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1 Normal Distribution

Consider normal distribution with parameter y and o and density
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Derive MLE, Fisher information (matrix) and determine whether these esti-
mates attain the Cramér-Rao lower bound.

The MLE is
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Thus,

. o? 1

Var(X) = P m,

which shows that Var(X) attains the CR lower bound.
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We know from Chapter 6 that
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Thus,
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Here, Var(62) is less than the CR lower bound because 62 is a biased estimator
of 02. CR lower bound is for unbiased estimator ONLY.
Now consider S? which is unbiased.
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Var(S?) = Var <

Var(S5?) does not attain the CR lower bound. But it asymptotically equals to
the CR lower bound.

However, if u is known,

In this case,
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which achieves the CR lower bound.
To construct the Fisher information matrix, consider the off-diagonal ele-
ment
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Therefore the Fisher information matrix is given by
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Note that the Cramér-Rao inequality still holds for multivariate case, i.e.,
1
Var(T) > —171(0).
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For two matrices A and B, we say A > B if A — B is a positive semidefinite
matrix. I(6) is the variance the score function and thus it is positive definite
and invertible.



2 Binomial Distribution

Suppose X1, -+, X, is an iid sample from a Binomial(m,p) population, where
m is known.
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Log likelihood
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which shows that Var(p) achieves the CR lower bound.



