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and thus

—n
t
p(r) =€~ (I B Rﬁ)

[T

wer of 2, say, n = 2%, we cap a :
hoose n to be a large powe -1 approxip,
mputing the inverse of the matrix I — Rt /n and then raising thy ma l‘:]fe
p(ttg by f;;:f;r (Ii)y utilizing k matrix multiplications). It can be shown that the maln‘:
tothe n

(1— Rt/n)~" will have only nonnegative elements.
Remark. Both of the preceding computational approaches for aPPfOXimatjng Ry
ha‘\are prot;abilistic interpretations (see Exercises 49 and 50).

Hence, if we again ¢

Exercises

1. A population of organisms consists of both male zlmd female members, 1, 3
small colony any particular male is likely to mate with any particular female iy
any time interval of length A, with probability Ak + o(h). Each mating imme.
diately produces one offspring, equally likely to be male or female, Let O
and N(t) denote the number of males and females in the population af . De §
rive the parameters of the continuous-time Markov chain { N (¢), Ny(1)), ie,
the v;, P;; of Section 6.2. 3
Suppose that a one-celled organism can be in one of two states—either A or B.
An individual in state A will change to state B at an exponential rate o; an in- ;_
dividual in state B divides into two new individuals of type A at an exponential
rate §. Define an appropriate continuous-time Markov chain for a population
of such organisms and determine the appropriate parameters for this model.
3. Consider two machines that are maintained by a single repairman. Machine
i functions for an exponential time with rate i before breaking down, i =
1,2. The repair times (for either machine) are exponential with rate y. Canve |
analyze this as a birth and death process? If so, what are the parameters? If0t
how can we analyze it? 3
& :’(;);e nliil custhers arrive at a Singlf%-server station in accordance with a::m;
e slt)a tio?lssmm hrate' A. However, if the arrival finds » customers a]fe:m yex- |
el s,ervein e will enter t!1e System with probability . Assum:ingtermiﬂe ]
the birth ang ce ﬂl; ate (1, set this up as a birth and death process and e :
S. There are N j o o . . infec
ton that spre ;Iégl:;c;uﬁls 102 population, some of whom have a ffﬁﬂamlﬂatian |
occur in sepeng orows. Contacts between two members of this P"ptac
ance with a Poisson progess having rate A. When a co%

s, it is equally likely to inyolye any of the (V) pairs of individuels

*2.
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opulﬂﬁon' If a contact involves ap infected a

pith probabilit)f p t_he ruloninfected individual beca(l)rl;es in?c o indiVidual’ then

W ndividual remains mfected.throughout. Let X (r) den(;(:te . Once infecteq,

ted members of the pop‘{lanon at time ¢, © the Number of iy,
Is {X (1), = 0} a continuous-time M

@ specify its type.

((b; Starting with a single infected indjy

c

fec

arkoy chain?

all members are infected? dual, what s the expecteq time ungj)
LiInate 6. ConSif::esaﬁjn_—il iﬁ?icsa(;.h process with birth rageg Mi=(i+ DA >0, ang
zggiix c:;?thmtem%ne the expected time to go from stae g state 4,
" (b) Deter@ne Mg explected t.l e to go from state 2 to state 5.
(¢) Determine the variances in parts (?) and (].3)'
: P(r) v [ndividuals join a club in accordance with a Poi

. ISSON process with rae Each
new member must pass through k consecutiye stages (o become a fy]] mem-
per of the club. The time it takes to pass through each stage is exponentially
distributed with rate p. Let N;(¢) denote the numbe

t of club members at
time ¢t who have passed through exactly stages, i =

L. k-1. Also, let
N() = (N1(2), Na(t), ..., Nr_1(1)).
(@ Is {N(?), ¢ > 0} a continuous-time Markov chain?
In.a (b) If so, give the infinitesimal transition rates. That is, for any state n =
lein (n1,...,nk—1) give the possible next states along with their infinitesimal
me- e
r (F) rates. ) o )
: 8. Consider two machines, both of which have an exponential lifetime with mean
Peh ' 1/A. There is a single repairman that can service machines at an exponential
Ligs rate . Set up the Kolmogorov backward equations; you need not solve them_.
r B 9, The birth and death process with parameters A, =0 and p, = p,n > 0 is
- | called a pure death process. Find P;;(t). e e
;21 (1} Considef two machines. Machine i operates for an exponengal ulm; \;1}:2 ::::
ion | 4; and then fails; its repair time is exponential with rate u;, i =1,2. s fime
| chines act independently of each other. Define a four-state zzg::;l;OUse me
ine Markov chain that jointly describes the cond1t.1(?n of thel:) t\;'(;‘ges o tl;is afxi
= assumed independence to compute the tra_ngl.twn p{r(; athl Iforward e
we and then verify that these transition probabilities satisty the
ot, ward equations. _ . ividual—that is, suppose
"I Consider 5 Yule process starting with a single lr:=,cslgtlo go from a population
is- X(0)=1. Let 7; denote the time it takes the proc |
i ize i . g . ctive
in of size i to one of size i + 1. . . 1ependent exponentials with respe
= | @) Argue that 7;,i = 1, ..., j, are indep s each
ne ! rates j ) , dom variables ea
! : ntial ran .
! b) Let x I,..., Xj denote independent i_’;léglge of component i Argue that
g | having rate A, and interpret X; as the
! max(X1, ..., X;) can be expressed as
C~ y
1€

e
max(X;,..,,Xj):El'*‘gz"' :
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where £1,€2> " 3
JA‘!(J—-]-) A R 3155 h' ratewast

. time between the i —1a ; is rat .

Hint: Interpret & as the t nd the ith failype ¢ following Pro

., €j are independent exponentials wj,
TeSPecty,
tr

(¢) Using (a) and (b) argue that " el s
. P{T]_i_...-i—ijt}:(l—e"M)j some ngt-——-be.COH
molecules arrive

i 1

to obtain Among these mo

@ v stay at the site for

eter fh1s whereas
{ime with rate [
and hence, given x0=1X () has a geometric distributiop with is free of (g{lel(’ 1

P an acceptable (Ul

17. Each time a mac
time with rate A

‘ pj)=(1- My = (L= e =M1~ gy

cameter p =€
(e) Now conclude that

J=1\ -ui —Myj—i failure, then tt
Pij(t)z(i-l)e (- ilsatype2failur
is, independeml
12. Each individual in a biological population is assumed to give birth at g ¢, probability p a
ponential rate A, and to die at an exponential rate 4. In addition, there i . time is the macl
exponential rate of increase 6 due to immigration. However, immigration s downduetoat

not allowed when the population size is N or larger. 18. After being rep

(a) Setthisupasa birth and death model. and then fails.

M) EN=3,1= 6 = i, u = 2, determine the proportion of time that imni- ceeds sequenti
performed, the

independent, W
(a) What prc
(b) What prc
*19, A single repai
paired, machis
machine i fai

gration is restricted.

13. A small barbershop, operated by a single barber, has room for at most twocus
tomers. Potential customers arrive at a Poisson rate of three per hour, and the
successive service times are independent exponential random variables wil
mean ;11 hour.

(a) What is the average number of customers in the shop?
(b) What is the proportion of potential customers that enter the shop’

(¢) If the barber could work twice as fast, how much more business ¥ . THiE f4 Fo-cor
he do? 1 when it is ¢

: i ; , jsihe the '
14. Consider an irreducible continuous time Markov chain whose state Spa‘"f"jsﬂﬁ\, Wl?a:hiéegi
nonnegative integers, having instantaneous transition rates gi,j and staﬂ{a[e ;1 20, Thercpareptw
probabilities P;, i > 0. Let T be a given set of statcs, and let Xn bo e oy I

the moment of the nth transition into a state in T ure, it is imm

(a) Argue that {X,,n > 1} is a Markov chain. order, and it
(b) At \‘vhat rate does the continuous time Markov chain person who |
go into state j, oM ko chal the repair fa

gl
make ransidon ™

| (¢) Forie T, find the long run proportion of transitions of is free. If th
f q {Xn,n > 1) that are into state i. onentd ¥ that time, th
| 5. A service center consists of two servers, each working & all ?ﬁree (0¥ Other one. S
i of two services per hour, If customers arrive at a Poisson rat€ (@) the ex
1 (b) the va

t?en, assuming a system capacity of at most three Cuswmefws,
a) what fraction of potential customers enter the system:
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what ' part (a) be if there
his rate was twice as fast (that is, 1 = 4y? Was only 5 single sery
) €r, and

The following problem arises in‘ molecular big]q
consists of several sites at which foreign mg) e
come not._wbefcome attac.hed. We 'C()nsider a Pal'ticm;s?me acceptable gng
" olecules arrive at the site accon.img 10 a Poissop proc Site e}nd assume that
Among these molecules 8 Proportion « is acceptable U: > With parameter j,
tay at the site for a length of time that is exponentia]iy di:;_‘i’gptable molecules
eter [ whereas an acc:ep.ta_ble molecule remains a the site fmed With param.-
o with rate 2. An arriving molecule wil] become attach, 05 an eXponential
is free of other molecules. What percentage of time js the E':t only lf. the site
on acceptable (unacceptable) molecule? SIte occupied with

p time a machine is repaired it remains up fi ; o
g;ce with rate A. It then fails, and its failure i:) ei(z}rle;arno:'tfv(:)nf; tlill¥fq1§mb“t°d
| failure, then the time to repair the machine is exponential vlfth ragl;zls altyfp‘e
is a type 2 failure, then the repair time is exponential with rate ., Eac'rfflg;_i;u it
is, independently of the time it took the machine to fail, a type 1 failure W-E
probability p am_i a type 2 failure with probability 1 — p. What proportion of
time is the machine down due to a type 1 failure? What proportion of time is it
down due to a type 2 failure? What proportion of time is it up?
After being repaired, a machine functions for an exponential time with rate
and then fails. Upon failure, a repair process begins. The repair process pro-
ceeds sequentially through k distinct phases. First a phase 1 repair must be
performed, then a phase 2, and so on. The times to complete these phases are
independent, with phase i taking an exponential time withrate pi, i =1,.... k.
(@) What proportion of time is the machine undergoing a phase i repair?
(b) What proportion of time is the machine working?
A single repairperson looks after both machines 1 and 2. Each time it is re-
paired, machine i stays up for an exponential time with rate Ai,i=1,2. When
machine i fails, it requires an exponentially distributed amount o.f work w.1th
rate ; to complete its repair. The repairperson will always service machine
I when it is down. For instance, if machine 1 fails while 215 being repaireflh
then the repairperson will immediately stop work on machine 2 and start on %
What proportion of time is machine 2 down? , e
T*_lere are two machines, one of which is used as a spare-. tPt: Ylofr:ln%;ﬁ?aﬂ-
will :funclion for an exponential time with rate A gﬂd ?fﬂ:]lqat?)ne is'in @
e, it i immediately replaced by the other machine L
Order, and it goes to the repair facility. The repair facility iled machine. At

fhe repair facility, the newly failed machine ent

5 f:ee If the repairperson is busy, it Wails ‘%nﬁslervic - and repair begins " e
: ina i n
time, the newly repaired machine is Put lrking condition, find

Other one, Starting with both machines in wo

(a) the ex .12
pected value and . .+ facility.
the variance of the time until both are in e TePE
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| - N caﬂtiﬂllOllS
n, what proportion of time is there a wopy;,

e long ru . . i
(4 et both machines are down in Exercise 2 sec Ahipg, facilit

guppose that when : :
s:)]rf ?s called in to work on the newly failed one. Suppose 4 Tepair timl:pai%.

21.

exponential with rate . Now find the pr‘?]-[,) 3{1—“0” of tim.e at leagt One sremain p:;nu:l
- working, and compare your answer with the one Obtained jp, AL t I
18w arrive at a single-server queue in accordance with P ’_‘Crcmez ¢ (@)
22. Cust omer® ver, an arrival that finds n customer : O1880n py, ;
having rate A. However, 42 i S already jp i, b) ¢
will only join the system with probability 1/(n +1). That is, yig, ey ©
n/(n+1) such an arrival will not 3011:1 the system. .Show that the g _abu;ly @ I
iribution of the number of customers in the system is Poisson wig, 0 ing gic :
Assume that the service dismbutlgn is exponential with rate g, ), Consi
23. A job shop consists of three mlachmes ar.rd two repairmen, The amouny o, 30.
a machine works before breaking down is exponentially distributeg il li j S
10. If the amount of time it takes a single repairman to fix a machjpe £ ey fnoves
nentially distributed with mean 8, then e mng to‘
(a) what is the average number of machines not in use? C‘f"u?;
(b) what proportion of time are both repairmen busy? E; : {1 .
*24. Consider a taxi station where taxis and customers arrive in accordance with ;
Poisson processes with respective rates of one and two per minute, A tagj yij
wait no matter how many other taxis are present. However, an arriving cis
tomer that does not find a taxi waiting leaves. Find
(a) the average number of taxis waiting, and Hint:
(b) the proportion of arriving customers that get taxis. 31. A tot:
25. Customers arrive at a service station, manned by a single server who seres Wher
at an exponential rate ., at a Poisson rate A. After completion of service ¢ prob.a
customer then joins a second system where the server serves at an expoct SEIVIC
tial rate u5. Such a system is called a tandem or sequential queueing systn g;tﬂlﬂl
Assuming that A < y;, i = 1, 2, determine the limiting probabilities. custd
Hint: Try a solution of the form P, , = Ca" ™, and determine C’“’ﬁ.' (a)
26. Consider an ergodic M/M /s queue in steady state (that is, after a long umE?
and argue that the number presently in the system is independent of ﬂl;:c (b)
quence of past departure times. That is, for instance, knowing that Fher,; it 3 (e)
b?fﬁ departures 2, 3, 5, and 10 time units ago does not affect the 45 ' hc::."
ol the number presently in the system. i H
27. Inthe M /M/s queue if you allow the service rate to depend on the n:s;zfme Plete
the system (but in such a way so that it is ergodic), what can you Sa{m 0 o me
EE&“LP;;C:SS? What can you say when the service rate 4 remains N Pnat:
28, ' ins, b and f
# gh{lffﬁ and {¥ (1)} are independent continuous-time Markov]cimﬂso a ¥ *33, Con:
s © Ume reversible, show that the process {X(t); Y () Pose
versible Markov chain o ¥
29. Consider a set of n m. hi : -+ facility © ser'VlC e Thiu;
machines, Suppose thatac o and-a s.m‘gle L fails it requi®® oV iy
when machine i,i =1, ...,/ &2 . The Quey

it.

ponentially distributeq

N

amount of work with rate p; 10 T¢
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3L
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*33

Time Markov AT

.. divides its efforts equm
ity div y among a|

falled machines "

fac

anever there are k failed machines each 0

o — : Ne receiye nse thy
 unit time- If there are a total of r working Rt S Work at g rate of ¢ ;
; fails at an instantancous rate A; /r. nes, Including Machi /

nej,

Define an appropriate state space 50 as to e i
system &5 2 continuous-time Markoy chain. 10 analyze the Preceding
Give the instantaneous transition rateg
write the time reversibility equations,
Find the limiting probabilities and show ¢hq
versible.

Consider graph with nodes 1,2,...,n and the (';') aCs (i, )i i i
[l (See Section 3.6.2 for appropriate deﬁnitions.) Sup ’ se.th# - J.' -
moves along this grap.h as follows: Events occur along thei?cs (,-at.apam‘ﬂe
ing to independent Poisson processes with rates A; j- An event alo;lnaracc?m.i'
causes that arc to becorqe excited. If the particle is at node i at the mgom:n?t’if .
(i, j) becomes excited, it instantaneously moves to node j, i, i=1,....n L:t

p; denote the proportion of time that the particle is at node j. Show that

(b)
(c)
(d)

(that is, give the ;).

the process js time re.

Hint: Use time reversibility.
A total of N customers move about among r servers in the following manner.
When a customer is served by server i, he then goes over to server j, j # i, with
probability 1/(r — 1). If the server he goes to is free, then the customer enters
service; otherwise he joins the queue. The service times are all independent,
with the service times at server i being exponential with rate p, i =1,....r.
Let the state at any time be the vector (n1, ..., 1), where n; is the number of
customers presently at server i, i =1,...,r, 2 ;ni=N. .
(8) Argue thatif X (r) is the state at time £, then {X (), ¢ > 0} isa continuous-
time Markov chain.
(b) Give the infinitesimal rates of this chain. N "
(¢) Show that this chain is time reversible, and find the limiting ProbablhueS-
Customers arrive at a two-server station in accordance with a Poisson prc:;tﬁ
having rate A. Upon arriving, they join a single queue. Whenever a'servt;ill.':1 com
Pletes a service, the person first in line enters service. The servict;m el
Server i are exponential with rate i, i = 1,2, Where K1 TH 2D:ﬁn;3 an appro-
ﬁn.dmg both servers free is equally likely to g0 t© et time reversible,
Priate continyous-time Markov chain for this model, show 1t18

“d find the limiting probabilities.  =1,2.50p
Consider two M/ }I.{g /I;r;ueues with respective par ameteis;(;:b bres
po:: they share a common waiting room that cl;‘:!l ZOId .

U i8, whenever an arrival finds her server BUSY =7 . "o+ there will bes
“ailing room, she goes away. Find the Limiting pIObaiihez "
Aeue 1 customers and m queue 2 customers 1f the 88T




426 Pmbshﬂily%
e ise 28 together with :
the results of Exercise 28 tog the conee ¢
Hint: Use share an office that contains four telephoneg. At .. U
34, Four Wf)fk?:;er “working” or ““on the phone.” Each “Workingu i’,‘ Me
w?rl;zf;;:’ lan exponentially distributed time with ra¢e A, ang y ofw%f:

i las

hone” period lasts for an exponentially distributed timq With rg
phone

? ;1 " What proportion of time are all workers “working”9 |
a

_ ual 1if worker i is working at time !, and let j;
Lt X(t)= (610, X0, X5(), Xa(0) . e,
(b) Argue that {X(¢), # = 0} is a continuous-time Marg, chain gpg
infinitesimal rates. e
(¢) Is {X(1)} time reversible? Why or why not?
Suppose now that one of the phones has broken down. Suppoge that
who is about to use a phone but finds them all being useq begins  pe, Yo
ing"” period. , .
(d) What proportion of time are all workers “working’*?
35, Consider a time reversible continuous-time Markoy chain having infinitegip,
transition rates g;; and limiting probabilities {P,}. Let 4 denote a set Of st
for this chain, and consider a new continuous-time Markov chain wig, trang;.
tion rates q;} given by

i

v _[caij, ificA, j¢a
%= gij,  otherwise

where ¢ is an arbitrary positive number. Show that this chain remains tine
reversible, and find its limiting probabilities.

36. Consider a system of » components such that the working times of componet
Li=1,...,n, are exponentially distributed with rate A;. When a componert |
fails, however, the repair rate of component i depends on how many other

components are down. Specifically, suppose that the instantaneous repair i

0£ component i, j =1, n, when there are a total of k failed components

Q" u;,

(@ Exl?lain how we can analyze the preceding as a continuous-time Mark”
chain. Define the sages and give the parameters of the chain. ot

®) Show that, in Steady state, the chain is time reversible and comp”

limiting Probabilities.
37. A hospita] acce

patient in the hospita] Tequires w; units of resources, and that the e

. e o0
Palient if it would result in the total of all pat sn::m o
18 the amoyp ¢, Consequently, it is possible t0 ?,Zspi“’ x¥
"YPe 2 patients, ++-v and ng type k patients in the

- Type i patients spend an exponentially djsujb:wh E
i In the hospital, j = 1,..., k. Suppose that -.m]l;fi

38.

39.

*40,

41

-

2,

V-
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ame time if and only if
§

k
mef <C
i=l

fine a continuous-time Markov chaj

i Ils}:r parts (b), (¢), and (d) suppose thz::l Iélia;alyze the preced
If N;(t) is the number of type i customers i

® of process is {N; (1), t > 0}? Is it tililr: rl:v:ehr:igs;em o

(¢) Whatcan be said about the vector process {( Ny(1) e v

d) Whatare the limiting probabilities of the progess (;f Pa'rt (i gt)), r>0)?

For the remaining parts assume that C < oo, )

(¢) Find the limiting probabilities for the Markoy chain of

M At what rate are type i patients admitted?

(g) What fraction of patients are admitted?

Consider an n server system where the service times of server i are expo-

nentially distributed with rate u;, i =1,...,n. Suppose customers arrive i

accordance with a Poisson process with rate A, and that an arrival who finds

all servers busy does not enter but goes elsewhere. Suppose that an arriving

customer who finds at least one idle server is served by a randomly chosen one

of that group; that is, an arrival finding k idle servers is equally likely to be

served by any of these k.

(a) Define states so as to analyze the preceding as a continuous-time Markov
chain. :

(b) Show that this chain is time reversible.

(¢) Find the limiting probabilities.

Suppose in Exercise 38 that an entering customer is served by the server who

has been idle the shortest amount of time. _

(@) Define states so as to analyze this model as a continuous-time Markov
chain.

((bi Show that this chain is time reversible.

¢) Find the limiting probabilities. .

Consider a continuougs-pt;me Markov chain with states 1., nti;t Tﬁ:ﬁﬁ

an exponential time with rate v; in state i during each visit {0

then equaty likely to go to any of the other n — 1 states.

@) Is this chain time reversible? .

) Find the long-run proportions of time it

ing.

me 1, what

part (a),

i h state.
spends m'zaf; Egs. (6.33), (6.34),

&:;J ?6i§ Example 6.22 that the limiting probabilities sati
33).

;‘;E’t&mple 6.22 explain why we would have kno
( 522 that the limiting probability there are J - |
[he/“i)f(l **A-/H-j), i=12, ]2z 0. (What we woun. - © e wmdepen.
d"ns;lmber of customers at the two servers would, in 8
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43.

44.

45.

lntr()dUcti o X
Nto Proh l
abj

. _ iy M%h coﬂtinuousm!
.der a sequential queucing mo.del with tbree SEIVers, whe, s
ansl er 1 in accordance with a Poisson procegg With € Cug, Let
arrive at serv erver 1 the customer then moves to server 5. Tate Zqu 47 Mat
completion g he customer moves tO Server 3: afia after , [,‘fr oo
letion at server 2 t s after g g . Mgy 48 C
coI?I;n of server 3 the customer departs the system. Assuming thatmce t CoV
filri;s at server i are exponential .with rattle i, i=1, 2,- 3, find the litr:i}:;'nsmi“! 49. L6t|
abilities of this system by guessing at the reverse chain and th,, Verifyignpml’* the
your guess is correct. - - | By
A system of N machme.s oper'ates as fo c;ws. ac machine wori s
ponentially distributed time with ra?e A before fmllng. Upon failure an n% @)
must go through two phases of service. Phase 1 service lasts for ap gy i
time with rate u, and there are always servers available for phage | sml:lna!
After competing phase 1 service the machine 8085 10 a server thyy perfgl ‘
phase 2 service. If that server is busy then thff: n_lachme joins the Waiting
The time it takes to complete a phase 2 service is exponential with rate , Afte; )
completing a phase 2 service the machine goes I.:yack' to work. Consider the ¢op.
tinuous time Markov chain whose state at any time is the triplet of nONNegate
numbers n = (10, 11, n2) where ng +n1 +n2 = N, with the interpretation
of the N machines, no are working, n; are in phase 1 service, and ny ej;
phase 2 service. |
(a) Give the instantaneous transition rates of this continuous time Markn (c
chain.
(b) Interpreting the reverse chain as a model of similar type, except that me
chines go from working to phase 2 and then to phase 1 service, conjectur
the transition rates of the reverse chain. In doing so, make sure that you
conjecture would result in the rate at which the reverse chain departs & @
(n, k, j) upon a visit being equal to the rate at which the forward chas
departs that state upon a visit. » *50. (a
(¢) Prove that your conjecture is correct and find the limiting proba!bﬂm?&
For the continuous-time Markov chain of Exercise 3 present a utio™
version. ol (&
In Example 6.24, we computed m (t) = E[O (¢)], the expected 0= H
in state 0 by time ¢ for the two-state continuous-time Mar.k{-w Cha;ﬁferenﬂﬂ m
in state 0. Another way of obtaining this quantity is by deriving 2
equation for it.
(a) Show that Refere
m(t +h) =m(t) + Poo(t)h + 0(h) o DR«
(b) Show that B1S. K,
l4) EESP:I
m’(t) == i =R A e""('r\'Hli)f [S] S. Ro:

At At
(¢) Solve for m(t),




ty \ Y Markov Chains

Time
% conliﬂ“ous .
. 29
Ston, (0 be the occupation time for state () in th
Cry b in. Find E{O(1)|X (0) = € two-stat, i ,
J\.. After 47 Ma[-kov chain [ ( )| (O) 1] € COﬂtlnu()uS_tlme

1 onsider the two-state continuous-time Markov chaip Start:
Ce ¢ 8 B X () XD NG in state 0, fing

Con,. il .
 Ser { Y denote an faxponentla randpm variable with rat, .
n ;:;ie o ﬁfe continuous-time Markov chain {X (1)} and Jet ate & that is indepengen of
1 ) _
N thy pj=P{X(Y)=jIX(0) =i}
T an &
X- Show that
a
Machipg @ 1 A
:onentgal Pl sesne B 2 -
Servige Ty ;%k kj ___Ui n ASU
€ Queyge, where 8;j is 1 wheni = j and O when i # j.
V. After (b) Show that the solution of the preceding set of equations is given by
‘the cop-
T -1
negative P={I—-R/A)
;t;o:r;h ;: where P is the matrix of elements P; ;, Lis the identity matrix, and R the

matrix specified in Section 6.9.
Mark (¢) Suppose now that ¥i,..., Y, are independent exponentials with rate A
> that are independent of {X (¢)}. Show that

th-atnt;; P{X(Y1+ -+ Yn)=jlIXO)=1i}
njec | | B
that your is equal to the element in row i, column j of the matrix P, N
arts state (@ Explain the relationship of the preceding to Approximation °
ard chain tion 6.9. _ . S
0. (a) Show that Approximation 1 of Section 6.9 is eqm"ale‘;: :ﬁa‘:“;fofzzanﬁ
bilities- d the continuous-time Markov chain with a value v suc
formiz® then approximating P;j (1) by F i roximation.
(b) Explain why the preceding should make 2 good app . _
: nt:ime . st - variable with
Lnotarﬁng Hint:  What is the standard deviation of 2 Poiss
y startt
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