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1 Uniform

Sometimes Method of Moments and MLE provide the same estimates, but not
always. Let Xq,---, X, be iid from uniform[—§, 8] with 6 > 0.

Method of Moments
We have to use the second moment since E(X) = 0.

Then

MLE
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Numeric Example in R

> r=runif(10000,-3,3) #unif[-3,3]

> sqrt(3/10000*sum(r~2)) #Method of Moments estimate
[1] 2.98994

> max(abs(min(r)),abs(max(r))) #MLE

[1] 2.999256



2 Uniform # 2

Suppose X, -+, X, are iid with uniform]0, 6].

0 = 2X. (done in last week’s tutorial)
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0 is biased, but with smaller variance. If n is small, the bias is quite large. But
we are more preferable to § when n is large.

3 Discrete Case

Sometimes the derivative of the likelihood (or log-likelihood) may not exist. The
above is one example. Here is another one. Only one observation is taken on a
discrete random variable X with the following pmf, where 6 € {1,2, 3}.

z flz[l) f(z]2) f(z3)
0 1/3 1/4 0
1 1/3  1/4 0
2 0 /4 1/4
3 1/6 1/4  1/2
4 1/6 0 1/4

The MLE’s are the followings given different values of the observation.



r 0 1 2 3 4
6 1 1 2o0r3 3 3

This example also shows that the MLE may not be unique and sometimes the
sample size may be extremely small.

4 Regression
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where €1, -+, €, are iid N(0,0?) and z;’s are fixed. Find the MLE of 3 and 2.
We know that Y; ~ N(Bz;,0?). The likelihood function (for the y;’s)

L(ﬁ,aQ):j ! exp{—(yi_w}.
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The negative log-likelihood function
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and

(8,6) = arg min (3, 02).
(5’0-2)

Consider the two partial derivatives of [,

ol o — yi — B 1
Ry s LT

202 o
=1 i=1
. 4T,
Zi—l €T3
6Z(B, 02) n 1 i ~ 9 set
To02 T 202 pr Wi AT =0
i=1
o1 - 5 0\2
= = Z(yz — P;)
i=1

5 Time Series

Likelihood function is not always the product of individual densities. This is
true when the observations are independent. Consider the simple AR(1) model

Ty = QTi—1 + €,



where ¢, is iid white noise with mean 0 and variance ¢2. Notice that ¢ does

not have to be normally distributed. In order to find MLE for o and o2, quasi-
MLE is usually used in this case, by pretending the disturbance term follows
a normal distribution. Suppose the observed data is zi,---,z,. Then the
likelihood function (quasi-likelihood) is given by

L(a,0%) = fra(21, 205 0,0%)
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where f; denotes the conditional density of z; given the past and f;.;,7 < j
denotes the joint density of z;,-- -, x;.

All the conditional distributions are normal. We could think that the initial
value x; is drawn from some distribution with density f;. But in this case, there
is no closed form solution and some numeric methods such as Newton-Raphson
have to be used to maximize the likelihood. To simplify our problem, we treat
the first observation as a deterministic number. Then
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This is similar with result we attained in the regression problem. Therefore,
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