
Statistics 3858 : Statistical Models, Parameter Space and

Identifiability

In an experiment or observational study we have dataX1, X2, . . . , Xn. These we view as a observations

of random variables with some joint distribution.

Definition 1 A statistical model is a family of distributions F such that for any possible n, a given

distribution f ∈ F gives a joint distribution of X1, X2, . . . , Xn.

Note that f above may be either a joint pdf, pmf or cdf, depending on the context. Every f ∈ F must

specify the (joint) distribution of Xi, i = 1, . . . , n. Sometimes we use a subscript n, that is fn, to indicate

the dependence on the sample size n.

For a given sample size n, let fn be the joint pdf of the random variables Xi, i = 1, 2, . . . , n. Suppose

the Xi’s are iid with marginal pdf f . Then the joint pdf is of the form

fn(x1, x2, . . . , xn) =

n∏
i=1

f(xi) . (1)

There is of course the analogue for iid discrete r.v.s. Notice also in the iid case the statistical model can

also be viewed or described by the simpler one dimensional marginal distribution. That is by specifying

the one dimensional marginal, say f , the one specifies the n dimensional joint pdf fn ∈ F .

Notice, in this iid case, a single one dimensional marginal f will specify the who sequence f1, f2, f3, . . .

of the n dimensional marginals of X1 ∼ f1, (X1, X2) ∼ f2, (X1, X2, X3) ∼ f3, . . .. In order to be

technically more precise we would need to consider F as a set of sets, one of these subsets for each

collection of distributions {f1, f2, f3 . . .} that gives the lower n dimensional marginals of X1, X2, X3, . . ..

In this iid case we can simplify the description of the family F to the corresponding family of marginal

distributions f . For example if Xi’s are iid normal, then the marginal distributions belong to

{f(·; θ) : θ = (µ, σ2), µ ∈ R, σ2 ∈ R+} .

Shortly we will consider parameter spaces and so will not consider the formulation of a statistical model

in a more precise form. For our purposes it is the specification of the joint distribution of X1, . . . , Xn for

all relevant sample sizes n.

In many dependent random variables cases we can also obtain their joint distribution. For example

consider the so called autoregressive order one process, AR(1). It is defined iteratively as

Xi+1 = βXi + ϵi+1 (2)
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Specifically suppose that the r.v.s ϵi are iid N(0, σ2) and independent of the random variables up to time

index less that i. Let f be the N(0, σ2) pdf. Then the conditional distribution of X1 given that X0 = x0

is

fX1|X0=x0
(x) = f(x− βx0)

Similarly we have the conditional distribution of Xt+1 given X0 = x0, X1 = x1, . . . , Xt = xt, which by

the Markov property is the same as the conditional distribution of Xt+1 given Xt = xt, given by

fXt+1|Xt=xt
(x) = f(x− βxt)

This then gives the joint conditional pdf fn of X1, X2, . . . , Xn conditioned on X0 = x0 as

fn(x1, x2, . . . , xn) =

n∏
i=1

f(xi − βxi−1)

In this case the joint distribution for any n is equivalent to knowing the initial condition x0, the parameter

β and the (marginal) distribution f of the random innovations ϵ. For example one may then talk about a

normal autoregressive model with initial condition x0 as a short hand for the statistical model (2) where

ϵt are iid N(0, σ2). Notice there are two additional parameters β and σ2.

One can also obtain for example the conditional distribution ofX1, X2, . . . , Xn conditioned onX0 = x0

for a Markov chain. For this statistical model, in the case of a time homogenous Markov chain, one needs

to specify the transition matrix P .

If one knows which distribution f ∈ F is the true distribution, then based on this one can make any

probability statement, that is make statistical predictions of a future observation.

In the case of iid r.v.s one can then make predictive statements such as calculating P (Xn+1 ∈ [a, b])

for any interval [a, b], or statements such as calculating E(Xn+1).

In the case of an AR(1) process, this means that one must know β, σ2 and then one has the conditional

distribution of Xn+1 conditioned on Xn = xn, the observed value. This allows one to then calculate the

conditional expected value of the next observation

E(Xn+1|Xn = xn) = βxn

or calculating the conditional probability of the next observation falling into a specified interval P (Xn+1 ∈
[a, b]|Xn = xn).

In the AR(1) with normal innovations we can find the joint pdf of X1, . . . , Xn given X0 = x0,

fn(x1, . . . , xn|x0) =
n∏

i=1

{
1√
2πσ2

e−
(xi−βxi−1)2

2σ2

}
.

The student should try to see why we have the formula above.

In the case of iid data, one can give the marginal distribution, and related statements from this, about

the distribution of a future or new observation. This allows one to give the so called prediction interval

of a new or future observation.

Without the idea of a statistical model, when we have observations x1, x2, . . . , xn we would not be

able to predict anything about a new or future observation.
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The statistical question is the following : based on data X1, X2, . . . , Xn how can one estimate or guess

which if any distribution in F is the correct one?

To work towards answering this question, we now consider parametric families, and simplify the

question to estimation of these parameters.

Θ will be a set of numbers of d-tuples, that is Θ ⊂ Rd. This will be called a parameter space for the

family F is there is a one to one correspondence between Θ and F .

Example 1 : Suppose Xi, i = 1, . . . , n are iid normal. The family of normal densities on R is then in

a 1 to 1 correspondence with

Θ = {θ = (µ, σ) : µ ∈ R, σ > 0} = R×R+

Example 2 : Suppose Xi, i = 1, . . . , n are iid exponential. The family of exponential densities on R

is then in a 1 to 1 correspondence with

Θ = {θ : θ > 0} = (0,∞) = R+

Example 3 : Suppose Xi, i = 1, . . . , n are iid Gamma. The family of Gamma densities on R is then

in a 1 to 1 correspondence with

Θ = {θ = (α, λ) : α > 0, λ > 0} = (0,∞)× (0,∞) = R+ ×R+

Example 4 : Suppose Xi, i = 1, . . . , n are iid Binomial, size m. The family of Binomial pmf-s is then

in a 1 to 1 correspondence with

Θ = {θ : 0 ≤ θ ≤ 1} = [0, 1]

We may also further restrict in some examples the set of parameters to be not 0 or 1, that is

Θ = {θ : 0 < θ < 1} = (0, 1)

This is because for example if θ = 0, then with probability 1, all the random variables take on the value

0, which is not very interesting as a random process.

Another comment to note is that m is not a parameter in the same sense as θ, since m is chosen by

the experimenter, whereas θ is typically not known, and hence the experiment is performed to estimate

θ. The number m is called an ancillary parameter, and in not the object of our inference procedures.

Example 5 : Suppose Xi, i = 1, . . . , n are iid Poisson. The family of Poisson pmf-s is then in a 1 to 1

correspondence with

Θ = {θ : θ > 0} = (0,∞) = R+

Example 6 : Consider the AR(1) process (2) with normal innovations. The joint distribution of fn

fn of X1, X2, . . . , Xn conditioned on X0 = x0 is then in a one to one correspondence with

Θ = {θ = (β, σ2) : −1 < β < 1, σ2 > 0} = (−1, 1)×R+ .

There is a restriction for the parameter β, that is |β| < 1. This is discussed in a time series course and

not further here.
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Example 6 : Some distributions have infinite dimensional parameters. Consider a probability distri-

bution on the non-negative integers. If is of the form

f(k) = ak, k = 0, 1, 2, . . .

and f(k) = 0 for all other numbers k, and where ak ≥ 0,
∑∞

k=0 ak = 1. In order to specify such a

distribution on must specify infinitely many numbers ak, k = 0, 1, 2, . . .. Thus the family of distributions

F on the non-negative integers requires a parameter space of dimension ∞.

Notice that for this family of distributions there are many special finite dimensional subfamilies of

distributions, for example the Poisson family.

Example 7 : Consider the family of probability distributions on the set set A = {1, 2, 3, . . . ,m} for

a given positive integer m ≥ 2. To specify a probability distribution on A we must specify numbers aj

such that

aj ≥ 0 , and
m∑
j=1

aj = 1

Thus we must specify m − 1 numbers, say a1, a2, . . . , am which are greater than or equal to 0 and sum

to a value less than 1. The last value am is then determined as

am = 1− (a1 + a2 + . . .+ am−1)

Thus a parameter space to specify this family of distributions is of dimension m−1. A natural parameter

space is

Θ =

(a1, a2, . . . , am) : aj ≥ 0, j = 1, 2, . . . ,m and

m∑
j=1

aj = 1


This set is called the simplex of order m.
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Definition 2 We say a parameter is identifiable if for any two members of the family of distributions

that are equal (as functions in their arguments), then the corresponding parameters are equal.

Example 4 : An element of this family of distributions is a function which maps k ∈ {0, 1, . . . ,m} to

a real number by the formula

f(k; θ) =

(
m

k

)
(1− θ)m−kθk

and maps all other arguments to 0. Suppose that we take two such functions, say f1 and f2 determined

by θ1 and θ2 respectively, and that f1 = f2. Thus for each k ∈ {0, 1, . . . ,m} we have f1(k) = f2(k), that

is (
m

k

)
(1− θ1)

m−kθk1 =

(
m

k

)
(1− θ2)

m−kθk2

In particular by taking k = m we have

θm1 = θm2

and hence θ1 = θ2. Thus the parameter θ is identifiable in the Binomial model.

The student should verify that the parameter is identifiable in a Poisson model.

Example 1 : Consider the normal model. Here a member of this family of distributions is of the form

f(x; θ) =
1√
2πσ2

e−
(x−µ)2

2σ2 , −∞ < x < ∞

where θ = (µ, σ2). For θ1 and θ2 consider the two corresponding normal pdf-s f1 and f2 respectively.

Suppose f1 = f2, that is for all arguments x we have f1(x) = f2(x). Can we conclude that θ1 = θ2?

f1(x) = f2(x) ⇔ 1√
σ2
1

e
− (x−µ1)2

2σ2
1 =

1√
σ2
2

e
− (x−µ2)2

2σ2
2

⇔ e
−(x−µ1)2

2σ2
1

+
(x−µ2)2

2σ2
2 =

√
σ2
1√

σ2
2

⇔ −(x− µ1)
2

2σ2
1

+
(x− µ2)

2

2σ2
2

=
1

2

(
log(σ2

1)− log(σ2
2)
)

Since this last line holds for all x, the LHS is a polynomial of degree 2 in x and the RHS is constant with

respect to x, then the coefficients of x and x2 must be equal to 0.

An alternative method is to note that LHS is differentiable with respect to the argument x, and hence

the second derivative of LHS must equal the second derivative of RHS which is 0. We then conclude

coefficient of x2 := − 1

σ2
1

+
1

σ2
2

= 0

and hence σ2
1 = σ2

2 . Next

coefficient of x :=
µ1

σ2
1

− µ2

σ2
2

= 0

and we conclude µ1 = µ2.

Aside : If we used a parameter space Θ = {(µ, σ) : µ ∈ R, σ2 > 0}, the parameter would not be

identifiable, since both (µ, σ) and (µ,−σ) would give the same normal pdf.
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Aside : In the binomial example (Example 4) we could not use the polynomial or differentiability

property as the pmf is not even continuous in real arguments, and in particular not differentiable. To see

this the student should sketch the function f(x; θ), with θ = 1
2 , where

f(x; θ) =

{ (
m
x

)
(1− θ)m−xθx if x = 0, 1, . . . ,m

0 otherwise

In addition we could not use the polynomial coefficients property for the function f(x; θ) to identify θ,

because f is not a polynomial in real argument x.

The student should now verify that the Gamma model is identifiable. Can you use differentiability

with respect to the argument x in this case?

The student should verify that the bivariate normal model is identifiable. Notice the pdf is a func-

tion of two arguments. Can you use properties of polynomials or differentiability to verify parameter

identifiability?

Are there cases where the parameter is not identifiable? When the model and parameters are properly

formulated the answer in general is no, but sometimes there are additional constraints. For the iid models

we consider in this course the parameters will always be identifiable. For time series model there are

sometimes additional restrictions or constraints on the parameter space (consider the AR(1) Gaussian

model discussed above where it is required that −1 < β < 1). In some multivariate time series models

it has taken some years in order to determine that the parameters are identifiable. Another model

known as a competing risks model gives a model of in which there are several diseases, each with a

potential death time τ1, . . . , τK , and the patient then dies at the minimum of these potential death times,

T = min(τ1, . . . , τK). When a patient dies the cause 1, . . . ,K is not known or at least the other potential

death times are not observed. The distribution of T does not allow one to identify the parameters of the

distributions of the other r.v.s τ1, . . . , τK , except in the case that the τ1, . . . , τK are independent.

In the area of experimental design there is also non-identifiability. It is for this reason there are often

additional parameter restrictions, for example sums of certain parameters equal to 0, and the issue of

confounding.
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