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Chapter 10 : Probability

Probability of an event A is interpreted as the long run proportion of times that event

A occurs. See the text, and in particular example 10.2 about fair coin tossing.

As a second example of this type for the lecture class we consider the problem of

rolling a fair die. A die is a six sided cube with faces with dots on them, one dot on one

side, two dots on a second side, three dots on a third side, etcetera up to six dots on the

sixth side.

Each of the six sides has the same chance of occurring. Thus each side has a chance
1
6

= .1666 . . . = .167 (rounded to 3 decimal places). Figure 1 shows the running means or

averages of N = 6000 die rolls. Table 1 gives the first 20 die rolls and the running means

or running averages of the numbers of one observed, and of the numbers of twos observed.

After 2 die rolls there are no ones and 1 two observed, so these proportions are 0
2

and
1
2

respectively. On die roll 10 we observe a one, and so the observed proportions of ones

and twos are now 1
10

and 1
10

respectively. On die roll 11 we observe a two, and so the

observed proportions of ones and twos are now 1
11

and 2
11

respectively. Figure 1 shows

these for the N = 6000 die rolls. The interesting thing in the picture is that the observed

sample proportions of the event “1” and event “2” settle down to near the value of 1
6
.

A similar experiment and running sample proportion of the event “head” will also

settle down to a value of near 1
2
, as shown in the text.

This idea and interpretation of probability is called the frequentist interpretation, that

is it refers to long run relative proportions. It applies to classic gambling games and lottery

games, as well as any experiment where one can envision repetitions of the experiment or

game.
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roll number outcome proportion of 1 proportion of 2

1 3 0.000 0.000

2 2 0.000 0.500

3 5 0.000 0.333

4 6 0.000 0.250

5 6 0.000 0.200

6 4 0.000 0.167

7 3 0.000 0.143

8 6 0.000 0.125

9 5 0.000 0.111

10 1 0.100 0.100

11 2 0.091 0.182

12 4 0.083 0.167

13 2 0.077 0.231

14 3 0.071 0.214

15 6 0.067 0.200

16 5 0.062 0.188

17 1 0.118 0.176

18 2 0.111 0.222

19 3 0.105 0.211

20 1 0.150 0.200

Table 1: Table Measurement from First Class
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Figure 1: Running Means for 6000 Fair Rolls of a Die
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We call a phenomenon random it the outcomes are uncertain but there is a regular

distribution of outcomes in large numbers of repetitions.

While the outcome of a coin toss or of die rolling is random, that is not predictable

with certainty, they are predictable in a distributional sense. That is we can predict the

probability that the outcome will fall into a certain set with a given probability. For

example when we roll a fair die, the probability that the outcome will be “4” is 1
6
.

For example in Lotto 6/49, there are 49 balls, and 6 are chosen to determine a winning

ticket. There are 13,983,816 such combinations of 6 different numbers out of the 49, and

the chance of any one particular number being chosen is 1
13983816

= 0.0000000715112.

Sometimes this is stated as odds of 13,983,816 to 1. By way of contrast the chance of

being struck by lightning in a given year is 1
700,000

= 0.00000142857 (as given in the URL

http://www.lightningsafety.noaa.gov/medical.htm for government statistics in the USA

for the year 2000).

This says that a person is 20 times more likely to be struck by lightning in a given

year, than winning with a single ticket in Lotto 6/49.
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Probability Models

Many gambling games are based on coins, cards or dice. These games have only finitely

many outcomes, that is one can list all the outcomes.

Probability model

• sample space S = set of all possible outcomes

• event = outcome or set of outcomes of the random phenomenon.

An event is a subset of the sample space S

• Probability model is a mathematical description of the random phenomenon con-

sisting of two parts : (i) sample space and (ii) a rule assigning probabilities to

events

The rules of probability are mathematical rules and applies no matter what interpre-

tation of probability might be. So far we have only considered the most useful, that is

the frequentist interpretation of probability.
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Consider a game of rolling two fair dice. These outcomes are represented in Table 2.

There are 36 possible pairs for the two dice. Since the dice are fair each of the 36 outcomes

has the same chance of occurring, so each has a chance 1
36

of occurring or happening.

Table 2: Outcomes for rolling two dice

1 , 1 1 , 2 1 , 3 1 , 4 1 , 5 1 , 6

2 , 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , 6

3 , 1 3 , 2 3 , 3 3 , 4 3 , 5 3 , 6

4 , 1 4 , 2 4 , 3 4 , 4 4 , 5 4 , 6

5 , 1 5 , 2 5 , 3 5 , 4 5 , 5 5 , 6

6 , 1 6 , 2 6 , 3 6 , 4 6 , 5 6 , 6

In some games one only cares about the total on the two faces. In this case we can

calculate the outcomes on the possible rolls of the dice.

die number 2

die number one \ 1 2 3 4 5 6

1 1+1=2 1+2=3 1+3=4 1+4=5 1+5=6 1+6=7

2 2+1=3 2+2 = 4 2+3=5 2+4=6 2+5=7 2+6=8

3 3+1=4 3+2 = 5 3+3=6 3+4=7 3+5=8 3+6=9

4 4+1=5 4+2 = 6 4+3=7 4+4=8 4+5=9 4+6=10

5 5+1=6 5+2 = 7 5+3=8 5+4=9 5+5=10 5+6=11

6 6+1=7 6+2 = 8 6+3=9 6+4=10 6+5=11 6+6=12

From this we see there are only outcomes for the sum of the two dice, along with their

probabilities as
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total spots 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Table 3: Distribution for sum of two fair die rolls

Probability Rules

• Rule 1 : The probability P (A) is between 0 and 1, that is 0 ≤ P (A) ≤ 1

• Rule 2 : The sample space S has probability 1, that is P (S) = 1.

• Rule 3 : Two events A and B are disjoint if they have no outcomes (elements) in

common. If two events A and B are disjoint the

P (A or B) = P (A) + P (B)

• Rule 4 : For any event A

P (Adoes not occur) = 1− P (A)

Aside : For some who have taken appropriate course you may have used the notation

∅ = the empty set, the symbol ∪ = union, and ∩ = intersection. In this notation we say

A and B are disjoint if

A ∩B = ∅
We also use

A or B = A ∪B

so that Rule 3 says

Rule 3 : IF events A and B are disjoint then

P (A ∪B) = P (A) + P (B)

End of Aside
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How do we use these Rules to understand our dice game calculations above?

If A3 represents the event of rolling the sum on the two die faces totalling 3, then A3

represents the outcome of the game being either

• die 1 comes up 1 and die 2 comes up 2 OR

• die 1 comes up 2 and die 1 comes up 1

These two elementary outcomes are disjoint, that is if the first happens the second cannot

happen, and vice versa. Thus using Rule 2 we calculate

P (sum of die faces is 3) = P (die 1 comes up 1 and die 2 comes up 2)

+ P (die 1 comes up 2 and die 2 comes up 1)

=
1

36
+

1

36

=
2

36

Using the same Rule we calculate

P (sum of die faces is 4) = P (die 1 comes up 1 and die 2 comes up 3)

+ P (die 1 comes up 2 and die 2 comes up 2)

+ P (die 1 comes up 3 and die 2 comes up 1)

=
1

36
+

1

36
+

1

36

=
3

36
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An easier to use notation is to consider a random variable with a given distribution.

Suppose X represents the outcome for the total on the faces of the two dice, and

suppose the two dice are fair.

Notation We usually use capital letters from near the end of the alphabet to name

random variables. These are typically X, Y, Z and when we need extra letters T, U, V, W .

Sometimes we use a name that might be more helpful such as T when our random variable

involves time. We use Z when talking about a standard normal random variable (see

Chapter 3 and Table A).

For rolling a pair of dice then we write

P (sum of die faces is 4) = P (X = 4)

and more generally

P (sum of die faces is x) = P (X = x)

for the various possible values of x, in this case x = 2, 3, 4, . . . , 10, 11, 12. Capital X

represents the name of the random variable and lower case (little) x represents some real

number. In the context it should be clear.

What is the probability that you roll a 7 or 11? It is

P (X = 7 or X = 11) = P (X = 7) + P (X = 11)

=
6

36
+

2

36

=
8

36

where we use the information from Table 3.
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The text discusses Benford’s Law. More information on this can be found at the URL

http://www.intuitor.com/statistics/Benford%27s%20Law.html

This example is interesting in that real data, such as accounting records, has a partic-

ular distribution for the first non-zero digit. Data that does not follow this is suspicious

and suggests that the data is made up. A forensic audit team may record a large sample

of first digits and compare the observed distribution (sample proportions) of these to the

distribution predicted by Benford’s Law. If the observations are inconsistent with this

Law then there is evidence that the data is unusual. Further investigations can then be

made.
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Continuous Probability Models

A continuous probability model assigns probability for data observed in an interval as

the area under a probability density curve or function for this interval. We have seen

one such example, the normal curves in Chapter 3. Figure 2 shows the area under the

standard normal curve for the interval [−1, 1.5]. This area can be calculated from Table

A, where we have to look for the z values of -1 and 1.5. The area is then

P (Z ≤ 1.5)− P (Z ≤ −1) = 0.933− 0.159 = 0.774

We interpret this as the probability that a standard normal random variable falls into the

interval [−1.1.5].

If X has a normal distribution, mean = µ = 70, and standard deviation = σ = 8, then

P (62 ≤ X ≤ 82) = P
(

62− 70

8
≤ X − 70

8
≤ 82− 70

8

)

= P (−1 ≤ Z ≤ 1.5)

= 0.933− 0.159 = 0.774

where in the second last line the random variable Z has a standard normal distribution

(recall this property of the relation of a general normal distribution to the standard normal

distribution).
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Figure 2: Area under normal curve for interval [-1, 1.5]
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Another very useful probability curve is the uniform density. Figure 3 shows this curve

and the area under it for the interval [.5, .7]. The Uniform 0, 1 curve is of constant height

1 over the interval 0 to 1, and zero everywhere else. If X represents the uniform(0,1)

random variable then

P (.5 ≤ X ≤ .7) = .7− .5 = .2

For more general numbers a and b where 0 ≤ a < b ≤ 1 we have

P (a ≤ X ≤ b) = b− a .
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Figure 3: Area under normal curve for interval [.5, .7]



Chapter 10 : Probability 14

Random Variables

A random variable is a variable whose value is a numerical outcome of a random

phenomenon.

A probability distribution of a random variable X is a rule that tells us what values X

can take and how to assign or calculate probabilities that X takes on specific values or

that X falls into specific intervals.

This is what we have done for some calculations above, in terms of normal random

variables, and earlier for some dice games, for example the distribution of the sum or total

on two die faces given in Table 3.

We use a symbol or name such as capital X as the name of the random variable.

The distribution calculates probabilities for events that are given in terms of the random

variables. Different random variables generally need different names, depending on the

context. A non mathematical analogy is that a person or individual can have a name,

say Aragorn (who is the king who returns in the Lord of the Rings and is the most noble

human in that story). Other individuals in the story are Frodo, Sam, Gandalf, and Bill the

Pony, amongst others. The name of the individual is useful for identifying the individual,

say Aragorn, but it does not give properties (nobility) or numerical characteristics (age,

height, weight) of this individual.



Chapter 10 : Probability 15

There is one other common interpretation of probability, the so called personal prob-

ability. This is helpful when one is considering a one time event, and not a repetition of

many trials. For example you might ask what is the probability that I will get an A in

this course or that I will pass this course. Personal probability expresses your judgement

on how likely an outcome is.

It is often thought of as to what you would be willing to bet on the outcome to the

point where you feel it is not to your advantage of taking a bet. One branch of philosophy

is concerned with these ideas, and we not delve further into this in our course.

Personal probability obeys the same mathematical rules as probability under any other

interpretation, such as the frequentist interpretation.
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Chapter 12 : General Rules of Probability

This material deals with

• Independence and multiplication rule

• General addition rule

• Conditional probability

• General multiplication rule

which is only the first part of Chapter 12.

Recall from earlier in Chapter 10 the Probability Rules

• Rule 1 : The probability P (A) is between 0 and 1, that is 0 ≤ P (A) ≤ 1

• Rule 2 : The sample space S has probability 1, that is P (S) = 1.

• Rule 3 : Two events A and B are disjoint if they have no outcomes (elements) in

common. If two events A and B are disjoint the

P (A or B) = P (A) + P (B)

• Rule 4 : For any event A

P (Adoes not occur) = 1− P (A)

Figures 4 and 5 illustrate the notion of intersecting and disjoint sets in a Venn diagram.

Rule 3 says if the sets or events are disjoint then probabilities add.

Return to the die rolling game where two fair dice are rolled and consider getting a

total of 3 on the two dice. This can happen if either A or B happens, where

A = roll 1 on first die and 2 on second die

B = roll 2 on first die and 1 on second die



Chapter 10 : Probability 17

A

B

A and B
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Figure 4: Venn Diagram Intersecting Sets
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Venn Diagram : Disjoint sets

Figure 5: Venn Diagram Disjoint Sets
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Notice that in this game if A happens then B cannot happen, and if B happens then

A cannot happen. In this case A and B are disjoint, that is they have no outcomes (of

the pair of die rolls) in common.

Thus

P (roll a sum of 3) = P (A or B)

= P (A) + P (B)

=
1

36
+

1

36
=

2

36

Underlying this is a notion of independence, sometimes called statistical independence.

Consider events

E1 = roll 1 on first die

E2 = roll 2 on second die

When the two die are rolled, the outcome on the first die does not influence the outcome

on the second die. Thus we interpret

P ( roll 1 on first die and 2 on second die)

= P (E1 happens and E2 happens

= P (E1 happens ) ∗ P (E2 happens )

= P (E1) ∗ P (E2)

=
1

6
∗ 1

6
=

1

36
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This is a general rule.

Multiplication Rule for Independent Events : Events A and B are independent if and

only if

P (A and B) = P (A)P (B)

One way of seeing how this makes sense is as is to think about the die rolling game

again. Out of all possible first die rolls, a fraction 1
6

comes up as “1”. Of these 1
6

of all

possible outcomes, only a fraction 1
6

of these, that is 1
6

of the 1
6

of the outcomes for rolling

two dice has a “1” on the first die and a “2” on the second die.
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Domestic (N.A.) Import Total

light truck 0.47 0.07 0.54

car 0.33 0.13 0.46

Total 0.80 0.20 1.00

Table 4: Import versus North American (domestic) vehicles)

General addition rule for intersecting sets; recall Figure 4.

P (A or B) = P (A) + P (B)− P (A and B)

To help us make sense of this, in Figure 4, if think of counting areas,

• the parts of A get counted once where it does not intersect B, once for where it

intersects B

• the parts of B get counted once where it does not intersect A, once for where it

intersects A

Thus the part where A and B intersect (which is the same as where B and A intersect)

gets counted twice, whereas the other parts of A and B get counted once, so we need to

subtract off one of the extra countings of A intersect B.

To help us with this we use an example from the text, Example 12.5 in Edition 4.

Origin of light trucks and cars sold are given in Table 4. In this Table, domestic

(N.A.) means domestic interpreted as North America (N.A.). The entries in the main

table give the proportion (probability) of the type and origin of vehicle. The margins give

the marginal probabilities, the same idea as the marginal totals in our earlier discussion

of two way tables.

From this table we can now calculate for example the probability that a vehicle sold

is either domestic or a light truck. The AND is given in capital letters just to emphasize
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this.

P ( domestic or light truck)

= P ( domestic ) ∗ P ( light truck )− P (domestic AND light truck)

= 0.80 + 0.54− 0.47

= 0.87

As we studied with the two way tables in Chapter 6, we also need to consider a notion

of Conditional Probability.

Conditional Probability : When P (A) > 0 the conditional probability of B given that

the event A happens is

P (B|A) =
P (A and B)

P (A)

If P (A) = 0, that is event A has zero chance of occurring (impossible to occur) then

we would never be interested in calculating the conditional probability of B given that A

occurs.

Using Table 4 we can ask what it the conditional probability that a vehicle is imported,

given that is it a car. In terms of our thinking of this in our two way table discussion this

would be the relative proportion of imported cars amongst only the cars. Except for the

scaling this is
0.13

0.33 + 0.13
=

0.13

0.46
= 0.283 .

This is also given by the conditional probability formula

P ( imported| car)

=
P ( imported and car)

P ( car )

=
0.13

0.46
= 0.283 .
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Finally using the formula for conditional probability, multiplying both sides by P (A)

we have

The General Multiplication Rule

P (A and B) = P (A)P (B|A)

Note there is also a conditional probability formula for the probability of A given B

so we also have

P (A|B) =
P (A and B)

P (B)

and

P (A and B) = P (B)P (A|B)

which is the same thing just interchanging the role of A and B.

This rule is often useful for calculating probabilities for two or multistage games.

Consider the game of choosing marbles, without replacement from a box. At the

beginning, stage 0, the box contains 4 white marbles and 3 red marbles. At this stage we

know the probabilities of the colour of the first ball chosen or drawn

P ( white marble on stage 0) =
4

7

P ( red marble on stage 0) =
3

7

These are also illustrated in Figure 6.
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Figure 6: Choosing Marbles Without Replacement
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Since the physical content of the box changes at the next stage, stage 1, it turns out

to be easier to calculate the conditional probabilities of the colour of the second marble

chosen (from the box at this corresponding stage of the game) conditional on the colour

of the marble chosen at the first stage.

P ( white marble on stage 1| white on stage 0) =
3

6

P ( white marble on stage 1| red on stage 0) =
4

6

P ( red marble on stage 1| white on stage 0) =
3

6

P ( red marble on stage 1| red on stage 0) =
2

6

We can then calculate the probability of two whites, that is white on first draw (from

the box at stage 0) and white on second draw (the box at stage 1)

P ( white on first draw and white second draw)

= P ( white marble on stage 1| white on stage 0) ∗ P ( white on draw 1)

=
3

6
∗ 4

7

=
2

7
= 0.283 .

There are other important uses for conditional probability, but they are not discussed

in this introductory course.


