . ., - Using all

of the information up to time ¢ and the random shock form of the model in [8.2.6], let the best
forecast at lead time / be written as

£() =V 8+ Vi + Vi + (8.2.7]
where the weights \y,',w,:,,\v,:z, ..., are to be determined. Notice that the innovations
@,41:8142: - - - »Gy4, and their corresponding coefficients are not included in [8.2.7] since they are
unknown.

The theoretical definition of the mean square error of the forecast is defined as
E [z,+,—z“,(l)]2. By replacing z,,; and 7,(/) by the expressions given in [8.2.6] and [8.2.7],

respectively the mean square error is expanded as
Elz4 = 401 = E[@pus + V18paio1 + VaSii2 ¥ )
— (W8 + Vil + Wiagia + P

After expanding the right hand side by squaring and then taking the expected value of each term,
the equation is greatly simplified because of the fact that

0, j=#=0
Ela,a, ;)= g2 j=0

a’*

More specifically, the equation reduces to

2
Elz - 40P =1 +yi+yi+ - +yipoi+ T {w,,,,--w,l,-} o2 [8.2.8]
j=0
It can be scen that the above equation is minimized by setting \y,:,j =Vupi=012,..., and

thereby eliminating the second component on the right hand side of [8.2.8]. Consequently, when
written in random shock form the MMSE forecast is derived as

L=V + V8 Y Vg + 00 [8.2.9]

As noted by Box and Jenkins (1976, Ch. 5) the finding in [8.2.9] is a special case of more
general results in prediction theory by Wold (1954), Kolmogorov (1939, 1941a,b), Wiener
(1949) and Whittle (1963). By combining the result in [8.2.9] with the random shock model in

[8.2.6]
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241 = (B + V1B 1¥VW20 g2 + 00+ Vic18i41)
+ (Wi + Via- + Vil + -0 °)
=e()+Z,() [8.2.10]
where e, (/) is the error of the MMSE forecast Z, (/).

8.2.3 Properties

The fact that [8.2.10] can be easily derived from the definition of a MMSE forecast, points
out one of the advantages of using this kind of forecast. Fortunately, there are many other pro-
pertics of a MMSE forecast that make it very beneficial for use in practical applications and
some of them are described now. Let

Elz 4]l =Elz4l22, " ° ]

denote the conditional expectation of z,,; given knowledge of all the observations up to time ¢.
Then, attractive properties of a MMSE forecast include:

1. The MMSE forecast, 7, (/), is simply the conditional expectation of z,,; at time ¢.

This can be verified by taking the conditional expectation of z,,; in [8.2.10] to get
Elz, ] =i + V1418, + Y1282+ - =4(0) [8.2.11]

Keep in mind that when deriving [8.2.11] the expression E[a,,,]=0 for k >0, and
E,[a,,;] = a,,; for k S0 since the innovations up to time ¢ are known. Specific rules for calculat-
ing MMSE forecasts for any ARMA or ARIMA model are presented in the next subsection.

2. The forecast error is a simple expression for any ARMA or ARIMA model.
From [8.2.10], the forecast error from origin ¢ and for lead time / is

e()=a+V18 1+ " + V184 [8.2.12]

3.  One can conveniently calculate the forecast error variance.

In particular, the variance of the forecast error is

Ele, (1)1 = V() = varle,()]

= E[(@41 + V181411 + VoGria ¥ +V11841)°)

=(1+yi+yi+ -+ +yk ol [8.2.13]
4. The MMSE forecast is unbiased.
This is because
Ele,(D1=E[a1 + V1811 + V2a1p12+ ** +V116141]1 =0 [8.2.14]

where Efa,,,]=0fork > 0.
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5. The one step ahead forecast error is equal to the corresponding innovation and, therefore,
one step ahead forecast errors are uncorrelated.

From [8.2.12], the one step ahead forecast error is
e(MH=z,-740)=a,, [8.2.15]

Because the innovations are independent, and, hence, uncorrelated, the one step ahead forecast
errors must also be uncorrelated. As explained in Section 8.3, this result is very useful for
developing tests to determine if one model forecasts significantly better than another.

6. Forecasts for lead times greater than one are, in general, correlated.

Consider forecasts for different lead times from the same origin ¢. Let the forecast errors for
lead times / and /+j, where j is a positive integer, be given by e,(/) and e,(/+j), respectively. As
shown by Box and Jenkins (1976, Appendix AS.1), the correlation between these two forecast
errors is

-1

ViV

i=0
1 ki1, 2
E\Vh Z \vg
h=0 g=0

[8.2.16]

corrle,(1).e,(I+j)] = {

Because of the correlation in [8.2.16], forecasts can lie either mainly above or below the actual
observations when they become known.

7. Any linear function of the MMSE forecasts is also a MMSE forecast of the corresponding
linear function of the future observations.

To explain what this means in practice, consider a simple example. Suppose that 7,(1), £,(2),

7,(3) and 7,(4), are four MMSE forecasts. Then, 107,(1) + 87,(2).+ 6£,(3) + 4£,(4) is a MMSE

forecast of 10z, + 8z,,, + 62,3 + 42, 4.

8.2.4 Calculation of Forecasts

Forecasting with ARMA Models
As explained in the previous subsection, the MMSE forecast, Z(/), for lead time /, is sim-
ply the conditional expectation, E,[z,,], of z,,, at origin f. When calculating the conditional

expectations for an ARMA or ARIMA model one can write the model in any one of its three
equivalent forms. These three formats are the difference equation form for the model as origi-
nally defined, random shock format and the inverted form (see Sections 3.4.3 and 4.3.4 for
descriptions of the three forms for the ARMA and ARIMA family of models, respectively).

To simplify the notation required when determining MMSE forecasts, let the conditional
expectations E,[a,,;] and E,[z,,;] be replaced by [a,,] and [z,,,], respectively. For explaining
how forecasts are determined using the three equivalent formats, consider the family of ARMA
models defined in Chapter 3. For / > 0, the three equivalent formats for writing the MMSE fore-
casts are as follows:
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Forecasts Using the Original Definition. By taking conditional expectations at time ¢ of each
term of the ARMA model in [3.4.3], the MMSE forecasts are:

[24] = () = O1Zip1] + Golzpia] + - + Qpl2i00-p] + [a144]
| WY Rl V) B M (VI (8.2.17)

As before, for convenience of explanation, the mean of the series is not written in the model.
Following specific rules described below for calculating MMSE forecasts, one can easily deter-
mine each conditional expectation in [8.2.17].

Forecasts from the Random Shock Form. One can take conditional expectations at time ¢ of
the random shock form of the ARMA model in [3.4.18] to determine the MMSE forecasts as:

(2] =Z4() =[a4] + Wila1] + Wala g + - [8.2.18]

where y; is the ith random shock parameter. When there are AR parameters in the original

ARMA model, the number of innovation terms on the right hand side of [8.2.18] is infinite in
extent. However, because the absolute values of the random shock parameters die off quickly
for increasing lag, one can use a finite number of terms on the right hand side of [8.2.18] for cal-
culating the forecasts up to any desired level of accuracy. Approaches for deciding upon how
many MA parameters or terms to include in the random shock model are discussed in Section
34.3.

Forecasts using the Inverted Form. By taking conditional expectations at time ¢ of the
inverted form of the ARMA model in [3.4.25], the MMSE forecasts are:
(2] =4 () =[a ) + g2y 1] + Rol 2 0] + - [8.2.19]

where =; is the ith inverted parameter. When there are MA parameters in the original model, the
number of x; parameters on the right side of [8.2.19] is infinite. Nonetheless, since the absolute

values of the inverted parameters attenuate fairly quickly for increasing lag, only a finite number
of inverted terms in [8.2.19] are required for calculating MMSE forecasts. Guidelines for decid-
ing upon how many inverted components to include in the inverted form of the model are given
in Section 3.4.3. In practice, only a moderate number of inverted parameters are needed.

Forecasting with an ARIMA Model

When forecasting with an ARIMA model, the simplest approach is to first calculate the
generalized nonseasonal AR operator ¢'(B) defined as

¢'(B) = ¢(B)V* (8.2.20]

where ¢(B) is the nonseasonal AR operator of order p, V4 is the nonseasonal differencing opera-
tor given in {4.3.3], and

GB)=1+¢"B+¢B>+ - +4,,4B""

is the generalized nonseasonal AR operator for which ¢; is the ith nonseasonal generalized AR
parameter. The ARIMA model from [4.3.4] is then written as
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¢’B)z, = 6(B)a, [8.2.21]

where 6(B) is the nonseasonal MA operator of order q. By taking conditional expectations at
time ¢ of [8.2.21], the MMSE forecasts for an ARIMA model are determined using

[zea) = ¢'1[200) + $'2z0 2] + 0 + 0 p0alZpd)
+[a,4] - 64la 4] - 65la ) = -+ = [841] [8.2.22]

As pointed out in Section 4.3.1, usually the differenced series w, = V2, has a mean or level
of zero. However, suppose this is not the case so that the model in [8.2.21] can be written as

¢'(B)z, =89+ 6(B)a, [8.2.23)
where the ‘‘deterministic component’” 6y =,,¢’(1) and y,, is the mean of the w; series. For

d =0, 1 and 2 the term 6, can be interpreted as the level, slope in a linear deterministic trend,
and quadratic trend coefficient, respectively. When the ARIMA model has the form of [8.2.23],

forecasts are calculated recursively for/ =1,2, ..., using
(2] =60+ ¢'1[2 1] + alzipsad + - - + Op+dlZis1-p-al + (a,1]
=0,la,,, 1] - 05l = -+ ~0,la ] [8.2.24]
Rules for Forecasting

The most convenient equations to utilize when calculating MMSE forecasts are {8.2.17]
and [8.2.22] for ARMA and ARIMA models, respectively. Whatever difference equation form
of the ARMA or ARIMA model is employed for determining MMSE forecasts, one employs the
simple rules listed below for the case of j being a non-negative integer to determine the condi-
tional expectations written in these equations.

1. .
[Z,_j] = E,[Z,_j] = Z,_j sy J= 0,1,2, ce [8.2.25]
Because an observation at or before time ¢ is known, the conditional expectation of this
known value or constant is simply the observation itself.
2. . .
[zu.j] = E[[zuj] =4(), j=12,--: [8.2.26]
The conditional expectation of a time series value after time ¢ is the MMSE forecast that
one wishes to calculate for lead time j from origin ¢.
3.

la1=Ela_)=a_;, j=012,-- (8.2.27]

Since an innovation at or before time ¢ is known, the conditional expectation of this known
value is the innovation itself. In practice, the innovations are not measured directly like the
z,’s but are estimated when the ARMA or ARIMA model is fitted to the z, or differenced

series (see Chapter 6). Another way to determine g, is to write [8.2.15] as
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a =z -%4,(1)

where 7,_;(1) is the one step ahead forecast from origin ¢-1.

la,j1=Ela,,1=0, j=12,--- [8.2.28]

In the definition of the ARMA or ARIMA model, the g,’s are assumed to be independently
distributed and have a mean of zero and variance of 0,2. Conscquently, the expected value
of the unknown g,’s after time ¢ is zero because they have not yet taken place.

8.2.5 Examples

To explain clearly how one employs the rules from the previous section for calculating
MMSE forecasts for both ARMA and ARIMA, two simple illustrative examples are presented.
The first forecasting application is for a stationary ARMA model while the second one is for a
nonstationary ARIMA model.

ARMA Forecasting Ilustration

ARMAC(1,1) models are often identified for fitting to annual hydrological and other kinds
of natural time series. For example, in Table 5.4.1, an ARMA(1,1) model is selected at the iden-
tification stage for fitting to an annual tree ring series.

From Section 3.4.1 an ARMA(1,1) model is written in its original difference equation form
for time ¢+/ as

(1-¢,B)z,,y=(1-8,B)a,,,
or

241 = 012411 = Gy — 018141
or

2440 = 0120411 + Gy — 01014

By taking conditional expectations of each term in the above equation, the ARMA(1,1) version
for [8.2.17] is

(z40) = 01[2000-1] + [3144] — 84(a1414) [8.2.29]

Using the rules listed in [8.2.25] to [8.2.28], one can calculate the MMSE forecasts for various
lead times / from origin ¢.

Lead Time /=1:
Substitute / = 1 into [8.2.29] to get

[z41] = $1[z] + [a,41] - 84lq)]

After applying the forecasting rules, the one step ahead forecast is
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(1) =62, +0-0,a, = ¢,2, - 6,q,

In the above equation, all of the parameters and variable values on the right hand side are known,
so one can determine 7 (1).

Lead Time /=2:
After substituting / = 2 into [8.2.29], one obtains
[2142] = $1[241] + [a142] — 84(ay44]
Next one uses the rules from [8.2.25] to [8.2.28] to get
42 =¢,4(1)+0-6,(0) =¢,4(1)
where the one step ahead forecast is known from the previous step for lead time / = 1.

Lead Time !/ 22:
When the lead time is greater than one, the forecasting rules are applied to [8.2.29] to get

L) =4, 7,(1-1)+0-6,(0)=¢,4,(/ - 1)
where the MMSE forecast 7,(/ — 1) is obtained from the previous iteration for which the lead

timeis/ - 1.

ARIMA Forecasting Application

In Section 4.3.3, the most appropriate ARIMA model to fit to the total annual electricity
consumption for the U.S. is an ARIMA(0,2,1) model. From Figure 4.3.10, one can see that the
series is highly nonstationary and, therefore, differencing is required.

Following the general form of the ARIMA model defined in [4.3.3] and [4.3.4], the
ARIMA(0,2,1) model is written at time t+/ as

(1-B)z,;=(1-8,B)a,
or
(1-2B +B%z,,=(1-8,B)a,,,
or
Zpt = 220401 ¥ 22 = g ~ 01814
After taking conditional expectations of each term in the above equation, the forecasting equa-
tion is
(2e1d] = 2[z401] + [201-2) = [a144] = 84[a441]
or
(2141) = 2[2441-1] = [241-2) + [G144] - 044 4141] [8.2.30]

By employing the rules given in [8.2.25] to [8.2.30], one can determine the MMSE forecasts for
lead times / = 1,2, - - -, from origin .
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Lead Time !/ =1:
Substitute / = 1 into [8.2.30] to obtain
(z141] = 2[z,] - [2,-1] + [a,41] = B1[a;]
After invoking the forecasting rules, the one step ahead forecast is
Z(1)=2z,-z_;+0-0,0, =22, -2_, - 0,a,

Because all entries on the right hand side of the above equation are known, one can calculate
£,(1). Keep in mind that when fitting a model to a time series z,, the historical z, innovations are

calculated at the estimation stage. Another way to calculate g, is to write [8.2.15] as
a, =z~4(1)
where 7,_;(1) is the one step ahead forecast from origin #-1.
Lead Time ! =2:
After assigning / =2 in [8.2.28], one gets
[242] = 2[z41] = [2,] + [a132] = 64[a;41]
In the next step, one uses the rules for calculating conditional expectations in order to obtain
£Q2)=24,(1) -2, +0-8,(0)=24(1) -z
where the one step ahead forecast is determined in the previous iteration for which / = 1.
Lead Time [ = 3:
Substitute / = 3 into [8.2.30] to obtain
[243) = 2[2;45] = [2441] + [a143] - B4ay,5)
After applying the rules for calculating conditional expectations, the above equation becomes
£,3) = 24,(2) - £,(1) + 0 - 8(0) = 2£,(2) - £,(1)

where the one and two step ahead forecasts from origin ¢ are determined in the previous two
iterations.

Lead Time [/ 2 3:

When the lead time is greater than or equal to three, the forecasting rules are applied to
[8.2.30] to obtain

=250 -1)- £ -2)+0-08,0)=24( - 1) - £ - 2)

where the MMSE forecasts for Z,(/ — 1) and Z(/ —2) are determined in the two previous steps
having lead times / — 1 and [ — 2, respectively.
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8.2.6 Updating Forecasts

When using the random shock form of the model, forecasts can be generated using [8.2.9]
or [8.2.11). The methods for calculating the random shock weights for ARMA and ARIMA
models are presented in Sections 3.4.3 and 4.3.4, respectively. By using the random shock form
of the forecasting model, one can develop an easy approach for efficiently updating forecasts. In
particular, the forecasts 7,,;(/) and 7, (/+1) of the future observation z,,,,; made from origins #+1

and ¢, respectively, are written following [8.2.11] as
51 = V184 + V18 + WG + -
LU+ =10 + WG + 0
After subtracting the second equation from the first, one finds
La) =401 +1) +vya,, [8.2.31]

Because of this result, the forecast of z,,;,; from origin ¢ can be updated to become the forecast
of z,,;,, from origin r+1 by adding y,a,,,. From [8.2.15], one can sec that g, is simply the one
step ahead forecast error from origin .

In practice, the updating formula in [8.2.31] can be conveniently used for economizing on
the number of computations for generating forecasts. Suppose one is at origin ¢ and already has
forecasts for lead times / =1,2,...,L. Immediately upon obtaining the next observation, z,,;,
one can calculate the forecast error a,,; = z,,; — 7,(1). This result can then be used to obtain
forecasts 7,,,(/) =4 (! + 1) + y,a,,, from origin ¢+1 for lead times / =1,2,...,L-1. Although
the new forecast 7, ;(L) cannot be calculated using this method, it can be easily determined from

the forecasts at shorter lead times using the original difference equation form of the model (see
Section 8.2.4).

8.2.7 Inverse Box-Cox Transformations

The overall procedure for determining forecasts from a time series model is displayed in
Figure 8.1.1. Before fitting a model to a given series, one may wish to transform the series using
the Box-Cox transformation in [3.4.30] or some other appropriate transformation. As explained
in Section 3.4.5, the purpose of the transformation is to rectify problems with non-normality
and/or heteroscedasticity in the residuals of the fitted model. Whatever the case, when one uses
the model constructed for the transformed series to obtain MMSE forecasts following the
methods of Section 8.2.4, one determines forecasts in the transformed domain. For example,
when an ARMA model is built for a logarithmic average annual riverflow series, the forecasts
from the model are MMSE forecasts of the logarithmic flows. As pointed out in Figure 8.1.1, to
get forecasts in the untransformed domain, one must take some type of inverse transformation of
the forecasts.

There are two basic approaches for determining forecasts in the original units of the series
being forecasted. The first procedure is to take the direct inverse transformation of the forecasts
produced in the transformed domain. For instance, suppose that the original z, series is

transformed using natural logarithms. From [3.4.30], this transformation is written as
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z® =1n(z, +¢)

where the constant ¢ is chosen just large enough to cause all of the entries in z to be non-
negative. For an average annual riverflow series, ¢ would be equal to zero. Using the tech-
niques of Section 8.2.4, one can obtain MMSE forecasts for z,m from origin ¢ for any desired
lead times. To get the forecasts in the untransformed domain, one can use the direct inverse log-
arithmic transformation written as

40 =expEM() - ¢) 8.2.32]

where £M(1), 1=1,2, ..., is the MMSE forecast of z™ in the transformed domain and 7,(/) is
the corresponding forecast in the untransformed domain. The symbol for a MMSE forecast is
not written above the forecast in the untransformed domain because usually the direct inverse
transformation of a MMSE forecast in the transformed domain does not produce a MMSE fore-
cast in the untransformed domain. When not using logarithms, the direct inverse Box-Cox
transformation of the MMSE forecasts in transformed domain is written in the untransformed
format as

() = [A,() + 11"~ where A =0 [8.2.33]

Granger and Newbold (1976) call this the naive method since forecasts calculated using [8.2.37]
or [8.2.38] are not the exact MMSE forecasts in the untransformed domain.

The second main approach for obtaining a forecast in the untransformed domain is to calcu-
late the exact MMSE forecast (Granger and Newbold, 1976). More specifically, the exact
MMSE forecast in the untransformed domain is determined from the fact that its transformed
value follows a Normal distribution with expected value z‘,o')(l) and variance V(/), where V(/) is

calculated using [8.2.13]. The expected value of the inverse Box-Cox transformed value is the
desired MMSE forecast. Thus, the MMSE forecast, 7,(/), is given by

. 1 _1 0=
40 = v l Qy+Dre 2 YO gy Ax, (8.2.34]
and
z',(z)=ei'm(m%m), A=0. (8.2.35]

The required integral in [8.2.34] may be determined numerically by Hermite polynomial integra-
tion. A

In practice, it is found that the MMSE forecasts are slightly smaller than the corresponding
naive forecasts. Also, studies with real data have shown that these minimum-mean-square-error
forecasts do perform better than the naive forecasts.
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8.2.8 Applications

Probability Limits

Models fitted to two annual time series are used for producing MMSE forecasts. In the
first application, forecasts are calculated for an ARMA model describing a stationary series. The
second forecasting example deals with forecasting using an ARIMA model fitted to a nonstation-
ary series.

When plotting MMSE forecasts one should always include probability limits so that the
variability in the forecasts can be properly appreciated. By using the formula for the variance of
the forecast error in [8.2.13] and assuming normality one can calculate confidence limits. For
example, the 50% probability limits for the I-step ahead MMSE forecast from origin ¢ is

LZh 0.674VV ()

where V(/) is the variance of the forecast error in [8.2.13]. When forecasting from origin ¢ up to
lead time L, one can calculate and plot the forecasts and 50% probability limits for
I=1.2,...,L. Because the random shock parameters in [8.2.13] attenuate to zero for a station-
ary ARMA model, the forecasting probability limits asymptotically approach constant values for
increasing /. On the other hand, the probability limits for forecasts from a nonstationary
ARIMA model diverge for increasing /.

ARMA(1,1) Forecasts

A time series consisting of 700 tree ring indices from 1263 to 1962 is given by Stokes et al.
(1973). The most appropriatt ARMA model to fit to this series is the ARMA(1,1) model written
in [3.4.15). Following the rules given in Section 8.2.4, one can calculate MMSE forecasts for
the calibrated tree ring model. Figure 8.2.2 displays the MMSE forecasts for lead times from 1
to 20. Notice that later observations in the series are plotted up to 1962. Starting from the origin
1962, MMSE forecasts are indicated from 1963 to 1982 along with their 50% and 90% probabil-
ity intervals.

An example that explains how to calculate MMSE forecasts for an ARMA(1,1) model is
given at the beginning of Section 8.2.5. Because the model is stationary, the forecasts for
increasing lead times in Figure 8.2.2 draw closer to the mean of the series and the probability
intervals run parallel to these forecasts. As would be expected, the best forecast for a future
observation that is far from the last observation is the mean level.

ARIMA(0,2,1) Forecasts

Figure 4.3.10 portrays a graph of the total annual electricity consumption in the U.S.A.
from 1920 to 1970 (United States Bureau of the Census, 1976). As explained in Section 4.3.3,
the best ARIMA model to fit to this series is an ARIMA(0,2,1) model with an estimated Box-
Cox transformation of A = 0.533. Following the approach of Section 8.2.4, MMSE forecasts are
first determined for the transformed domain where A =0.533. Subsequently, [8.2.35] is
employed for calculating the MMSE forecasts shown in Figure 8.2.3 in the untransformed
domain. An example of how to calculate MMSE forecasts by hand for an ARIMA(0,2,1) model
without a Box-Cox transformation is given in Section 8.2.5.
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Figure 8.2.2. MMSE forecasts along with their 50% and 95% probability
intervals for the ARMA(1,1) model fitted to the Douglas fir tree
ring indices from Navajo National Monument, Arizona, U.S.A.

Figure 8.2.3 shows the MMSE forecasts in the untransformed domain calculated using the
fitted model from 1971 to 1990 along with the 50% and 95% probability intervals. Because the
series is nonstationary, observe how the forecasts continue the upward trend that is followed by
the observations plotted on the left side of the figure. Moreover, the nonstationarity causes the
probability limits to diverge outwards from the forecasts for increasing lead times.

8.3 FORECASTING EXPERIMENTS

8.3.1 Overview

An important test of the adequacy of a time series model is its ability to forecast well. The
objective of this section is to employ forecasting experiments to demonstrate that ARMA models
forecast very well when compared to other types of time series models that can be fitted to
annual natural time series. This provides a sound reason for reccommending the use of ARMA
models by practitioners. In Sections 9.8 and 10.6, it is shown that ARMA models are also
ideally suited for simulating hydrological as well as other types of natural phenomena.
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Figure 8.2.3. MMSE forecasts along with their 50% and 90% confidence
intervals for the ARIMA(0,2,1) model fitted to the annual electricity
consumption in the U.S.A.

In practical applications, one step ahead forecasts are often required for effectively operat-
ing a large-scale engineering project such as a system of reservoirs. When a new observation
becomes available, the next one step ahead forecast can be made for deciding upon operating
rules in the subsequent time period. Furthermore, a theoretical advantage of one step ahead fore-
casts is that they are statistically independent. This property allows one to develop statistical
tests for determining if one model forecasts significantly better than another. In the next section,
statistical tests for comparing one step ahead forecasts are presented and following this the dif-
ferent kinds of models used in the forecasting experiments are described.

To test the forecasting abilities of several stationary nonseasonal time series models, split
sample experiments are performed in Section 8.3.4. Time series models are fitted to the first
portion of the data in each of fourteen time series and these models are then employed to gen-
erate one step ahead forecasts. The forecasts errors are then compared using several loss func-
tions to obtain ordinal rankings of the models. Statistical tests from Section 8.3.2 are then
employed to test for significant differences in the forecasting performances of the various
models. The forecasting results in the remaining part of Section 8.3 were originally presented by
Noakes (1984) and Noakes et al. (1988).
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8.3.2 Tests for Comparing Forecast Errors

Introduction

In the past, a great deal of effort has been devoted to the development of a wide variety of
forecasting procedures. These procedures range from naive models or intuitive guesses to
sophisticated techniques requiring skilled analysts and significant computer resources. At the
same time, relatively little research has been devoted to developing methods for evaluating the
relative accuracy of forecasts produced by the various forecasting methods.

In the forecasting experiments presented in Section 8.3.4, the forecast errors are examined
from two different perspectives. Firstly, the performances of the various models are judged
solely on the relative magnitudes of several criteria such as the mean squared error (MSE) or the
mean absolute percentage error (MAPE) of the forecast errors. These comparisons provide ordi-
nal rankings of the models but give no indication as to whether forecasts from a particular model
are significantly better than forecasts from another model in a statistical sense. In order to
address this question, a number of statistical tests are proposed to compare the performances of
the models in a pairwise fashion and also to test the overall performances of particular models.

Wilcoxon Signed Rank Test

In order to ascertain whether the forecasts from a particular model are statistically signifi-
cantly better than the forecasts generated by an alternative model, some form of statistical test
must be employed. A nonparametric Wilcoxon signed rank test for paired data is one test which
could be employed to test for significant differences in the forecasting ability of two procedures.
This test was originally developed by Wilcoxon (1945) and is described in Appendix A23.2 in
this book.

In this test, the differences in the squares of the forecast errors from two models for the
same series are compared. These differences are ranked in ascending order, without regard to
sign, and assigned ranks from one to the number of forecast errors available for comparison.
The sum of the ranks of all positive differences is then computed as T in [A23.2.3] and com-
pared to tabulated values in order to determine if the forecasts from a one model are significantly
better than the forecasts from a competing model.

The results of this test may also be employed to examine the performances of the models
across all of the series in the study. In this test, the probability associated with each T value is
calculated by examining the area in the tail of the distribution. Fisher (1970, p. 99) presents a
combined level of significance test such that

k
23 In(p;) ~ Xk 8.3.1]
i=1
where p; is the calculated probability associated with each T and k is the number of series con-
sidered in the test.
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The Likelihood Ratio and Correlation Tests

It is of interest to examine statistically the difference in MSE’s of the one step ahead pred-
ictor for two competing procedures in order to determine if the MSE’s are significantly different.
Thus, if e, and e, (¢t =12, ..., L) denote the L one step ahead forecast errors for models 1 and

2 respectively, the null hypothesis is
Ho:MSE(eu) = MSE(ez“) [8.3.2]

where MSE (e) = <e*> and <.> denotes expectation. The alternative hypothesis, H, is the nega-
tion of Hy,.
Granger and Newbold (1977, p. 281) have pointed out that a method originally developed

by Pitman (1939) could be used to ascertain if one model forecasts significantly better than
another. In this case, it is necessary to assume that (e; ,,e,,) are jointly normally distributed with

mean zero and are independent for successive values of ¢. In practice, the forecast errors may
not be expected to satisfy all of the assumptions but these assumptions are probably a sensible
first approximation. The assumptions of independence and zero mean seem quite reasonable if
the forecasts are based on a good statistical model. As shown by Noakes (1984) and Noakes et
al. (1988), a new test can be developed for the case in which the means are not known to be zero.
For Pitman’s test, let S, = e, -+e,, and D, = e, , — e,,. Then Pitman’s test is equivalent to testing
if the correlation, r between S, and D, is significantly different from zero. Thus, provided
L > 25, H, is significant at the five percent level if Ir| > 1.96NL. Previously, Pitman’s test has
often been used for testing the equality of variances of paired samples (Snedecor and Cochran,
1980, p. 190). It was pointed out in Lehmann (1959, p. 208, problem 33) that in this situation
the test is unbiased and uniformly most powerful.

If the means of e, and e,, are not both known to be zero, a likelihood ratio test can be

employed. Let (e} ,,e5,) be jointly normal with means (j1,}1;) and covariance matrix

2
Oj On2

012 022

where c,-z is the variance of the ith series and o;; is the covariance between i and j. Then the log
likelihood for (1;,115,0%,6%,0,9) is given by Rao (1973, p. 448) as

logL () = Slog!(@)! - 7 EX0VIS; + LG = B = ) [8.33]

where
- 1 L
W=7 Xeis

=1

and
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L - -
Si=LY (e, —n)ej, — 1)
1=1

and (6%) = (o;))".
If Ly is the maximized log likelihood assuming the null hypothesis is true and L; is the

maximized log likelihood assuming the alternative hypothesis is true, then the likelihood ratio
statistic is given by

R=2(L,-Lgy) [8.3.4]
When H, is true, it can be shown that R = x? (Rao, 1973).

If it is assumed that the means of the two error series are zero, then ignoring constants, the
maximized log likelihoods are

L A A A
L= —-i-log(ofc—} -6%) [8.3.5]

and

Ly= -%log(&z -6%) [8.3.6]

where 6',2 and &22 are the estimated forecast error variances for the two competing models, 612 is
the estimated covariance of the estimated forecast errors and
., Gi4G;
)
The resulting likelihood ratio is then calculated using [8.3.4].

Equation [8.3.3] is easily maximized analytically when there are no restrictions on the
parameters and so the maximized log likelihood is obtained. Under H

[8.3.7]

ol +u}=cf+u? (8.3.8]

and the log likelihood may be maximized numerically over (ul,uz,clz,c%,clz) with
022 =0‘12+|.112 —uzz. The conjugate direction minimization algorithm of Powell (1964) with a
penalty function to ensure that 67>0 is recommended. Thus, the likelihood ratio test statistic, R,

which is # under H, is obtained from [8.3.4].

8.3.3 Forecasting Models

Introduction

Stationary nonseasonal time series models are of particular interest to hydrologists since
they often wish to model annual time series that are approximately stationary over a specified
time period and subsequently use the fitted models for forecasting and simulation. Furthermore,
stationary nonseasonal models form the foundations for seasonal (see Part VI) models as well as
other kinds of models (see Parts VII to IX).
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When fitting a nonseasonal stationary model, or for that matter any type of stochastic
model, to a given data set, one can follow the identification, estimation and diagnostic check
stages of model construction described in Part III as well as elsewhere in the book. Figure III.1
depicts this systems design approach to model building while Figure 6.3.1 shows how the AIC
can enhance model construction. All of the different kinds of models employed in the forecast-
ing studies are carefully developed following this sensible approach to model building.

The five families of stationary nonseasonal models used in the study are as follows:

1. ARMA (see Chapter 3, Part III, and Section 8.2 for definition, model building and forecast-
ing, respectively),
FGN (Fractional Gaussian Noise, see Section 10.4.5),

3. FARMA (fractional ARMA, see Chapter 11) and FDIFF (fractioning differencing, special
case of FARMA models in Chapter 11),

4. Markov (see this section),
5. Nonparametric (see this section).

Following the definition in Section 2.5.3, the second and third models have long memory
while the remaining ones possess short memory. Additionally, the first three types of models are
described at other indicated sections in this book while the last two are now outlined.

Markov and Nonparametric Regression Models

A number of researchers have proposed various nonparametric models for modelling and
forecasting hydrological time series (see for example Denny et al. (1974) and Yakowitz (1973,
1976, 1979a,b, 1985a,b)). These models offer an attractive alternative to the ARMA as well as
long memory FGN and FARMA models. The flexibility and modest computational require-
ments associated with nonparametric models are certainly two important considerations in model
selection. As well, probability statements can be made conceming forecasted events. In light of
these attractive characteristics, two nonparametric models are considered in this forecasting
study.

A First Order Markov Model: The underlying concepts associated with stationary Markov
chains are well known and explained in many standard statistical and operational research books.
The first model considered is a first order Markov process defined as

Pr(Xp 1X, X1, -+ ) = Pr(Xp, 1X,) (8.3.9]

Although higher order processes may be required to adequately model the data, the first order
approximation is a reasonable first step.

The time series data are first arranged in ascending order. If there are n data, m = integer
(‘/; ) states are selected at equal intervals. For example, if n = 100, then 10 states would be
selected. The first 10 data would then be assigned to the first state and the state mean would be
the arithmetic mean of these elements. This procedure is repeated until the m state means are
calculated.

Based upon this arbitrary selection of states and estimated state means, each datum is reas-
signed to a specific state according to the Euclidean distance between the observation and the
state means. That s, X; is in state v if
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IX;—c,1SIX;—c;|, 1Sksm [8.3.10]

where the ¢;’s are the state means. A check is then made to ensure that at least n'? data are
associated with each state.

Quasi state transition probabilities are then estimated using the original time series and the
selected states. Forecasts can then be made using these transition probabilities and the state
means.

A Nonparametric Model: Yakowitz (1985a,b) employs nonparametric regression techniques to
develop a more comprehensive and flexible nonparametric model. Unlike the simple first order
Markov model outlined above, this nonparametric model allows for higher order dependence. A
method for forecasting using this new model is also presented by Yakowitz (1985a,b).

Kemel nonparametric estimators of the density by Rosenblatt (1956, 1971) as well as ker-
nel nonparametric regression estimators introduced by Watson (1964) have been extensively
investigated and have also found practical application in fields such as pattern recognition. They
can be briefly described as follows. Suppose that there are n independent observations, Y;,
i=1,2,...,n with common density f(y). Then the estimate of f(y) based on the kernel k(*) is
given by
n |y-Y;
2k|—

i=1 n

[8.3.11]

YR |
for=m

where a,, is called a smoothing parameter and k(*) is generally taken to be a probability density

function such as the standard normal. The choice of the kernel, k(*), is not as crucial as is the
choice of the parameter o, to obtain a good estimate.

For the regression case, suppose that one observes pairs of independent and identically dis-
tributed variables (¥;,X;) and that one wishes to estimate the expectation of g(¥) conditional on
the value X =x, where the pair (¥,X) has the same distribution as the observations (Y;X;),

i=12,...,n,and g() is a real function. The estimate of E[g(¥)IX =x] is given by (Watson,
1964)

n -X:
T g (Yok [" ‘ ]
o,

i=1

Eg®)IX =x]= (8.3.12]

n

Yk

i=1

X—X"
a,

The extension of these estimators to the case where the observations form a dependent but
stationary sequence has been accomplished by several authors (see, for example, Yakowitz
(1985a,b), Collomb (1983, 1984), and Bosg (1983)). Suppose that Y, is a time series process.

Then [8.3.11] is an estimate of the marginal density function and if X; =Y;_, then [8.3.12] is an
estimate of E[g(Y,)Y,_;=y]. The main condition for the use of the estimators [8.3.11] and
[8.3.12] when ¥, is a stationary process is that they satisfy some kind of asymptotic indepen-

dence such as geometric ergodicity (Yakowitz, 1985a). Note that if the process is Markov,
E[g(¥,1Y,_, =y)] is the optimal estimate of g(Y,) given the whole past under a least squares cri-
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terion. The main advantage of the estimators is the great flexibility that they provide to model
nonlinearities when the nature of the departure from linearity is not obvious, as is the case in
hydrological time series.

The higher order extensions of [8.3.11] and [8.3.12] are obvious and, hence, are not
presented here. The choice of the parameter, @, is critical to obtain a balance between reduction

of bias and reduction of variance of the estimates. The following procedure is employed to
determine a,, for the models. For each point in the training set, one estimates the conditional

regression function based on the rest of the training samples and obtains the sum of squares of
the difference between the observed value and the estimate. This procedure is repeated for a
range of values for a,, within which the absolute minimum of the sum of squares is found. The

value of a,, which yields the minimum sum of squares is selected.

8.3.4 Forecasting Study

Introduction

To compare the forecasting performance of the various nonseasonal models mentioned in
Section 8.3.3, two split sample experiments are performed. Annual river flow, tree ring indices,
mud varve and annual temperature series are considered in these studies. Nonseasonal models
are fitted to the first parts of the series and these models are then employed to forecast the
remaining data.

Forecasting can, in fact, be used as a means of model discrimination among competing
models. For a given type of data such as hydrological time series, select the class of models
which forecast the best according to certain criteria. In economics, authors such as Granger and
Newbold (1977) and Makridakis and Hibon (1979) have carried out extensive forecasting experi-
ments to determine the best kinds of models to use with nonseasonal and seasonal data.
Although water resources engineers have recognized the importance of forecasting for a long
time, very few large forecasting studies have been executed. Consequently, the forecasting study
presented in this section as well as by Noakes et al. (1988) and Noakes (1984) constitutes one of
the first extensive forecasting studies in water resources. Forecasting experiments with scasonal
and transfer function-noise models are given in Chapters 15 and 18, respectively.

A comprehensive approach for carrying out forecasting experiments is depicted in Figure
8.3.1. In the forecasting study reported here none of the series are first transformed before fitting
the five models listed in Section 8.3.3 to the first part of the series. Furthermore, when forecast-
ing the last part of the series, one step ahead forecasts are determined. As shown below both the
ARMA and nonparametric regression model of Yakowitz forecast better than the other three
kinds of models listed in the previous section. Finally, as demonstrated by the simulation exper-
iments carried out in Section 10.6, ARMA models are capable of statistically preserving impor-
tant historical statistics of annual geophysical time series.

First Forecasting Experiment

The annual data sets considered in the first study are listed in Table 8.3.1. The riverflow
and temperature data are obtained from Yevjevich (1963) and Manley (1953), respectively. The
most appropriate type of ARMA models to fit to the last two series in Table 8.3.1 are given in
Table 5.4.1.
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Figure 8.3.1. Forecasting experiments.
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Because of the computational effort required to forecast using the FGN and FDIFF models,
only series with less than 150 data are considered in the first study. The general procedure is to
truncate the data sets by omitting the last 30 years of data. Models are then calibrated using the
first portion of the data. These models are then employed to forecast one step ahead MMSE
forecasts (sec Section 8.2) of the last 30 years of data. For a given model and time series, one
can calculate the forecasting error for each of the 30 one step ahead forecasts. By summing the
squared forecast errors, dividing by 30 and then taking the square root of this, one obtains the
root mean square error (RMSE) for the forecasts.

The RMSE’s for the 30 one step ahead MMSE forecasts for each of the models entertained
are given in Table 8.3.2. A summary of these results is presented in Table 8.3.3. The rank sum
is simply the sum of the product of the rank and the associated table entry. Thus, models with
low rank sums forecast better overall than models with higher rank sums. In this study, the non-
parametric model proposed by Yakowitz (1985a,b) forecasts well for the time series considered
while the FDIFF model is the worst model.

Pitman’s test (see Section 8.3.2) is employed to test for statistically significant differences
in the RMSE’s of the forecasts. The five competing procedures are compared in a pairwise

fashion. The correlation values, r, are presented in Table 8.3.4. For these r values, the 95%
1.96

confidence limits are calculated to be 330 =10.358. The ARMA, Markov, FGN and non-
parametric forecasts are all significantly better at the 5% significance level of + 0.358 than the
FDIFF forecasts for the series Ogden. The nonparametric forecasts are also significantly (0.05
level) better than the FGN forecasts for the series Ogden.

Second Forecasting Experiment

The data sets employed in the second study are listed in Table 8.3.5. Except for the Snake
time series, the tree ring indices are from Stokes et al. (1973). The Snake tree ring indices are
from Schulman (1956). The most appropriate type of ARMA model to fit to the Navajo series is
listed in Table 5.4.1 as being ARMA(1,1).

The RMSE’s of the ARMA, Markov, nonparametric and FARMA forecasts are presented
in Table 8.3.6 while a summary of these results is given in Table 8.3.7. In all cases, the Markov
model has the largest RMSE of the four models considered in this study. The ARMA and non-
parametric models are essentially equal in performance and are both slightly better than the
FARMA model. '

The likelihood ratio test described in Section 8.3.2 is employed to test for significant differ-
ences between the ARMA and Markov forecast errors. In this case, the test statistic, R, is calcu-
lated for both instances, where the means of the forecast errors are assumed to be zero (R1) and
non-zero (R2). The calculated values are presented in Table 8.3.8. There is virtually no differ-
ence between R1 and R2 so cither value may be employed in the test. In this study, the ARMA
forecasts are significantly (0.05 level) better than the Markov forecasts for the two series
Eaglecol and Lakeview. Since the RMSE’s of the ARMA models are always less than the
RMSE'’s of the Markov models, the Markov forecasts could never be significantly better than the
ARMA forecasts.
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Table 8.3.1. Annual riverflow and temperature data sets.
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Code names  River or data types  Locations Periods n
Gota Gota Sjotorp-Vanersburg, Sweden  1807-1957 150
Mstouis Mississippi St. Louis, Missouri 1861-1957 9%
Neumunas Neumunas Smalininkai, USSR 1811-1943 132
Ogden St. Lawrence Ogdensburg, New York 1860-1957 97
Temp Temperature Central England 1802-1951 150
Table 8.3.2. RMSE’s for the one step ahead forecasts
for the annual riverflow and temperature series.

Codenames ARMA  FGN FDIFF Markov  Nonparametric

Gota 87.58 95.57 97.66 97.45 92.86

Mstouis 1508.03 1543.56 1574.85 1625.90 1560.00

Neumunas 118.30 115.80 116.12 114.70 115.40

Ogden 473.89 630.55 875.91 450.85 426.90

Temp 1.21 1.17¢ 1.17 1.13 0.95

% Indicates smaller of tied values.

Table 8.3.3. Distribution of the RMSE’s for 30 forecasts for the
annual riverflow and temperature series.

Ranks Number of times each model has indicated rank
ARMA FGN FDIFF Markov Nonparametric

1 2 0 0 1 2
2 0 1 0 2 2
3 1 3 0 0 1
4 0 1 3 1 0
5 2 0 2 1 0
Rank sum 15 15 22 14 9

Pitman’s test is employed to compare the ARMA, nonparametric and FARMA forecasts in
a pairwise fashion. The calculated correlations, r, between S, and D, are presented in Table
8.3.9. The only significant value (0.05 level) is for the series Lakeview when the ARMA and
nonparametric forecasts are compared. Thus, the ARMA forecasts are significantly better than
the nonparametric forecasts for this series at the 5% level. In all other cases, there is no statisti-
cally significant difference in the forecasts produced by the various models.
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Table 8.3.4. Pitman’s correlations, r, for pairwise
comparisons of 5 annual models for each of the 5 series.

Gota Mstouis Neumunas Ogden Temp

AvsB 0.170 -0.112 0.125 -0.347 0.112
AvsC 0223 -0.171 0.089 -0.593  0.103
AvsD 0302 -0.317 0.102 0.076  0.165
AvsE 0277 -0.193 0.142 0.160 0.241
BvsC -0.142 -0.275 -0.049 -0.828 -0.092
BvsD -0.060 -0.209 0.040 0335 0.142
BvsE  0.063 -0.123 0.041 0453  0.209
CvsD 0.008 -0.114 0.053 0.582 0.143
CvsE  0.123 0.083 0.096 0663 0.212
DvsE 0.178 0.167 -0.029 0.081  0.180

*Models: ARMA = A, FGN = B, FDIFF = C, Markov = D, Nonparametric = E.

Discussion

Based upon the result of the forecasting studies, the use of FGN and FDIFF models for
forecasting annual hydrological and tree ring time series is not reccommended. The two models
which should be given serious consideration are the nonseasonal ARMA model and the non-
parametric model presented by Yakowitz (1985a). Both forecast equally well for the series con-
sidered in the studies presented in this section. Moreover, Noakes (1989) demonstrates that the
nonparametric model works well for generating inseason forecasts of salmon returns.

The performance of the various models is evaluated using the RMSE’s of the forecasts and
some of the statistical tests outlined in Section 8.3.2. This assumes that identical costs are
assigned to both negative and positive forecast errors of the same magnitude. One recognizes
that an asymmetric loss function may be more appropriate in certain instances, particularly in
hydrological applications. For instance, different costs may be associated with inaccurate fore-
casts that result in either a flood or a drought. However, the RMSE criterion is employed since
the procedures used for estimating the model parameters involve minimizing the sum of squared
error terms.  Presumably, if the type of loss function to be used to evaluate the forecast perfor-
mance is known a priori, then the parameter estimation procedures could be adapted to minimize
the expected loss. Without prior knowledge of the type of loss function, the RMSE criterion
would appear to be a reasonable compromise (Noakes et al., 1985, 1988).

8.4 CONCLUSIONS

By following the model construction procedure of Part III, one can develop a parsimonious
ARMA or other type of model for describing a given time series. As explained in Section 8.2,
one can then use this model to produce MMSE forecasts of future observations. If one wishes to
compare the forecasting accuracy of a range of models for a specified kind of time series, one
can use the general model discrimination procedure outlined in Figure 8.3.1. By using tests from
Section 8.3.2, one can ascertain if one model forecasts one step ahead forecasts significantly
better than another. The results of the forecasting experiments of Section 8.3 demonstrate that
ARMA models forecast annual hydrological and tree ring series just as well or better than any of
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Table 8.3.5. Tree ring indices data.

Code names  Types of Trees  Locations Periods n

Bigcone Bigcone spruce  Southern California 1458-1966 509
Dell Limber pine Dell, Montana 1311-1965 655
Eaglecol Douglas fir Eagle, Colorado 1107-1964 858
Exshaw Douglas fir Exshaw, Alberta 1460-1965 506
Lakeview Ponderosa pine  Lakeview, Oregon 1421-1964 544
Naramata Ponderosa pine  Naramata, B.C. 1415-1965 515
Navajo Douglas fir Navajo National 1263-1962 700

Monument, Belatakin, Arizona

Ninemile Douglas fir Ninemile Canyon, Utah 1194-1964 771
Snake Douglas fir Snake River Basin 1282-1950 669

Table 8.3.6. RMSE’s of the last half of the tree ring series forecasted.

Code names ARMA  Markov  Nonparametric = FARMA
Bigcone 38.52 39.01 38.33 38.83
Dell 36.83 37.73 3741 37.16
Eaglecol 27.73 29.00 28.11 27.60
Exshaw 32.70 33.58 32.51 32.77
Lakeview 16.75 17.78 17.11 16.86
Naramata 29.98 30.75 30.16 30.18
Navajo 4427 44.46 44.17 44.39
Ninemile 38.18 38.53 37.93 37.78
Snake 21.87 22.43 21.74 21.78

Table 8.3.7. Distribution of the RMSE’s for the ARMA, Markov,
Nonparametric and FARMA models when the last half of the
tree ring series forecasted.

Ranks Number of times each model has indicated rank
ARMA Markov Nonparametric FARMA

1 3 0 4 2

2 4 0 2 3

3 2 0 3 4

4 0 9 0 0

Rank sum 17 36 17 20
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Table 8.3.8. ARMA vs Markov likelihood ratio statistics for
the last half of the tree ring series forecasted.

% The means of the forecast errors are assumed to be zero.

Code names R14  R2’

Bigcone 0.587 0.587
Dell 2.160 2.157
Eaglecol 6.667 6.665
Exshaw 3.036 3.032
Lakeview 9323 9.324
Naramata 2056 2.053
Navajo 0.176 0.176
Ninemile 0.694 0.691
Snake 2381 2.381

b The means of the forecast errors are not assumed to be zero.

Table 8.3.9. Pairwise comparison of the ARMA, Nonparametric and

FARMA models using Pitman’s test and forecasting the last

half of the tree ring series.

Code names ARMA vs ARMA vs FARMA vs

Nonparametric = FARMA Nonparametric
Bigcone -3.79E-2 -6.49E-3 -1.52E-2
Dell 8.83E-2 2.92E-4 8.76E-2
Eaglecol 3.43E-2 4.37E-2 4.41E-2
Exshaw -7.95E-2 -1.57E-2 -1.57E-2
Lakeview 1.21E-1° -8.88E-3 5.61E-2
Naramata 7.94E-2 -1.09E-2 -1.25E-2
Navajo -1.83E-2 -2.14E-3 -2.93E-2
Ninemile -3.89E-2 1.83E-2 2.23E-2
Snake -3.55E-2 5.36E-3 1.68E-3

4 Significant at the 5% level.

Chapter 8

its competitors. For this and many other reasons, ARMA models are highly recommended for

use in practical applications.

When forecasting, it is important to use models that provide an adequate fit to the data
using as few model parameters as possible. For certain types of models, Ledolter and Abraham
(1981) demonstrate that if a nonparsimonious model is employed for forecasting, the variance of
the forecast errors increases. This problem may not be serious for large samples but for a small
number of observations the effect of overfitting may not be negligible.

When using the techniques of Section 8.2 to calculate MMSE forecasts, one assumes that
the model parameters are known exactly. However, in practice one must estimate the model
parameters from the data. The uncertainty contained in the parameter estimates could be
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considered when forecasting. Several authors (Akaike, 1970; Bloomfield, 1972; Bhansali, 1974;
Box and Jenkins, 1976, p. 267; Baillie, 1979) present results for the variance of the forecast error
when fitted parameters are used in various time scries models under the unrealistic assumption
that a forecasted data point is independent of the data employed for parameter estimation.
Extending earlier work of Phillips (1979), Kheoh (1986) plus Kheoh and McLeod (1989)
develop an expression for the /-step ahead forecast error of an AR(1) model for which the effect
on the variance of the forecast error when the parameter is estimated from the same data upon
which the forecast is based is taken into account. In particular, the effect of estimating the
parameter is to cause a reduction in the variance of the forecast error.

Forecasting procedures similar to those developed for nonseasonal models, can also be
extended for use with seasonal and other types of models. In Chapter 15, for example, MMSE
forecasts are calculated and compared for three different types of seasonal models. Forecasting
results for transfer-function noise models having one output series and multiple inputs, are
presented in Chapter 18.

When one can select a range of models to fit to a time series, one may wish to select the
model that forecasts most accurately. An alternative approach is to combine the forecasts from
two or more models in accordance with their relative performances. In this way, one may be
able to take advantage of the forecasting strengths of each of the models. In Section 15.5.2,
specific techniques are developed for combining forecasts in an optimal manner from various
models in order to attempt to improve the overall accuracy of the resulting forecasts. In addi-
tion, two case studies are presented in Sections 15.5.2 and 18.4.2 for examining the utility of
combining forecasts. Similar combination techniques could, of course, be used with nonseasonal
models.

PROBLEMS

8.1 For an ARMA(2,1) model, calculate MMSE forecasts up to a lead time of 10.
8.2 Determine MMSE forecasts for an ARIMA(1,2,1) model up to a lead time of 10.

8.3 As explained in Section 4.3.3, the most appropriate model to fit to the U.S. electrical
demand series is an ARIMA(0,2,1) model with A =0.5. The last two data points in the
transformed series are z™ =2561 and z,_; =2491 while d, =-13.32, 62=636.7 and

6, =0.9563. Calculate by hand the MMSE forecasts along with their 50% probability lim-
its up to five steps ahead from the last observation. Compare your results to Figure 8.2.3.

8.4 Suppose that an ARIMA(0,1,1) model is written as
VZ = a, - 0.40,_’

Generate forecasts for lead times / = 1,2,3 from origin ¢ when the model is written as given
above, in random shock form and inverted form.
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8.5 Suppose that the best model to fit to a time series represented by 2, t =1,2, ... ,n is
(1-B)inz, = (1 - ,B)q,

From origin time ¢ calculate the MMSE forecasts for/ =1,2, . . ., 6 in both the transformed
and untransformed domains.

8.6 Fit the most appropriate ARMA or ARIMA model to a series of your choice. Plot forecasts
along with 50% probability limits from the last data point up to lead time / = 20.

8.7 Take a yearly series having at least 70 observations and fit an ARMA or ARIMA model to
the reduced version of this series that omits the last 20 data points. Using the calibrated
model, calculate one step ahead forecasts and plot them against the known observations.
Using this graph and other appropriate calculations, comment upon how well your model
forecasts.

8.8 On December 13, 1978, Makridakis and Hibon (1979) read their paper on an empirical
investigation of forecasting accuracy before the Royal Statistical Society in London. Sum-
marize some of the main empirical findings of these authors. At the end of Makridakis and
Hibons’ paper, comments by attendees are presented. Mention some of the more interest-
ing criticisms made about their paper and comment upon how well the authors defended
themselves.

8.9 Explain how parameter uncertainty can be considered when forecasting with ARMA
models.

8.10 Why can a nonparsimonious model increase the variance of the forecast errors of MMSE
forecasts generated by an ARMA model?
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