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Abstract

This paper discusses advantages and shortcomings of the S environment for multivariable geostatistics, in particular

when extended with the gstat package, an extension package for the S environments (R, S-Plus). The gstat S

package provides multivariable geostatistical modelling, prediction and simulation, as well as several visualisation

functions. In particular, it makes the calculation, simultaneous fitting, and visualisation of a large number of direct and

cross (residual) variograms very easy. Gstat was started 10 years ago and was released under the GPL in 1996;

gstat.org was started in 1998. Gstat was not initially written for teaching purposes, but for research purposes,

emphasising flexibility, scalability and portability. It can deal with a large number of practical issues in geostatistics,

including change of support (block kriging), simple/ordinary/universal (co)kriging, fast local neighbourhood

selection, flexible trend modelling, variables with different sampling configurations, and efficient simulation of

large spatially correlated random fields, indicator kriging and simulation, and (directional) variogram and cross

variogram modelling. The formula/models interface of the S language is used to define multivariable geostatistical

models. This paper introduces the gstat S package, and discusses a number of design and implementation issues.

It also draws attention to a number of papers on integration of spatial statistics software, GIS and the S environment

that were presented on the spatial statistics workshop and sessions during the conference Distributed Statistical

Computing 2003.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

S is a high-level language for data analysis and

graphics. Currently, it has one commercial implementa-

tion, S-Plus (S-Plus home page: http://www.insightful.

com/), Becker et al., 1988; Chambers, 1998 and an open-

source implementation, called ‘‘R’’ (Ihaka and Gentle-

man, 1996; Bivand, 2000; R home page: http://www.

r-project.org/Comprehensive R archive network: http://

cran.r-project.org/ and mirrors). Geostatistics (Isaaks
lable from server at http://www.iamg.org/

x.htm.

0-2533051; fax: +31-30-2531145.

ess: e.pebesma@geog.uu.nl (E.J. Pebesma).

e front matter r 2004 Elsevier Ltd. All rights reserve

geo.2004.03.012
and Srivastava, 1989) is not a new subject to the S

community, and several S packages or libraries are

available. Some of these were developed for teaching

purposes, and some have very advanced functionality.

Still, all of the currently available S packages lack

features that are commonly used in applied geostatistics,

notably block kriging, kriging in a local neighbourhood,

multivariable variogram modelling, cokriging and cosi-

mulation. This paper introduces that gstat S package,

which fills this gap.

Gstat (Pebesma and Wesseling, 1998; gstat home

page: http://www.gstat.org/) used to be a stand-alone

computer program that provides all these features, but

with no graphics capabilities of its own: it has an

interactive user interface for variogram modelling, but
d.

http://www.insightful.com/
http://www.insightful.com/
http://www.r-project.org/
http://www.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://www.gstat.org/
http://www.iamg.org/CGEditor/index.htm.
http://www.iamg.org/CGEditor/index.htm.
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uses the gnuplot graphics program for visualising

variograms. The gstat stand-alone program works well

with several GIS systems, as it can read and write point

and/or grid map data to and from more than 20 GIS

formats. Graphical user interfaces that use gstat as a

back-end have been developed within PCRaster, Idrisi32

and ArcGIS environments.

The S (R/S-Plus) environment has much to offer for

multivariable geostatistical analysis. The Trellis/Lattice

graphics functions allow visualising high-dimensional

data by creating structured, composite graphs. The gstat

S package now offers the major geostatistical function-

ality of the gstat stand-alone program to S users,

provides new functions for fast modelling of arbitrarily

many cross and direct variograms, and provides a

number of useful functions for plotting spatial point

data, multiple grid maps, and multivariable or direc-

tional variograms. In the following, ‘‘gstat’’ will refer to

‘‘the gstat S package’’.
2. DSC2003 and spatial statistics in S

During the conference distributed statistical computing

2003 (DSC2003) held in Vienna on March 19–22, 2003,

a 1-day workshop and three paper sessions were devoted

to spatial statistics, and the handling of spatial data in S

environments, R in particular. The overview given by

Bivand (2003) shows that at least six other R packages

deal with geostatistics; three packages deal with point

pattern analysis; one package deals with lattice (poly-

gon) data and 10 packages with interfacing R to GIS

formats (e.g. Bivand, 2000), of which one uses the

generic spatial data abstraction layer GDAL (Gdal

home page: http://www.remotesensing.org/gdal/). All of

these packages share a need for S data structures that

are aware of their spatial topology. An initiative for a

public mailing list and a CVS repository aimed at

dealing with spatial data and spatial statistics in S was

started as a result of this workshop.
3. Multivariable geostatistics

Multivariable geostatistics involves the simultaneous

prediction (or simulation) of multiple variables based on

single or multiple predictors, as well as the modelling of

all necessary direct and cross variograms. This section is

meant to introduce notation for the multivariable

geostatistical model as implemented in gstat, as briefly

as possible, but necessary for the explanation of the

functionality of the gstat package for S. Further theory

is also found in various papers and text books, e.g.

Cressie (1993), Ver Hoef and Cressie (1993) and

Wackernagel (1998).
3.1. Univariable prediction

Let Z(s) be a vector of length n with observations

Z(s1),y,Z(sn) observed at spatial locations si arbitrarily

spread in R1, R2 or R3. The variability in observations

Z(s) is usually thought of as consisting of a trend

and a residual, and the trend is modelled as a linear

function

ZðsÞ ¼
Xp

j¼0

XjðsÞbj þ eðsÞ ¼ Xbþ eðsÞ ð1Þ

with Xj(s), j>0, the p explanatory or predictor variables,

with b0 usually being an intercept and X0(s)�1, with
b the vector with unknown regression coefficients,

and with e(s) the residual vector. For spatial data,

residuals are usually spatially correlated, and given the

covariance matrix V of e(s), best linear unbiased

prediction (kriging) of Z(s0) at an unobserved location

s0 is obtained by

Ẑðs0Þ ¼ xðs0Þ #bþ v0V�1ðZðsÞ � X #bÞ ð2Þ

with x(s0) the row of X that would have corre-

sponded to Z(s0), with #b ¼ ðX 0V�1X Þ�1X 0V�1ZðsÞ the
generalised least-squares estimate of the trend coeffi-

cients where X0 denotes the transpose of X, and

with v ¼ ðCovðZðs0Þ;Zðs1ÞÞ;y;CovðZðs0Þ;ZðsnÞÞÞ
0 where

Cov( � , � ) denotes covariance.
The corresponding prediction error variance is

s2ðs0Þ ¼ s20 � v0V�1v þ ðxðs0Þ � v0V�1X ÞðX 0V�1X Þ�1

	 ðxðs0Þ � v0V�1X Þ0; ð3Þ

where s20 is Var(Z(s0)).

3.2. Multivariable prediction

Multivariable prediction involves the joint predic-

tion of multiple, both spatially and cross-variable

correlated variables. Consider m distinct variables,

and let {Zi(s), Xi bi, ei(s), xi(s0), vi, Vi} correspond

to {Z(s), X, b, e(s), x(s0), v, V} of the ith variable.

Next, let Z(s)=(Z1(s)
0,y,Zm(s)

0)0, B=(b10,y,bm0)0,

e(s)=(e1(s)
0,y,em(s)

0)0,

X ¼

X1 0 y 0

0 X2 y 0

^ ^ & ^

0 0 y Xm

2
6664

3
7775;

xðs0Þ ¼

x1ðs0Þ 0 y 0

0 x2ðs0Þ y 0

^ ^ & ^

0 0 y xmðs0Þ

2
6664

3
7775

http://www.remotesensing.org/gdal/
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with 0 conforming zero matrices, and

v ¼

v1;1 v1;2 y v1;m

v2;1 v2;2 y v2;m

^ ^ & ^

vm;1 vm;2 y vm;m

2
6664

3
7775;

V ¼

V1;1 V1;2 y V1;m

V2;1 V2;2 y V2;m

^ ^ & ^

Vm;1 Vm;2 y Vm;m

2
6664

3
7775;

where element i of vk;l is Cov(Zk(si), Zl(s0)), and where

element (i,j) of Vk,l is Cov(Zk(si),Zl (sj)).

The multivariable prediction equations equal Eqs. (2)

and (3) when all matrices are substituted by their

multivariable forms (see also Ver Hoef and Cressie,

1993), and when in (3) s20 is substituted by S with

Cov(Zi(s0), Zj(s0)) in its (i,j)th element. Note that (3) is

now a prediction error covariance matrix.

The implementation of this model in gstat does not

pose restrictions to the number of variables m, and each

variable can have its own set of predictor variables,

number of observations, and unique observation loca-

tions. Covariances are specified by ways of variogram

functions and cross variogram functions.

3.3. Extensions

Gstat provides a number of highly useful extensions

to the straightforward application of Eqs. (2) and (3):

Kriging in a local neighbourhood: Instead of using all

data, only data in a local neighbourhood around s0 are

used for predicting Z(s0), where neighbourhood can be

defined for each variable in terms of distance to s0 or in

terms of the number of nearest observations. There are

at least two good reasons for restricting kriging to a

local neighbourhood. First, the system V�1X becomes

prohibitively large when data are abundant ðnb103Þ or
when sequential simulation is used to simulate large

fields. Second, the assumption of spatially constant

trend coefficients in Eq. (1) may need to be relaxed to

apply only to local neighbourhoods. Gstat takes care of

cases where one or more of the variables are missing in a

local neighbourhood, defined by a distance criterium.

An efficient, scalable quadtree-based neighbourhood

algorithm (Hjaltason and Samet, 1995; Quadtree demos:

http://www.cs.umd.edu/Bbrabec/quadtree/index.html) is

used to select data in a local neighbourhood.

Block kriging or simulation: Instead of predicting Z(s0)

(point kriging), block kriging (Journel and Huijbregts,

1978) aims at predicting the average of Z( � ) over

a larger support (area or volume) B0 : ZðB0Þ ¼
jB0j�1

R
B0

ZðsÞ ds; with |B0| the area (or volume) of B0.

Blocks B0 may be rectangular or irregular (specified by a

number of points discretising B0). Although the interest
was originally limited to mining applications, block

kriging is now widely used in environmental applications

when spatially aggregated predictions for larger areas

are required, or when point support predictions are too

inaccurate.

Simple and ordinary kriging: In certain cases, the trend

coefficients can be assumed known, e.g. when an other

mechanism, such as an external deterministic model

takes care of estimating them. In this case, called simple

kriging, b is substituted for #b in Eq. (2), and the third

term on the right-hand side of Eq. (3) disappears.

Another simplified version of universal kriging is

ordinary kriging, which contains only an intercept

(p=0).

Shared trend coefficients and colocated cokriging:

When two variables measure the same phenomenon

with different devices, they will show different varia-

bility, but share a common mean value. In this case, they

should be treated as two variables, having a common

mean (or trend) coefficient(s). Gstat allows the sharing

of any two (or more) coefficients across pairs of

variables. The simplest case of this corresponds to

standardised ordinary cokriging with one single unbia-

sedness constraint, or colocated ordinary cokriging

(Goovaerts, 1997; note that this is different from

Wackernagel’s (1998) interpretation of colocated ordin-

ary cokriging). Simple colocated cokriging is a special

case of simple cokriging with a neighbourhood size of

one for secondary variables.

Generalised linear models: Regression models for

count data or for presence/absense (1/0) data are usually

dealt with by generalised linear models. Gotway and

Stroup (1997) extended these models to the case where

residuals are spatially correlated in which case residuals

have mean-related non-stationary covariances. Predic-

tion of residuals for several variance functions are

implemented in gstat.

Debugging results: Near-singularities may occur for a

number of reasons, such as near-zero distances between

data points, or linear dependencies among columns of a

(locally formed) matrix X. Gstat has many debug modes

for obtaining information on all aspects of the systems,

and can verify that estimated condition numbers of V

and X0V�1X stay below a threshold.

3.4. Sequential simulation

Sequential simulation (Johnson, 1987; Gómez-Her-

nández and Journel, 1993) involves the generation of

many independent realisations of a Gaussian (or in case

of indicator simulation, binary) random field, condi-

tional to observed data, that honour the variogram

(covariance) of the random field. Gstat uses the

sequential simulation algorithm because it is versatile,

efficient, and suitable for large to very large fields

(number of nodes b106).

http://www.cs.umd.edu/~brabec/quadtree/index.html
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Traditionally, simulation algorithms only involved the

simulation of the residual part of Eq. (1), although some

attempts to stretch this have been reported (Goovaerts,

1997). This can be seen as the simulation equivalent of

simple kriging. Gstat implements a wider class that

allows to account for statistical uncertainty on trend

coefficients, using the algorithm reported (although

somewhat hidden) by Abrahamsen and Espen Benth

(2001). For each realisation, it involves the simulation

of trend coefficients, followed by simulating residuals

with respect to the trend coefficients drawn. It is the

simulation equivalent of universal kriging. For the

simulation of trend coefficients, the multivariate normal

distribution with mean #b and covariance (X0V�1X)�1

is used.

3.5. Variogram modelling

All methods mentioned above assume that the

residual covariance is known. A common convention

is to enter the covariance by ways of the variogram.

Gstat calculates direct sample variograms, cross vario-

grams (‘‘classical’’ cross variograms for variables that

have identical locations, pseudo-cross variograms (Ver

Hoef and Cressie, 1993) when locations do not

coincide), and can fit nested variogram models to

sample variograms. In fitting direct and cross variogram

models, it can also guarantee that the fitted model obeys
Table 1

User functions in package gstat

Gstat Add variable definition t

Variogram modelling

variogram Calculate sample variogr

variograms

fit.variogram Fit variogram model coe

fit.lmc Fit a linear model of cor

variogram.line Calculates variogram val

Prediction/simulation

predict.gstat Spatial prediction or sim

krige Univariable wrapper aro

krige.cv Leave-one-out or n-fold

zerodist Detect observation pairs

Plotting

bubble Bubble scatter plot for d

plot.variogram Plot sample variogram (o

conditioning plots for dir

plot.variogram.cloud Plot variogram cloud, wi

plot.point.pairs Plot point pairs, identifie

image.data.frame Draw image for (x,y,z) v

map.to.lev Stack data in the form (x

mapasp Calculate aspect ratio for
the linear model of coregionalisation (Goovaerts, 1997),

ensuring that cross covariance matrices are always

positive definite. Furthermore, gstat can calculate and

visualise directional variograms, variogram clouds,

and provides identification through interactive examina-

tion (for example of extreme points) in the variogram

cloud.

Variogram models may consist of simple models

such as the Nugget, Exponential, Spherical, Gaussian,

Linear, Power model, or the nested sum of one or

more basic models. Each simple model can have its

own 2D or 3D geometric or zonal anisotropy para-

meters defined. The gstat R package also includes

the Matérn class (strongly recommended by Stein,

1999), but does not automatically fit its smoothness

parameter.
4. Implementation

4.1. The S environment

S is a functional language: functions are called with

data and specifications as the function arguments. The

gstat S package provides a set of functions, most of

which are listed in Table 1. These functions consist of

about 1000 lines of S code, and for a part they hide calls

to the underlying 40,000 lines of C code in the gstat
o gstat object

am, directional sample variograms, or direct and cross

fficients to sample variogram

egionalisation to direct and cross variograms

ues from a variogram model

ulation, see also Fig. 3

und gstat and predict.gstat

cross-validation wrapper for krige

with identical locations

ata or residuals (using colour for sign, size for value)

ptional with number of point pairs) and fitted model; uses

ectional or multivariable variograms (Fig. 2)

th options for interactive point pairs identification

d by plot.variogram.cloud, in a map

alues, stored in columns of a data frame

,y,z1,z2,y,zn) to a form, suitable for plotting with levelplot

geographically correct levelplot
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package. Data in S are typically stored in data frames,

tables which contain in each column one variable, of

categorical (factor) or numerical mode.

4.2. Examples

In the following, examples are given that use the data

set of heavy metal pollutions in the topsoil of a

floodplain along the Meuse river near Stein, Netherlands

(Burrough and McDonnell, 1998). This data set is

supplied with gstat.

4.3. Formula interface

The gstat S package uses the S formula interface,

(Chambers and Hastie, 1992), which is also found in

the regression and ANOVA functions (lm, aov), general-

ised linear models (glm), and many other regression

modelling or prediction methods. The first function

argument is a formula, like yBx1+x2, to express that

variable y depends on x1 and x2, and possibly in a later

argument the data frame that contains y, x1 and x2 as

columns. Formulas may contain mathematical functions

of variables (e.g., sqrt(y) instead of y), complex

relationships (like interactions, x1:x2, or nested effects),

and dependent variables may be factor (nominal)

variables in which case they are automatically converted

into the necessary set of dummy (0–1) regressor

variables.

Gstat uses one formula to define how the response

depends on the predictor variables, and a second

formula to define the spatial coordinates. Suppose

we model zinc concentrations z(s) as a linear regression
(a) distance

se
m

iv
ar

ia
nc

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500

Fig. 1. Sample variogram and fitted model for log(zinc) resid
function of distance to the river D, log(z(s))=b0+
b1D(s)+e(s), we can calculate the residual variogram of

log(zinc) as a function of dist with spatial coordi-

nates in x and y, found in data frame meuse by (‘‘>’’ is

the S prompt):

> zn:vgm ¼ variogramðlogðzincÞBdist;

Bxþ y; meuseÞ

which saves the results in zn.vgm, to be shown, plotted

or fitted:

> zn:mod ¼ fit:variogramðzn:vgm;

model ¼ vgmð1; ‘Exp‘; 300; 1ÞÞ

> plotðzn:vgm; model ¼ zn:modÞ

fits an exponential variogram model and plots sample

variogram and fitted model (Fig. 1a). By default,

ordinary least-squares residuals are used, but generalised

least-squares residuals given a variogram models are

optional. Note that plot is a generic function: as its first

argument is of class variogram, in reality the function

plot.variogram of the gstat package is called; this

function adds a number of options useful to plotting

variograms.

Univariate universal kriging on locations defined in

meuse.grid, using a fitted (residual) variogram model

zn.mod is obtained by

> zn:krg ¼ krigeðlogðzincÞBdist; Bxþ y;

meuse; meuse:grid; zn:modÞ

> levelplotðvar1:predBxþ y; data ¼ zn:krg;

asp ¼ mapaspðzn:krgÞÞ
(b) x

y

330000

331000

332000

333000

178500179000179500180000180500181000181500

-4

-4.5

-5

-5.5

-6

-6.5

-7

-7.5

uals (a); universal kriging predictions for log(zinc) (b).
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for which the plot is shown in Fig. 1b. Alternatively, 50

conditional simulations are obtained by

> krigeðlogðzincÞBdist; Bxþ y; meuse;

meuse:grid; zn: mod; nmax ¼ 20; nsim ¼ 50Þ

where nmax refers to the neighbourhood size, limited for

fast sequential simulation.

For multivariable prediction or simulation, we need to

specify for each variable at least two formula’s and a

data frame. All this information is stored in an object of

class gstat, which is built one variable at a time, by a

function (surprisingly) called gstat:

> meuse:g ¼ gstatðid ¼ ‘log-zn‘;

formula ¼ logðzincÞB1;

locations ¼ Bxþ y; data ¼ meuseÞ

> meuse:g ¼ gstatðobject ¼ meuse:g;

id ¼ ‘log-cu‘; formula ¼ logðcopperÞB1;

locations ¼ Bxþ y; data ¼ meuseÞ

y

that can accumulate an arbitrary number of variables.

Suppose meuse.g is filled with the four heavy metal
distance

se
m

iv
ar

ia
nc

e

0

0.2

0.4

0.6

0 200 400 600 800 1000

zn.pb

0

0.1

0.2

0.3

0.4
cu.pb

0.

0.

0.

0.

0

0.2

0.4

0.6

0.8

1

zn.cd

0

0.2

0.4

0.6

cu.cd

0.

1.

0

0.1

0.2

0.3

0.4

zn.cu

0

0.1

0.2

0.3

cu

0

0.2

0.4

0.6

zn

Fig. 2. Direct sample variograms (diagonal), cross variograms (off-

heavy metal variables in meuse data set.
variables measured in the meuse data set, then the five

commands

> meuse:g ¼ gstatðmeuse:g; model ¼ vgmð1; ‘Sph‘;

900; nugget ¼ 1Þ; fill:all ¼ TÞ

> x ¼ variogramðmeuse:g; cutoff ¼ 1000Þ

> meuse:fit ¼ fit:lmcðx; meuse:gÞ

> plotðx; model ¼ meuse:fitÞ

> meuse:cok ¼ predictðmeuse:fit;

newdata ¼ meuse:gridÞ

fill all variogram models with the same initial (Nug-

get+Spherical) variogram model, (ii) calculate sample

variograms and cross variograms, (iii) fit a linear model

of coregionalisation to direct and cross variograms, (iv)

plot the variograms and fitted models (Fig. 2), and (v)

store four-variate cokriging predictions and prediction

error (co)variances in meuse.cok.

The prediction function, predict.gstat, is the

prediction and simulation engine of gstat. Depending

on the data it is fed with, it decides what to do; Fig. 3

shows the decision tree for this. The list of user functions

in package gstat is shown in Table 1.
0

2

4

6

8

0 200 400 600 800 1000

cd.pb

0

0.1

0.2

0.3

0.4

0.5

0.6
pb

0

5

1

5

2
cd

diagonal) and fitted linear model of coregionalisation for four
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Trend coefficients given? "simple"

"universal"

Sequential Indicator (co)simulation

Sequential Gaussian (co)simulation

(local) trend surface prediction

Inverse distance weighted interpolation

indicators?

Yes

Simulations?

Variograms?

Yes

No

Simple (co)krigingTrend coefficients given?

Trend functions given?

Yes

Yes

No

No

Yes

No

No

Yes

No
Yes

No
Universal (co)kriging, or BLUE

Ordinary (co)krigingTrend has only intercept?

Fig. 3. Decision tree for predict.gstat (or krige); each of prediction/simulation methods may apply to points, rectangular blocks,

or irregular blocks, and may use all data or a selection of local data in a local neighbourhood around each prediction location.
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The location argument is necessary because S data

frames do not register which columns contain spatial

coordinates. As this is not likely to ever change, a more

elegant solution would be to use a data class that is

aware of its own spatial topology, in which case the

location formula could be left out altogether.

4.4. C code

The gstat C code used for the gstat package consists of

approximately 25,000 lines of ‘‘native’’ gstat code, and

14,000 lines of C code in the Meschach matrix, library

(Stewart and Leyk, 1994; Meschach home page: http://

www.math.uiowa.edu/Bdstewart/meschach/) used by

gstat. Because originally gstat was written as a stand-

alone program (Pebesma and Wesseling, 1998), a large

part of the effort of writing the gstat S package was

dedicated towards making the code suitable as a callable

library. This involved removing many static variables,

re-initialising the full state of the library after every call

from S, and writing wrapper functions around all log,

warning and error messages.

Two important optimised algorithms are implemented

in the gstat C code. The first is a fast neighbourhood

search algorithm, based on the PR-bucket quadtree

search index structure (Hjaltason and Samet, 1995).

The second is the realisation of many simulated

random fields in a single call following a single random

path through the simulation locations, re-using the

expensive results, i.e. the neighbourhood selection and

V�1X.

All variogram models are defined in the gstat

packages are in the gstat C code, and provides not an

easy way to use variogram functions defined in S.
Adding a new variogram function to the gstat C code is

straightforward, though.
5. Relation to other geostatistics packages

Ripley (2001) gives a short overview of available R

packages for spatial statistics. Geostatistics packages

on CRAN (R home page: http://www.r-project.org/

Comprehensive R archive network: http://cran.r-project.

org/ and mirrors) include spatial, sgeostat, geoR/

geoRglm (geoRhome page: http://www.est.ufpr.br/

geoR/), fields and RandomFields. Most of these

packages provide variogram modelling, trend surface

analysis and/or universal kriging. None of them

provides kriging in a local neighbourhood, block

kriging, cokriging, or three-dimensional kriging. S-Plus

has a commercial module, S+SpatialStats, that provides

block kriging. Large parts of the geoR/geoRglm (geoR

home page: http://www.est.ufpr.br/geoR/) code address

the uncertainty of estimated covariance parameters in a

Bayesian framework (also called model-based kriging;

Diggle et al., 1998), an issue that seems to be relevant

especially for smaller data sets (Moyeed and Papritz,

2002).
6. Code availability

For R, the gstat package can be installed from CRAN

(R home page: http://www.r-project.org/Comprehensive

R archive network: http://cran.r-project.org/ and mir-

rors), which means that a single mouse click on

Windows version or a single command for Unix versions

http://www.math.uiowa.edu/~dstewart/meschach/
http://www.math.uiowa.edu/~dstewart/meschach/
http://www.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://www.est.ufpr.br/geoR/
http://www.est.ufpr.br/geoR/
http://www.est.ufpr.br/geoR/
http://www.r-project.org/
http://cran.r-project.org/
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is sufficient to install the package on computers with an

internet connection. For S-Plus, the gstat library is

available in binary form for Windows versions of S-Plus,

and in source code form for Unix/Linux versions of S-

Plus from the gstat home page (http://www.gstat.org/).

Installation instructions are also found there.
7. Conclusions

The gstat package provides a robust and flexible suite

of univariable or multivariable geostatistical methods.

From the following five items:

* One-, two- or three-dimensional,
* point, regular block, or irregular block,
* univariable, multiple (uncorrelated), or multivariable

(correlated) cokriging,
* (co)kriging, unconditional or conditional (co)simula-

tion,
* using a global or a local neighbourhood,

any combination (e.g. three-dimensional universal irre-

gular block cosimulation) can be obtained by the gstat

package. Also, routines are available for very fast fitting

of large numbers of direct and cross variograms. The

objection to cokriging or cosimulation that the model-

ling of a large number of (cross) variograms is

prohibitively tedious can now only be put in the past

tense. The open-source gstat extension package makes

the S environment (the R or S-Plus programs) a very

powerful environment for (multivariable) geostatistics.

The package offers several methods for handling one

or more exhaustive grids of secondary information for

prediction or simulation of a primary variable:

* secondary variables can be treated as explanatory or

predictor variables, leading to linear regression or

universal kriging prediction (sometimes referred to as

external drift kriging);
* secondary variables can be treated as (realisations of)

random fields, leading to a cokriging formulation;
* colocated ordinary or simple cokriging can be used,

limiting the availability of the secondary variable to

that of the prediction location.

A discussion on structural differences between these

approaches is found in Rivoirard (2002).
8. Discussion

8.1. S visualisation

One major reason why S is a suitable environment for

doing multivariable geostatistics with gstat is its

graphics capabilities. The gstat package gratefully uses
the Trellis/Lattice functions to visualise its results,

notably

* xyplot for visualising directional variograms and

multivariable (direct and cross) variograms (e.g.

Fig. 2), and to visualise spatial data and cross-

validation residuals;
* levelplot for visualising (multiple) grid maps, using

the aspect argument to make them geographically

correct (1 km north equals 1 km east, a convention

that even S+SpatialStats ignores);
* image for fast display of many grid maps; and
* plot and identify to identify extreme point pairs in

a variogram cloud.

The graphics functions in Table 1 are no more than

simple wrapper functions around the S graphics func-

tions, but may be among the most critical ones to make

a multivariable analysis successful.

8.2. Gstat stand-alone features missing in the S package

The major functionality of gstat is made available in

the package, but a number of advanced features are

missing. Most of them can be added easily once a

common set of S data structures for spatial data (grids,

lines) is defined. Gstat stand-alone features missing in

the S package are: Stratified mode: the gstat program has

an efficient way of dealing with a stratification, where

each stratum has its own data, variogram and prediction

locations. Variogram maps: two-dimensional variogram

maps, calculated on a regular grid are not yet

implemented in the S package. Efficient variogram

calculation for gridded data: knowing the gridded

topology of data, sample variograms can be calculated

in O(N), instead of O(N2). Multi-step simulation

(Gómez-Hernández and Journel, 1993): the gstat code

can use a recursively refining random visiting sequence

(Pebesma and Wesseling, 1998) for sequential simula-

tion, but needs to know the grid topology of prediction

locations; currently a simple random path is chosen.

Edges: open or closed polygons can be defined to further

constrain the search neighbourhood. Quadrant/octant

search neighbourhoods, variogram distance: these are

other methods to refine search neighbourhoods based on

direction or correlation. Latin hypercube sampling of

Gaussian random fields (Pebesma and Heuvelink, 1999)

is an issue that should be easy to re-implement in S.

8.3. Handling spatial data in S

Prediction locations are often gridded, and observa-

tions sometimes are. As noted above, a number of

efficiency gains can be obtained when the grid topology

of data, if present, is available to gstat. Storing

prediction results as grids (2D matrices) can be wasteful,

because large part of the area may be filled with NAs.

http://www.gstat.org/
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Currently, gstat resolves coordinates and explanatory

variables at prediction locations using model.matrix,

which requires both observation data and prediction

locations to be in a data frame. Storing output of

predict.gstat as grids might be beneficial when they

are plotted with image, but not when plotted with

levelplot. The conversion of table data to gridded data

is close to O(N) (see function xyz2img in package gstat).

Currently, an open-source effort (r-spatial project

page: http://www.sourceforge.net/projects/r-spatial/) is

being taken to provide spatial classes for R (and

potentially S-Plus), for point, grid, and polygon data,

and gstat supports this. It requires prior specification

which variables in a data frame refer to spatial

coordinates, and removes the need to specify coordi-

nates in subsequent gstat library function calls.
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