
Statistics 3858 : Contingency Tables

1 Introduction

Before proceeding with this topic the student should review generalized likelihood ratios Λ(X) for multi-

nomial distributions, its relation to Pearson’s chi-squared statistic, and the Theorem about the chi-square

limit distribution for −2 log(Λ(X))

Contingency table data are counts for categorical outcomes and look to be of the form

columns

row 1 2 . . . J

1 n1,1 n1,2 n1,J n1·

2 n2,1 n2,2 n2,J n2·
...

I nI,1 nI,2 nI,J nI·

n·,1 n·,2 n·,J n··

This table is of J columns and I rows, which we refer to as a I by J contingency table. The count for the

cell (i, j) is ni,j . The row totals, the last column in the table, is not part of the data, but is calculated as

the row sum over the column categories 1, 2, . . . , J and is denoted as

ni· = ni,1 + ni,2 + . . .+ ni,J =
J∑

j=1

ni,j

The notation of the subscript i, · is convenient to tell us we are summing over the second index. Similarly

the column totals are

n·j = n1,j + n2,j + . . .+ nI,j =

I∑
i=1

ni,j

Finally the total number of observations or counts is the sum of the row and column counts and is

n·· =
I∑

i=1

J∑
j=1

ni,j .
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A random contingency table will have random counts Ni,j in the various categories.

2 Data Generating Mechanisms

There are different sampling mechanisms that can generate random contingency tables. In our statistical

inference language we have to recognize there are different statistical models, and hence different param-

eter spaces. When we study hypothesis testing in these models, the hypotheses depend very much on

the statistical model and parameter space. There are two main mechanisms for generating random data,

that is two main statistical models.

Mechanism 1

Data is collected from J experiments. For each experiment there nj trials, and each trial falls into

categories 1, 2 , . . . , I. This is the type of data obtained from the Jane Austin example. For experiment

j the data is

Nj = (N1,j , N2,j , . . . , NI,j)

which has a multinomial distribution with n·,j trials and parameter

p·,j = (π1,j , π2,j , . . . , πI,j)

which belongs to the simplex of order I, say SI . For the experiment the parameter space is

Θ = SI × . . .× SI

This is a parameter space of dimension J(I − 1).

Mechanism 2

Each trial has an outcome of one of IJ categories, that is all possible (i, j) categories. The experiment

consists of n = n·,· independent multinomial single trials. The random data is

N = (Ni,j)i=1,...,I,j=1,...,J

which has a multinomial distribution with parameter n and

p = (p1,1, . . . , p1,J , p2,1, . . . , pI,J)

which belongs to the simplex of order IJ , that is

Θ = SIJ .

This parameter space has dimension IJ − 1.
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The notation for a vector

a = (ai,j)i=1,...,I,j=1,...,J

is a convenient notation for the more cumbersome notation

a = (a1,1, . . . , a1,J , a2,1, . . . , aI,J)

and means that we are writing the components in this specific order. Actually it does not matter on the

specific order as long as we are consistent in our writing, so in particular we use the ordering given here.

This notation is used in the remainder of the handout where appropriate.

Notice the two sampling mechanisms and their models are quite different.

For mechanism 1, the numbers n·,j are typically not random or are set by the mechanism generating

the data - ie the experimenter, but are the number of trials for experiment j. For mechanism 1 Ni,j

are random, and for a given j we have
∑I

i=1 Ni,j = N·j , due to a basic property of the multinomial

distribution. For mechanism 2, the numbers N·,j are random, and in fact have a multinomial distribution

with probability vector

πCol = (p·,1, p·,2, . . . , p·,J)

Similarly for mechanism 2 the row totals or row counts are random with probability vector

πRow = (p1,·, p2,·, . . . , pI,·)

For mechanism 1 it makes sense to consider a hypothesis such as : The J probability vectors p·,j are

all equal. This question does not make sense for mechanism 2.

For mechanism 2 we could consider the two marginal distributions for Row and Column, and the two

marginal random vectors, corresponding to Row and Column. Each individual trial falls into one row

and column, and so may be thought of as a bivariate random variable (R,C). We could then consider

a hypothesis that these two random variables R and C are independent. This question is sensible for

mechanism 2, but not for mechanism 1.

These are not the only types of hypotheses that one might test for mechanisms 1 and 2, but are the

most basic and common null hypotheses of interest. We will not study other hypothesis for contingency

tables in this course.

Mechanism 1 is well suited for studying categorical data from J different experiments.

Mechanism 2 is well suited to study an experiment is which each individual has categorical data on

two variables, and each of these variables falls into I and J categories respectively. For example we may

take measurements on patients with a particular type of disease and study two physiological variables,

such as blood type and diet type, or those given some treatment (cancer treatment) and measure tumor
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size (small, medium or large) after 1 month and gender type (male or female). It is interesting to know

if the pair of variables are independent. If so, then knowing gender will not help to predict if after

treatment the tumor is large or small. In an insurance setting one may look at some classes of accidents

and consider similar questions.

Contingency tables may be of more than 2 dimensions, but we only consider them of dimension 2 or

sometimes 3.

The method used in the hypothesis testing is GLR, generalized likelihood ratio. In the multinomial

case recall that −2 log(Λ(N)) is approximately equal to Pearson’s chi-square statistic; this was obtained

by a Taylor’s formula approximation. Also −2 log(Λ(N)) converges in distribution as the sample size

n = n·· → ∞, under the null hypothesis assumption, to a χ2
(df) distribution and the degrees of freedom is

df . The student should review how this is calculated. For sampling mechanism 1 we also need to think

about what does it mean for the sample size tending to infinity.

Student’s should also recall one of the calculations about the GLR and its relation to the Pearson’s

chi-square statistic. Specifically we found, with the notation changed for our cells indexed by i, j instead

of j,

−2 log(Λ(N)) ≈ −2

I∑
i=1

J∑
j=1

Ni,j log(p̂
(0)
i,j )/p̂i,j)

=
J∑

j=1

I∑
i=1

(
Ni,j − Ni·n·j

n··

)2

Êi,j

=
J∑

j=1

I∑
i=1

(
Ni,j − Êi,j

)2

Êi,j

≡ X2

where p̂
(0)
i,j is the MLE calculated under the null hypothesis assumption, which differs for mechanism 1

and 2, and Êi,j is the expected counts for cell i, j, which also differ for mechanism 1 and 2.

It is an algebraic artifact that the final formula for Pearson’s chi-square X2 happens to be the same

algebraic formula in both mechanism 1 and 2. This will happen due to the different expressions for the

MLE under the null hypothesis and an algebraic conincidence or cancellation.
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3 Test of Homogeneity or Equal Population Probability Vectors

In this problem the data is obtained in a form of mechanism 1. There are J populations with probability

vectors

p·,j = (π1,j , π2,j , . . . , πI,j)

which belongs to the simplex of order I, say SI . For the experiment the parameter space is

Θ = SI × . . .× SI .

The null hypothesis of interest is

H0 : p·,j are all equal (= π), j = 1, . . . , J

The vector π is the common value of these vectors. This null hypothesis is also referred to as homogeneity

of these probability vectors, or equality of these probability vectors. The notation means for the vectors,

of length I, the corresponding components are equal, that is for each component index i we have

πi1 = πi2 = . . . = πiJ

or equivalently

πi1 = πi2 = . . . = πiJ for all i = 1, 2, . . . , I .

The vector notation is more clear. The Rice textbook uses the component notation.

We might also write

p(j) = (π1,j , π2,j , . . . , πI,j)

or

π(j) = (π1,j , π2,j , . . . , πI,j)

as another notation or way of writing p·,j .

The set Θ0 is

Θ0 = {(p·,1, . . . ,p·,J) ∈ Θ : p·,j = p = (π1, . . . , πI) for some p ∈ SI}

We have

Dim(Θ0) = I − 1 .

The alternative is the general alternative

HA : p·,j ∈ Θc
0
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Thus the limiting χ2 distribution has degrees of freedom

df = J(I − 1)− (I − 1) = (J − 1)(I − 1) .

The student should review the multinomial MLE handout. Following this method the student should

verify that the argmax for the denominator in the GLR is

π̂i,j =
ni,j

n·j

Next we need to calculate p̂0, the MLE under the null hypothesis. The MLE for this case is

π̂(0)
n = (π̂1,n, . . . , π̂1,n)

(
n1·

n··
, . . . ,

nI·

n··

)
For convenience we are using the notation superscript (0) to denote the MLE under the null hypothesis

assumption.

For the student : Write out the log likelihood, under the null hypothesis, and derive the MLE.

We now calculate the Pearson’s chi-square formula. Notice the estimate expected counts for cell i, j

is

Êi,j = n·j
ni·

n··
=

ni·n·j

n··
.

Recall mechanism 1 and that the random variable in this experiment is Nj , whereas the trials in a given

experiment is n·,j . Pearson’s chi-square is then

X2 =
J∑

j=1

I∑
i=1

(
Oi,j − Êi,j

)2

Êi,j

=
J∑

j=1

I∑
i=1

(
Ni,j − Ni·n·j

n··

)2

Êi,j

The degrees of freedom for the limiting chi-square distribution are J(I − 1) − (I − 1) = (J − 1)(I − 1).

Thus the Pearson’s chi-square r.v. X2 → χ2
((J−1)(I−1)) in distribution as n = n·· → ∞.

See Jane Austin examples using the data from the text.
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4 Test of Independence for Contingency Table Data

For this problem the experiment has data collected by mechanism 2, that is each random variable is an

observation from a multinomial trial with IJ categories (or classes). Here the parameter space is

Θ = SIJ

Since each random observation falls into a give row and column, we may also think of it as a bivariate

random variable. That is an observable random variable, say Y is also

Y ≡ (R,C)

where R and C are the random row and column for observation Y .

The null hypothesis is that the random variables R and C are independent. If the marginal distribu-

tions of these random variables are

πRow = (π1·, π2·, . . . , πI·)

πCol = (π·1, π·2, . . . , π·J)

then the null hypothesis is that for each i, j

pi,j = πi·π·j .

The null hypothesis does not specify what are these marginal probability vectors, so this is a composite

null hypothesis.

Formally

H0 : p = (pi,j)i=1...I,j=1...J = (πi·π·j) i = 1 . . . I, j = 1 . . . J for some πRow ∈ SI , πCol ∈ SJ

or equivalently

H0 : p ∈ Θ0

where

Θ0 =
{
(pi,j)i=1...I,j=1...J = (πi·π·j) i = 1 . . . I, j = 1 . . . J for some πRow ∈ SI , πCol ∈ SJ

}
The dimension of Θ0 is (I − 1)(J − 1).

MLE under the model and null hypothesis.

In this case

pij = πi·π·j



Contingency Tables 8

and the log likelihood is

logL(p) =

I∑
i=1

J∑
j=1

ni,j (log(πi·) + log(π·j))

It is easiest to maximize using the Lagrange multiplier method since there are two linear constraints.

The student should find the MLE using this method and show we obtain

π̂i· =
ni·

n··
, π̂·j =

n·j

n··
.

Thus under the null hypothesis assumption we have

Êij = n··π̂i·π̂·j =
ni·n·j

n··

Completing the calculation we find the Pearson’s chi-square formula (in terms of the r.v. N) is

X2 =

J∑
j=1

I∑
i=1

(
Oi,j − Êi,j

)2

Êi,j

=
J∑

j=1

I∑
i=1

(
Ni,j − Ni·n·j

n··

)2

Êi,j

The degrees of freedom are IJ − 1− (I − 1)− (J − 1) = IJ − I − J +1 = (I − 1)(J − 1), and by Theorem

9.4A X2 → χ2
(I−1)(J−1) in distribution as n·· → ∞.

This is the same test statistic and same limit distribution as in sampling mechanism 1, even though the

parameter space, sample space, null hypothesis and alternative hypothesis are different in this mechanism

2 versus mechanism 1.

5 Other Hypotheses and Contingency Tables

As the Rice text mentions there are other null hypotheses of interest. These are often special cases of

interest in either biostatistics or sometimes social sciences. They will also apply to insurance data. In

these various applications the sampling mechanism is mechanism 2.

The applications are often for a 2 by 2 contingency table. Since the sampling mechanism is mechanism

2, the data is of the type (R,C), that is each individual sampled corresponds to a bivariate observation,

indicating the row and column random variable.
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5.1 Odds Ratio

Rice uses the notation of rows and columns being numbered 0 and 1.

The null hypothesis is

H0 : Odds(C = 1|R = 0) = Odds(C = 1|R = 0)

where for an event A we define

Odds(A) =
P (A)

P (Ac)
=

P (A)

1− P (A)
.

Therefore

Odds(C = 1|R = 0) =
P (C = 1|R = 0)

1− P (C = 1|R = 0)
=

π01

π00

and

Odds(C = 1|R = 1) =
P (C = 1|R = 1)

1− P (C = 1|R = 1)
=

π11

π10

Thus H0 is written as

H0 :
π01

π00
=

π11

π10
.

There are some different methods in the way data is obtained, the so called restrospective and prospec-

tive methods.

We will not discuss this method further in the course.

5.2 Matched Pairs

This is also used in biostatistics. It is a method specialized to this type of data problem and can be

used in other areas such as social science. The distinction with the general mechanism 2 is what is the

population from which the experimenter draws the sample. The data is chosen from a population of pairs

of individuals, for example (patients , siblings), which is then one sampling unit. A given sampling unit

then has recorded random observations (R,C).

The null hypothesis of interest is that the marginal distribution of R is the same as the marginal

distribution of C Since there are two rows and columns R and C can takes values 1 or 2. The null

hypothesis is then

H0 : P (R = 2) = P (C = 2) .

Further simplification can be made.

We will not discuss this method further in the course.


