
Goodness of Fit Tests

1 Introduction

Chapters 8, 9, 10 have some miscellaneous material about model checking. Also students

have used some of these informal methods in earlier courses or earlier in this semester.

Goodness of fit problems are generally of the form to test or check that data come from

a particular statistical model or from any other model, perhaps with some restriction.

Often we assume that Xi, i = 1, . . . , n are iid from some normal distribution, but can

we check or test this assumption. We might also wish to check if the r.v.s are consistent

with an assumption that they are uncorrelated (this is not the same as testing they are

independent), or perhaps some functions of the r.v.s are uncorrelated.

One may wish to check an assumption that r.v.s Xi, i = 1, . . . , n are iid from some

Poisson distribution, versus an assumption that they are iid from any other form of

distribution.

These notes discuss this idea, but not in a complete fashion.

Generally we test that Xi are iid with distribution F (or perhaps omf or pdf f) from

a parametric family of distributions F versus a general alternative F ∈ G\F , where G
is the set of all possible distributions (of the right dimension and continuous or discrete

form). Thus we are testing H0 : F ∈ F versusHA : F ∈ G\F . This is a hypothesis test,

but not of a parametric form. It is not easy to put this into a GLR form.
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2 Pearson’s chi-square Goodness of Fit Statistic

Earlier we studied the GLR for a multinomial model, usually against a general alternative,

that is of the form H0 : p ∈ Θ0 versus HA : p ∈ ΘA = Θc
0. We have a Theorem (see earlier

notes) under the two assumptions of a regular statistical model, and for iid sampling, the

r.v. −2 log(Λ(X) converges in distribution to χ2 as the sample size n → ∞, and when

this distribution is evaluated in the null hypothesis case. In some settings this is called

the Pearson’s chi-square goodness of fit statistic.

This terminology is used in the following sense. Amongst all possible multinomial

distributions, a test is performed for a specific null hypothesis. If we accept the null

hypothesis, then we decide that a special reduced form of a multinomial fits the data

well. If we reject the null we decide this special form of the multinomial does not fit the

data well. In other words we test if the special form of the multinomial as given by the

null hypothesis is a good fit for the data, or in other words test the goodness of fit of the

special form of the multinomial.

The Hardy Weinberg example is such a case. In this problem every trial of the

experiment results in an outcome of a trinomial r.v., M = 3, with probability vector

p = (p1, p2, p3) ∈ Θ = S3, the simplex of order 3. A special form of this trinomial has

p = ((1− θ)2, 2θ(1− θ), θ2) where θ ∈ [0, 1]. This gives the null hypothesis

H0 : p ∈ Θ0 =
{

((1− θ)2, 2θ(1− θ), θ2) : θ ∈ [0, 1]
}

and the alternative

HA : p ∈ ΘA = Θc
0 .
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Extension of Multinomial Test

We can use the same idea to test for the goodness of fit of a Poisson model. Here we

have an experimental setting with iid r.v. X1, X2, . . . , Xn which come from a distribution

with support N0, the set of non negative integers. The parameter space is

Θ =

{
p = (p0, p1, p2, . . .) : pi ≥ 0,

∞∑
i=0

pi = 1

}
.

We have a null hypothesis which is that p is belongs to the set of Poisson distributions,

that is it belongs to the set

Θ0 =

{
p = (p0, p1, p2, . . .) : pi =

λi

i!
e−λ, λ > 0

}
.

Let λ̂ be the MLE.

In this case we need to modify the application of the Pearson’s chi-square multinomial

goodness of fit test, since of course dimension(Θ) =∞. To do this we group the observa-

tions into M bins, 0, 1, . . . ,M − 2,≥M − 1. We then compare the fitted multinomial

p =
(
p(0, λ̂), p(1, λ̂), . . . , p(≥M − 1, λ̂)

)
against the general multinomial with

p = (p0, p1, . . . , pM−1) ∈ SM

the simplex of order M . This gives rise to the Pearson’s chi-square, which under the null

hypothesis has a limit χ2
(M−1−1) distribution. Also note that

p(≥M − 1, λ̂) = 1−
M−2∑
k=1

p(k, λ̂) .

How does one choose M? In a study outside this course, it has been found that the

null distribution approximation works well provided that

Ê0(Nk) = np(k, λ̂) ≥ 5
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for all the categories. Also one typically wants to use several categories, maybe 5 to

10 or 20, but not a large number of categories. These are only guidelines, obtained by

simulation studies and numerical analysis.

In some applications one uses categories that might not correspond to bins 0, 1, . . . ,M−
1. Perhaps one might decide to include 0, 1 into a single bin.

This procedure generally works well in practice.
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3 Test for Normality

Consider the setting where X1, . . . , Xn are iid with some distribution F , assumed to be

continuous, so that F has pdf f . We consider

H0 : f ∈
{
f = N(µ, σ2) : µ ∈ R, σ2 > 0

}
≡ Θ0

versus

HA : F ∈ Θc
0

where Θ = the set of all continuous distributions on R = (−∞,∞).

Formal or informal tests are used to test this type of hypothesis.

The informal or graphical test that is commonly used is a normal quantile-quantile

plot, or qqnorm plot (in R terminology). These plots can be made formal, but putting

confidence bands about the qqline, but this involves a topic of Brownian motion and

stochastic process. This is rarely done in practice as it is not implemented in most

software.

Another test that is used is the Jarque-Bera test, which is a sum of the squares the

sample skewness and sample kurtosis. It has a limiting χ2
(2) distribution.

JB = n

1

6

(
µ̂3

σ̂3

)2

+
1

24

(
µ̂4

σ̂4
− 3

)2


which is a linear combination of squares of the sample skewness and centred sample

kurtosis. If Xi are iid normal (from any normal distribution) then the population skewness

is 0 and the population kurtosis is 3.
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4 Empirical Distribution Function

For r.v.s Xi, i = 1, . . . , n the empirical distribution function is

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x) .

Notice that Fn has the properties of a cdf.

Various tests are constructed to examine how close F or F (·, θ̂n) is to Fn. The

Kolmogorov-Smirnov test statistic is the most commonly used. It is

KS =
√
nmax

x∈R
|F (x)− Fn(x)| (1)

if the null is a simple hypothesis (no parameters to be estimated), or is

KS =
√
nmax

x∈R

∣∣∣F (x, θ̂n)− Fn(x)
∣∣∣ (2)

if parameters θ need to be estimated.

The distribution of the KS in (1) has a limit distribution form that is tabulated in the

this simple null hypothesis case. It is also implemented in R and many other statistical

languages and packages, and hence KS is calculated and critical values are provided. In

the case of (2) packages do not generally implement this, and so one might need to write

code to calculate KS and some other method, such as Monte Carlo or simulation methods,

to obtain the appropriate critical value.
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