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Chapter 16, Fourth Edition : Inference in Practice

Note : Here the 4-th and 5-th editions of the text have different chapters, but the

material is the same.

The previous few Chapters introduce the idea of statistical inference for a population

mean. There were a number of assumptions about the experiment and population distri-

bution. Some of these are critical in the sense that inference will be invalid without these

or some related property. Other assumptions were not critical in the sense that inferences

can be made even when these assumptions are violated, although the techniques that are

needed and used may be different.

Recall we made some assumptions Some Very Simple Conditions for Inferences about

a Population Mean

1. A simple random sample is obtained from a population. There is no non-response

or other practical difficulties with the data

2. the variable we measure has exactly a normal distribution N(µ, sd = σ)

3. we do not know µ, but we know σ.

Before discussing these we summarize what are our goals with respect to these.

Some Very Simple Conditions for Inferences about a Population Mean

1. A simple random sample is obtained from a population. There is no non-response

or other practical difficulties with the data

• The simple random sample property, or a variant of it, is crucial to remove

selection bias and to obtaining the sampling distribution of the statistic to be

used for our inferences.

Variants are the different types of sampling methods, for example the two

stage sampling designs that involve stratification (stratified random sample or
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probability proportional to size) or randomized block designs. There are also

some special models and tools for time series, but these are outside the scope

of this course.

• There is no non-response or other practical difficulties with the data.

This has to be taken into account, as without some special care the inferences

can be invalid. The basic reason is that the respondents may represent a

subpopulation that is quite different in population characteristics than the

population that is of actual interest in the study.

2. the variable we measure has exactly a normal distribution N(µ, sd = σ)

This property can be removed and changed to other types of population distribu-

tions. The tools are typically different than that studied in this course, but these

are well known and understood.

3. we do not know µ, but we know σ.

If we restrict our attention to normal populations, the assumption that σ is known

can be changed to σ is unknown and also needs to be estimated. This is studied in

this course and involves the use of the so called Student’s t distribution, which is

tabulated in Table C of this text.

The assumption about normality can also be changed, as was indicated in item 2.
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Our main tool for statistical inference about a population mean is obtained from the

sampling distribution of x̄. In the simple case studied earlier this is based on the sampling

distribution of

Z =
x̄− µ

σ√
n

(1)

Under the assumptions listed at the beginning of this section (from Chapter 11), and if

µ0 represents the true population mean then

Z =
x̄− µ0

σ√
n

will have a standard normal distribution. It is typically called the Z statistic or Z score.

Based on this sampling distribution we also obtain confidence intervals for population

means which are of the form

x̄± z∗
σ√
n

The term

z∗
σ√
n

is often called the margin of error (or accuracy) for our confidence interval for the popu-

lation parameter µ.
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Where did the data come from?

The procedure that one uses assumes the data comes from a random sample. The

procedure cannot correct for this if the data is for example from a convenience sample. It

is always important to consider or ask how the data was obtained.

The text states that if your data is not from a random sample (or appropriate variation)

then your conclusions may be challenged. What this means is that your conclusions my

not be reproducible. If someone were to attempt to reproduce your experimental results

from an independent experiment or study, they would follow the same protocol and not

obtain a similar result, and possibly a result that is contradictory.

One of the main ideas behind this is that without an appropriate data selection method

such as random samples there may be substantial selection bias. In a technical sense this

means that the sampling distribution of Z given by equation (1) does not have a standard

normal distribution.
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Comments on p-values

How small is small enough?

Two factors come into play for this

• How plausible is H0?

• What are the consequences of rejecting the null hypothesis H0?

These consequences may be expenses in switching from a current system (drug

or medical treatment) to switching machinery for a factory or other engineering

consequences. It may also be ethical considerations such as the potential of actual

harming patients if we use a too easy hurdle to introduce a new procedure or use to

much of a hurdle so that patients will loose future benefits of an improved treatment.

These properties must be balanced, and so it is somewhat subjective as to what

constitutes a small p-value.

Generally a p-value much bigger than 0.05 is not small, and so does not present

evidence against a null hypothesis. A p-value around 0.05 is typically considered small.

A p-value of 0.01 or less is often considered asstrong evidence against the null hypothesis

and in favour of the alternative hypothesis.
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Type I and Type II errors

Consider the idea of hypothesis testing. The population is Normal, with mean µ and

standard deviation σ =. Consider the simplest case

H0 : µ = 0 versus Ha : µ = µa =
1

2

The sample size is n. The test statistic is

Z =
x̄− 0

σ√
n

=
x̄− 0

1√
n

=
√

nx̄

Let us also suppose that the test is at significance level α = 0.025, so that the critical

value is z∗ = 1.96 (we find the critical value from the Normal Table A).

When the alternative hypothesis is true, the true population mean is not 0, but is 1
2
.

Therefore the sampling distribution of Z is no longer standard normal. It can be found,

but that is not so important for us here.

In the Figures that follow, there are two regions. One corresponds to the decision that

we do not reject H0, which happens if the observed value of the Z statistic is smaller than

z∗, equal to 1.96 in our case. The other region, shaded grey, corresponds to the case when

we reject H0 in favour of the alternative Ha, that is we decide µ = 1
2

instead of deciding

µ = 0.

These Figures show the sampling distribution IF H0 is true (always standard normal)

and the sampling distribution of Z IF Ha were true. This is done for various sample sizes,

n = 4, 10, 20 and 40.

Notice that the white area gets smaller and the grey area gets bigger as n increases.

Notice in these plots we can can calculate the probability of rejecting IF Ha were true.

This is obtained as

Pa(
x̄− 0

σ√
n

> 1.96) = Pa(x̄ > 1.96× σ√
n

)

= Pa(x̄− 1

2
> 1.96× σ√

n
− 1

2
)
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= Pa(
x̄− 1

2
σ√
n

> 1.96−
1
2
σ√
n

)

= P (Z > 1.96−
1
2
σ√
n

)

This uses the property that IF Ha were true, then x̄ still has a normal distribution, but it is

just not the standard normal distribution. Under Ha, we have x̄ has a normal distribution

with mean µ1 = 1
2

and standard deviation σ√
n

= 1√
n
.

For example when n = 10 we have

Pa(
x̄− 0

1√
10

> 1.96) = Pa(x̄ > 1.96× 1√
10

)

= Pa(x̄ > 0.6198)

= Pa(x̄− 1

2
> 0.6198− 1

2
)

= Pa(x̄− 1

2
> 0.1198)

= Pa(
x̄− 1

2
1√
10

>
0.1198

1√
10

)

= P (Z > 0.3788)

= 1− 0.648 = 0.352

This property of calculating the probability of rejecting H0 when Ha is true (that is

equivalent to making the correct decision when Ha is true) is known as a power calculation.

The power of a statistical test is the probability of making the correct decision when Ha

is true.

Remark : Earlier we calculated the sample size n required to obtain a confidence

interval with a prescribed level of precision. In many settings, in particular pharmaceutical

and medical settings, a sample size is determined so as to meet or satisfy a pre-specified

power requirement. This involves solving a non-linear equation. For example, for a set

value of β, for example β = 0.8, we could solve for the unknown n (but not in this course)

β = Pa(
x̄− 0

σ√
n

> 1.96)
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Z dist under H.a, n = 4

Rejection Region and Power, level .05
H.0 : mu = 0, H.a : mu = .5

Figure 1: Power, n = 4
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Z dist under H.a, n = 10

Rejection Region and Power, level .05
H.0 : mu = 0, H.a : mu = .5

Figure 2: Power, n = 10
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Z dist under H.a, n = 20

Rejection Region and Power, level .05
H.0 : mu = 0, H.a : mu = .5

Figure 3: Power, n = 20
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Z dist under H.0, n = 40
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Z dist under H.a, n = 40

Rejection Region and Power, level .05
H.0 : mu = 0, H.a : mu = .5

Figure 4: Power, n = 40
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What do these Figures tell us?

There are various possibilities in our hypothesis testing.

1. H0 is true (µ = 0) and we decide H0 is true. No error

2. H0 is true (µ = 0) and we decide Ha is true. Type I error

3. Ha is true (µ = 1
2
) and we decide H0 is true. Type II error

4. Ha is true (µ = 1
2
) and we decide Ha is true. No error

In a table form these are

decision

true state (below) decide in favour of H0 decide in favour of Ha

H0 no error type I error

Ha type II error no error

Then the significance level then can be interpreted as the probability of rejecting H0

when H0 is true, that is

P (Z > 1) = 1− P (Z ≤ 1) = 1− 0.842 = .158

Consider for example Figure 2. What would happen if we changed the critical value

z∗ to a value smaller than z∗ = 1.96? For example suppose we change it to z∗ = 1.
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Rejection Region and Power, level .158
H.0 : mu = 0, H.a : mu = .5

Figure 5: Power, n = 10
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If on the other hand we increase the critical value from z∗ = 1.96 we decrease the

probability of Type I error, but at the same time we decrease the change of making the

correct decision IF IN FACT Ha were true. In other words by decreasing Type I error, we

increase Type II error, and vice versa. The two decision possibilities have to be balanced.

Remark : This is the same as in our legal analogy. If we set the requirement for

demonstrating guilty to high, then innocent people do not get convicted (good) but at

the same time the guilty as not convicted as often as the should be (bad). On the other

hand if we the threshold for demonstrating guilt too low then innocent people at convicted

too often (bad) but the guilty are convicted more often (good).
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Remark : Again consider a medical or pharmaceutical setting. We have an existing

drug treatment, that is good. A new drug therapy is being considered. Should it be used

and replace the current one? Heree we need to trade off two very important features.

H0 will play the role of the current drug therapy is as good (or better than) as the new

treatment. Ha will play the role of the new drug treatment is strictly better than the

current drug treatment. Of course in our statistical problem we need to translate this

into a property in terms of the parameters of the statistical model. For our purposes we

interpret this as the population mean µ0 = mean effectiveness of patients treated with

current drug treatment is better than the population mean µa = mean effectiveness of

patients treated with new or proposed drug treatment.

How should our decision procedure behave, at least in terms of controlling type I and

type II errors? We do not want to replace the current good treatment if the new or

proposed drug treatment or therapy is not better, so we want this probability of rejecting

H0 in favour of Ha to be small. On the other hand, if the new treatment is better than

the current treatment we do want to replace the current drug treatment with new one;

that is we want to reject H0 in favour of Ha. This means that we want to accept Ha with

large probability when Ha is true, that is have large power. This is equivalent to having

a small probability of type II error when Ha is true. Here is where the tradeoff come in

to play. If we make the cut off or critical value of our statistical test so that type I error

is small, it forces the type II error probability to be large. If we make the probability of

type II error small, then we are forced to make the probability of type I error large.


