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For regression methods that are based on residual sums of squares (such as
F-tests), use of dfies is more appropriate than dfy. Details are given in Sec-
tion 6.6.2.

3.15 Other Approaches to Scatterplot Smoothing

Spline-based smoothers form just one class of the large collection of scatterplot
smoothers developed over the years. In this section we briefly describe some of
the other main classes.

3.15.1 Local Polynomial Fitting

One of the most popular methods for smoothing a scatterplot is local polynomial
fitting. One of its advantages compared with spline-based smoothers is simpler
theoretical analysis. This has allowed greater insight into the smoothing process.
Summaries of this theory are given in Wand and Jones (1995), Fan and Gijbels
(1996), and Loader (1999).

Figure 3.23 provides an illustration of the basic idea. The smooth at x = u is
obtained by fitting a weighted least-squares line where the weights correspond to
the height of the kernel function, which is shown at the base of the plot. The es-
timate at x = v is obtained similarly and also illustrated in Figure 3.23. If this
procedure is applied over a grid of x-values then the solid curve results.

In Figure 3.23, local lines are being fitted. However, polynomials of any de-
gree could be used. Let p be the degree of the polynomial being fit. At a point
x, the smooth is obtained by fitting the pth-degree polynomial model

E(yi) = Bo+ Bi(xi = x) + -+ Bplxi — x)F

using weighted least squares with kernel weights K (b7 (x; — x)}. The kernel
function K is usuaily taken to be a symmetric positive function with X (x) de-
creasing as |x| increases. For example, Figure 3.23 uses the standard normal
density function. The parameter b > Qs the smoothing parameter for local poly-
nomial smoothers and is usually referred to as the bandwidth. The value of the
curve estimate is the height of the fit ﬁg, where ﬁ = [ﬁo, ey ﬁp]T minimizes

Z[)’i —Bo— - — Bplxi *x)”}zK(Xf—b:t—)-
i=1

Assuming the invertibility of XI W, X,, standard weighted least-squares theory
leads to the solution )
f=XIW,X,) X[ Wy,

where
1 xp—x -« (x1—x)

X;=1: . . :
I xy—x o (xa—x)P

is an n x (p + 1) design matrix and
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is an n x n diagonal matrix of weights. Since the estimator of f(x) = E(y|x) is
the intercept coefficient, we obtain

Fxs p, ) = el(X] W X)X Wy,

where e is the (p + 1) x 1 vector having 1 in the first eniry and 0 elsewhere.
The case p = 0 results in the Nadaraya—Watson (Nadaraya 1964; Watson

1964} estimator:
Xj— X
K i
> ( 2 )y

m(x;0,b) = i::l )
> k(")
b

i=1

The data analyst must choose p and b. Our experience is that p = | works well if
f appears to be monotonically increasing; otherwise, p = 2 is satisfactory, The
bandwidth b can be chosen by trial and error with visual inspection, but it can
also be chosen from the data using one of the automatic smoothing parameter
selection approaches discussed in Chapter 5.

The Nadaraya—Watson (or “local constant™) estimator has long been studied
by theoreticians, but the local linear (p = 1} estimator seems to have been more

Figure 3.23 Local
linear scatterplot
smooth (solid
curve) based on

100 simulated
observations
(represented by
circles). The dotted
curves are the kernel
weights and cubic fits
at the points u and v.



A sequence a, is
O(cy,) if there exists a
constant M such that
la,| = Mlcy| for n.
In other words, a, is
bounded by a multiple
of ¢,. Thus, saying
that the bias is O(b?)
means that there is

a constant M such
that the bias when
using bandwidth b is
bounded in absclute
value by Mb? for
any b.
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widely used in practice after the seminal paper of Cleveland (1979). The reasons
for the superior practical performance of local linear over local constant estima-
tion became clearer with the papers of Fan (1992, 1993). Near the boundaries of
the data — and also in the interior, if the x are unequally spaced — local linear es-
timation is less biased than local constant estimation. Fan (1992, 1993) showed
that, as n — oo and b — 0, the bias of f(x; b, p) is O(b%) for all x but the bias
of t(x; b, p) is O(b) at the boundaries and O(b?) at the interior. Ruppert and
Wand (1994) showed that this effect of greater asymptotic bias near the bound-
ary than in the interior holds for all even values of p. However, experience with
data and simulation studies is required when interpreting this asymptotic result.
The effect of this “boundary bias” is most severe for p = 0. In practice, p =2
is an excellent choice for the degree of the local polynomials and is much less
variable near the boundaries as compared to p = 3. In simulation studies, p = 2
often outperforms p = 1 and p = 3.

There are several variations on the basic local polynomial fitting idea depicted
in Figure 3.23. Mostly they involve changing the value of the bandwidth across
the estimation region. For example, the method of Cleveland (1979) sets the band-
width so that the number of points used to estimate f(x) is fixed, regardless of the
estimation location x. The resulting scatterplot smooth is named LOESS (short
for “local regression”).

Relative to penalized splines, local polynomial regression is slow to compute
if programmed directly. However, there are several strategies for speeding up the
calculations (see e.g. Cleveland and Grosse 1991; Hirdle and Scott 1992; Fan and
Marron 1994; Seifert et al. 1994),

3.15.2 Series-Based Smoothers

Without loss of generality, assume that the regression function f is defined on
the unit interval [0, 1]. Under certain regularity conditions, f admits the Fourier
series representation

f(x)y= o+ Y _(Bf sin(jmx) + Bf cos(jmx)).
ji=l

For higher values of j, the functions sin( jzx) and cos( jzx) become more oscil-
latory, as shown in Figure 3.24. The more oscillatory functions account for the
finer structure in f. For smoother f, the corresponding coefficients will be small.
This suggests the model

J
FO) = fo+ Y (B sin(jmx) + B} cos(jmx)),
=1
where ﬁ;, ﬁf (1 < j < J)and j are all estimated by least squares. The cut-off
value J is the smoothing parameter in this case.
Other basis functions that are ordered by amount of oscillation may be used in-
stead of the trigonometric basis functions. An example is the Demmier—Reinsch



