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1 Uniform

Sometimes Method of Moments and MLE provide the same estimates, but not
always. Let X1, · · · , Xn be iid from uniform[−θ, θ] with θ > 0.

Method of Moments
We have to use the second moment since E(X) = 0.

E(X2) =
∫ θ

−θ

x2 1
2θ

dx =
θ2

3
.

Then

θ̃ =

√√√√ 3
n

n∑

i=1

X2
i .

MLE

θ̂ = arg max
θ

L(θ)

= arg max
θ

n∏

i=1

1
2θ
I{−θ≤Xi≤θ}

= arg max
θ

1
(2θ)n

n∏

i=1

I{−θ≤Xi≤θ}

= max{|X(1)|, |X(n)|}.

Numeric Example in R

> r=runif(10000,-3,3) #unif[-3,3]
> sqrt(3/10000*sum(r^2)) #Method of Moments estimate
[1] 2.98994
> max(abs(min(r)),abs(max(r))) #MLE
[1] 2.999256
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2 Uniform # 2

Suppose X1, · · · , Xn are iid with uniform[0, θ].

θ̃ = 2X̄. (done in last week’s tutorial)

θ̂ = arg max
θ

1
θn

n∏

i=1

I{0≤Xi≤θ} = X(n).

E(θ̃) = 2E(X̄) = 2 · θ

2
= θ;

Var(θ̃) =
4
n2

nVar(X) =
4
n
· θ2

12
=

θ2

3n
.

Thus, θ̃ is unbiased.
Since

P(X(n) ≤ x) = P(X ≤ x)n =
(x

θ

)n

,

the density of X(n) is

fX(n)(x) =
nxn−1

θn
.

Then

E(θ̂) =
∫ θ

0

nxn

θn
=

n

n + 1
θ.

Var(θ̂) = E(θ̂2)−
(

n

n + 1
θ

)2

=
n

(n + 2)(n + 1)2
θ2 =

1
n2 + 4n + 5 + 2

n

θ2 < Var(θ̃).

θ̂ is biased, but with smaller variance. If n is small, the bias is quite large. But
we are more preferable to θ̂ when n is large.

3 Discrete Case

Sometimes the derivative of the likelihood (or log-likelihood) may not exist. The
above is one example. Here is another one. Only one observation is taken on a
discrete random variable X with the following pmf, where θ ∈ {1, 2, 3}.

x f(x|1) f(x|2) f(x|3)
0 1/3 1/4 0
1 1/3 1/4 0
2 0 1/4 1/4
3 1/6 1/4 1/2
4 1/6 0 1/4

The MLE’s are the followings given different values of the observation.
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x 0 1 2 3 4
θ̂ 1 1 2 or 3 3 3

This example also shows that the MLE may not be unique and sometimes the
sample size may be extremely small.

4 Regression

Yi = βxi + εi, i = 1, · · · , n,

where ε1, · · · , εn are iid N(0, σ2) and xi’s are fixed. Find the MLE of β and σ2.
We know that Yi ∼ N(βxi, σ

2). The likelihood function (for the yi’s)

L(β, σ2) =
n∏

i=1

1√
2πσ2

exp
{
− (yi − βxi)2

2σ2

}
.

The negative log-likelihood function

l(β, σ2) = − log L(β, σ2) =
n

2
log(2πσ2) +

n∑

i=1

(yi − βxi)2

2σ2
,

and
(β̂, σ̂2) = arg min

(β,σ2)

l(β, σ2).

Consider the two partial derivatives of l,

∂l(β, σ2)
∂β

=
n∑

i=1

yi − βxi

2σ2
(−xi) = − 1

2σ2

n∑

i=1

(xiyi − βx2
i )

set= 0

⇒ β̂ =
∑n

i=1 xiyi∑n
i=1 x2

i

;

∂l(β̂, σ2)
∂σ2

=
n

2σ2
− 1

2σ4

n∑

i=1

(yi − β̂xi)2
set= 0

⇒ σ̂2 =
1
n

n∑

i=1

(yi − β̂xi)2.

5 Time Series

Likelihood function is not always the product of individual densities. This is
true when the observations are independent. Consider the simple AR(1) model

xt = αxt−1 + εt,
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where εt is iid white noise with mean 0 and variance σ2. Notice that ε does
not have to be normally distributed. In order to find MLE for α and σ2, quasi-
MLE is usually used in this case, by pretending the disturbance term follows
a normal distribution. Suppose the observed data is x1, · · · , xn. Then the
likelihood function (quasi-likelihood) is given by

L(α, σ2) = f1:n(x1, · · · , xn;α, σ2)
= f1:(n−1)(x1, · · · , xn−1;α, σ2)fn(xn|x1, · · · , xn−1;α, σ2)
= · · ·
= f1(x1;α, σ2)f2(x2|x1;α, σ2) · · · fn(xn|x1, · · · , xn−1;α, σ2)

where fi denotes the conditional density of xi given the past and fi:j , i < j
denotes the joint density of xi, · · · , xj .

All the conditional distributions are normal. We could think that the initial
value x1 is drawn from some distribution with density f1. But in this case, there
is no closed form solution and some numeric methods such as Newton-Raphson
have to be used to maximize the likelihood. To simplify our problem, we treat
the first observation as a deterministic number. Then

L(α, σ2) =
n∏

i=2

fi(xi|xi−1;α, σ2)

=
n∏

i=2

1√
2πσ2

exp
{
− (xi − αxi−1)2

2σ2

}
.

This is similar with result we attained in the regression problem. Therefore,

α̂ =
∑n

i=2 xi−1xi∑n
i=2 x2

i−1

;

σ̂2 =
1

n− 1

n∑

i=2

(xi − α̂xi−1)2.
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