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Introduction

Multivariate analysis deals with the statistical analysis of observations where there are
multiple responses on each observational unit. LetX be ann´ p data matrix where the
rows represent observations and the columns, variables. We will denote the variables
by X1, X2, ..., Xp. In most cases, it is necessary to sphere the data by subtracting out the
means and dividing by the standard deviations. If outliers are a possibility, then a robust
sphering method such as that discussed by Venables and Ripley [44, p. 266] should
also be tried. Important special cases arep = 1, 2, 3 which correspond to univariate,
bivariate and trivariate data.

Multivariate data visualization is an exciting area of current research by statisticians,
engineers and those involved in data mining. Comprehensive and in-depth approaches
to multivariate data visualization which are supported by sophisticated and available
software are given in the books by Cleveland [7] and Swayne et al. [38]. Beautifully
executed and fascinating data visualizations presented with great insight are given in
the books of Tufte [41, 42, 43] and Wainer [46]. Surveys on data visualization are
given in the articles by Weihs and Schmidli [50], Wegman and Carr [49] and Young
et al. [54]. Visualization of categorical data is discussed in the monograph by Blasius
and Greenacre [2]. The books of Everitt [14] and Toit et al. [40] are now dated but
they still provide readable accounts of some classical techniques for multivariate vi-
sualization. There are many other more specialized books as well as research papers
which we will discuss in later sections of this article. Software, web visualizations
and other supplementary material for this article are available at the following site:
http://www.stats.uwo.ca/faculty/aim/mviz.

This article first gives a brief overview of the most important current software available
for data visualization and then discusses the general principles or philosophy involved
in data visualization. This is followed by a discussion of some of the most interesting
and useful multivariate graphical techniques.

Quantitative Programming Environments

Because data visualization is iterative and exploratory, it is best carried out in a com-
prehensive quantitative programming environment which has all the resources neces-
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sary not only for carrying out the data exploration and visualization but also necessary
numeric, statistical and modeling computations as well as providing documentation
capabilities.

Buckheit and Donoho [3] make the case for higher standards in the reporting of re-
search in computational and visualization science and they introduce the term QPE
(quantitative programming environment) to describe a suitable computing environment
which allows researchers to easily reproduce the published work. Just as mathematical
notation is easy and natural for researchers, QPEs must provide a programming lan-
guage which is also easy, natural and powerful. Currently there are three very widely
used QPEs and as well as many others under development or less widely used. The
three most widely used QPEs used in data visualization areMathematica, S/S-Plus/R
and MatLab.

Mathematicahas a very sophisticated and easy-to-use programming language as well
as superb capabilities for graphics, numerics, symbolics and technical typesetting.
Smith and Blachman [37] provide an excellent introduction toMathematicaand its
general graphics capabilities. This article was prepared in postscript form usingMath-
ematica. Graphics fromMathematicaas well as S-Plus and MatLab were incorporated
in the article.

S/S-Plus/R also provide an excellent QPE for researchers in statistics and data visual-
ization, see Venables and Ripley [44] for a comprehensive introduction. Users of linux
can incorporate the powerful XGobi software into S/S-Plus/R as a library. Furthermore,
S-Plus provides a complete implementation, in unix and windows, of the techniques of
Cleveland [7] in their trellis software, and R provides a partial implementation via the
coplot function. Many of the graphics in this article were produced in S-Plus. R (avail-
able at the website http://www.r-project.org/) is a particularly noteworthy development
in statistical computing since it provides a comprehensive and high quality QPE which
is freely available over the web. Both S-Plus and R have a large base of contributed
software archived on the StatLib website, http://lib.stat.cmu.edu.

MatLab is another QPE which is widely used perhaps more so by engineers and applied
mathematicians. The MatLab programming language is not unsimilar to S/S-Plus/R in
its use of scripts and vectorization of computations. MatLab has superb state-of-the-art
graphics capabilities. There are many freely available toolboxes developed by users
and we make use of one of these for the Self-Organizing Maps (SOM) visualization.

Yet another high quality environment for research is provided by Lisp-stat developed
by Tierney [39]. Like R, Lisp-stat is available for free and works on linux, windows and
other systems. Cook and Weisberg [9] have developed a comprehensive and advanced
software package for regression graphics using Lisp-stat. The principal developers of
S, R, and Lisp-stat who have been joined by many others are developing an exciting
new computing environment, Omegahat, which is currently available at the alpha stage.

Wilkinson [52] and Wilkinson et al. [53] describe an object-oriented approach to graph-
ical specification which is being implemented as a Java Web-based interactive graphics
component library called GPL.
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Other popular statistical software packages and environments such as Stata, SPSS,
Minitab and SAS provide various limited visualization capabilities. In general, these
environments provide more structured and cookbook types of analyses rather than the
more creative approach which is needed for successful visualization in state-of-the-art
research and practice.

In addition to these popular computing environments, there are many other excellent
individual packages such as XGobi, XGvis, Orca, and SOMPAK which are freely
available via the web – see our mviz website for links. The mviz website also provides
the datasets and scripts used to generate all the figures in this articles.

A Philosophy of Data Visualization

Cleveland [7, 8] provides a comprehensive account of the process and practice of data
visualization. An important general principle to be extracted from Cleveland’s book is
that successful data visualization is iterative and that there is usually no single graphic
which is uniformly the best. Part of the iterative process involves making suitable
data transformations such as taking logs, choosing the best form for the variables or
more generally removing some source of variation using an appropriate smoother and
examining what is left. These steps often require significant intellectual effort. Another
part of the iterative process involves looking at different views of the data with various
graphical techniques. Cleveland [7] analyzes in this way numerous interesting datasets
and provides scripts in S-Plus to produce all the graphics in his book. These scripts are
very helpful in mastering the S-Plus Trellis Graphics system. In simple terms, S-Plus
trellis graphics provided coordinated multipanel displays.

XGobi may be run as an S-Plus/R library and it provides state-of-the-art capabilities for
dynamic data visualization. As an alternative to multipanel displays, we can examine
with XGobi an animation or movie showing linked views of all the panels. Its inter-
active capabilities include subsetting, labelling, brushing, drilling-down, rotating and
animation, and these capabilities are combined with grand tours, projection pursuit,
canonical pursuit, 3D point clouds, scatterplot matrices and parallel coordinate plots to
give the user multiple linked views of the data. A users guide for XGobi is available on
the XGobi webpage, http://www.research.att.com/areas/stat/sgobi/, and it is the subject
a forthcoming monograph (Swayne et al. [38]). XGobi represents the partial sum of
the last twenty years of research in multivariate visualization (Buja et al. [5]).

Bivariate and Trivariate Data

From the technical graphics viewpoint, bivariate data is much better understood. Even
with higher dimensional data, we are often interested in looking at two dimensional
projections. Scott [36] speculates that really high dimensional strong interactions
among all the variables is probably quite rare and that most of the interesting features
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Figure 1: Figure 1. Tukey mean-difference plot of ozone pollution at Stamford and
Yonkers.

occur in lower dimensional manifolds. Thus the bivariate and trivariate cases are very
important.

The most important tools for revealing the structure of bivariate data are the scatterplot
and its loess enhanced version (Cleveland [7], p. 148). In the enhanced scatterplot, two
loess smooths are plotted on the same plot along with the data. One smooth shows
X1 vs. X2 and the otherX2 vs. X1. There are many other useful techniques as well.
Several generalizations of the bivariate boxplot are available but the most practical and
useful seems to be that of Rousseeuw et al. [32] who also provide S and MatLab code
to implement their method. Bivariate histograms and back-to-back stem-and-leaf plots
are also helpful in summarizing the distribution and should be used before bivariate
density estimation is attempted. For the case ofn large, Carr et al. [6] suggest showing
the density of points.

If X1 andX2 are measured on the same scale, Tukey’s mean-difference plot is helpful.
This is nicely illustrated by Cleveland [7, p. 351] for ozone pollution data measured at
two sites (Stamford and Yonkers). In Figure 1, the data are logged to the base 2; we
then plotted the difference vs. the mean and added a loess smooth. This plot shows that
there is increase in the percentage difference as the overall level of ozone increases. At
the low end, the ozone concentration at Stamford is about 0.5 log2(ppm) higher and
this increases to about 0.9log2(ppm) at the high end. In the untransformed domain, this
increase corresponds to multiplicative factors of 1.4 and 1.9 respectively. Notice how
much more informative this graphical analysis is than merely reporting a confidence
interval for the difference in means!

Point clouds in 3D are the natural generalization of the scatterplot but to aid visualiza-
tion it is necessary to be able to rotate them with a mouse and/or create an animation.
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Rotation using the mouse can be done with XGobi and also with the S-Plus spin and
brush functions. These capabilities are also available in MatLab and withMathematica
if one uses the addon package Dynamic Visualizer. However, more insight is often
gained by resorting to coplots and/or projection pursuit in XGobi. These and other
techniques will now be discussed.

Scatterplot Matrices

Scatterplot matrices show the pairwise scatterplots between the variables laid out in a
matrix form and are equivalent to a projection of the data onto all pairs of coordinates
axes. Whenp is large, scatterplot matrices become unwieldy and, as an alternative,
Murdoch and Chow [27] represent only the correlations between variables using el-
lipses; they have provided an S-Plus/R library which implements this technique. In
XGobi, one can view scatterplot matrices or, as an alternative, an animation running
through all or selected pairwise combinations. Interactive brushing and labeling is also
very useful with scatterplot matrices and is implemented in S-Plus and XGobi. As an
illustrative example, consider the environmental data on ozone pollution discussed by
Cleveland [7, pp. 272–292]. This dataset consists of a response variableozoneand
three explanatory variablesradiation, temperatureandwind which were measured on
111 consecutive days. For brevity we will respectively denote by O, R, Tp and W, the
cube root of ozone concentration in ppm, the solar radiation measured in langleys, the
daily maximum temperature in degrees Farenheit and the wind velocity – more details
on the data collection are given by Cleveland [7, pp. 273–274]. The cube root of ozone
was chosen to make the univariate distribution more symmetrical. Use of a power
transformation or logs to induce a more symmetrical distribution often simplifies the
visualization. The graphical order of the panels starts at (1, 1) and proceeds horizon-
tally to (2, 1), (3, 1) and (4, 1) along the bottom row. The pattern is repeated, so that the
panel in the top right-hand corner has coordinates (4, 4). Note that although this order
is the transpose of the natural matrix ordering, it is consistent with the coordinates used
in an ordinary two dimensional scatterplot. Sliding along the bottom row, we see in
the (2, 1) plot that O increases with R up to a point and then declines. In the (3, 1)
plot we see that O generally increases with Tp but that the highest values of O does not
occur at the highest Tp. Plot (4, 1) shows that O is inversely related to W. The (2, 3)
plot shows a pattern reminiscent of the first (2, 1) plot; so it would seem that Tp and
R provide very similar information. The (4, 2) and (4, 3) plots show that W is again
inversely related to R and Tp.

Point Clouds

XGobi, MatLab and S-Plus allow one to rotate a 3D point cloud or scatterplot using the
mouse. An interesting exercise which demonstrates the value of rotating point clouds is
to detect the crystalline structure in the infamous RANDU random number generator,
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Figure 2: Figure 2. Scatterplot matrix of environmental data W, Tp; R O.

6



Xn = I216 + 3M Xn-1 mod 231. Another interesting example is provided in the S-Plus
dataset sliced.ball. Using the S-Plus brush or spin function, one can detect an empty
region in a particular random configuration of points which are not detectable with
scatterplot matrices. Huber [21] gives an informative discussion.

As an environmental example, consider the four dimension dataset(W, Tp, R, O)shown
as a scatterplot matrix in Figure 2. By color coding the quartiles of ozone, we can repre-
sent this data in a 3D point cloud (Figure 3). UsingMathematica’s SpinShow function,
we can spin this plot around to help with the visualization. In XGobi, the four di-
mensional point cloud can be rotated automatically to choose viewpoints of interest by
selecting a grand tour. Also in XGobi, projections of any selection of thep variables to
3D point clouds may be viewed as an animated grand tour and/or projection/correlation
pursuit guided tour.

In nonparametric multivariate density estimation or loess smoothing, it is of interest to
replace the data by a smooth curve or surface and visualize the result. An example is the
benthic data of Millard and Neerchal [26, p. 694] where the benthic index and various
longitudes and latitudes are visualized as a loess surface in 3D; see our mviz website for
a movie of a fly-by of this surface produced usingMathematica’s Dynamic Visualizer.
Various techniques for visualizing higher-dimensional surfaces are discussed in Scott
[35], Cleveland [7, 8] and Wickham-Jones [51].

Multivariate Density Estimation

Wand and Jones [47] discuss the popular kernel smoothing method for multivariate
density estimation and provide an S-Plus/R library, KernSmooth, for univariate and
bivariate density estimation. Scott [34] invented a computationally and statistically
efficient method for estimating multivariate densities with large datasets using the av-
erage shifted histogram (ASH). Scott’s ASH method has been efficiently implemented
in C code with an interface to S-Plus/R and is available from StatLib. The monograph
of Scott [36] on nonparametric multivariate density estimation contains many intrigu-
ing examples as well as beautiful color renditions. O’Sullivan and Pawitan [29] present
an interesting method for estimating multivariate density using cluster computing and
tomographic methods. Wavelet methods for multivariate density estimation are an-
other recent innovation that are discussed in the book by Vidakovic [45, Ch. 7]. For
distributions with compact support, the moment method of Provost [30] is simple and
computationally efficient. Prior to smoothing, it is important to examine univariate
and bivariate histograms of the data (Scott [36], p. 95). In Figure 9, we show an es-
timate of the bivariate density for the successive eruptions of the geyser Old Faithful,
[x(t), x(t +1)], t = 1, ..., 99, wherex(t) denotes the duration of thet-th eruption, (Scott
[36], Appendix B.6). Our estimate and plot were produced in R using the KernSmooth
package of Wand and Jones [47] with smoothing parameter(0.4, 0.4). Figure 4 in-
dicates that the joint distribution has three distinct modes as was found by Scott [34,
Figure 1.12].
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Figure 3: Figure 3. 3D Scatterplot of environmental data (W, wind; Tp temperature;
R radiation) and ozone (cube-root, color coded).
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Coplots

Coplots (conditioning plots) and the more general trellis graphics often provide a great
deal of insight beyond that given in scatterplot matrices or 3D point clouds. The basic
idea of the coplot is to produce a highly coordinated multipanel display of scatterplots
often enhanced by a smoother such as loess. A subset of the data is plotted in each
panel for a fixed range of values of the given variables. Given variables used in adja-
cent panels are overlapping so as to provide a smooth transition between panels. Using
as an example the environmental dataset shown in Figures 2 and 3, we plot O vs. R
given Tp and W in Figure 5. The given variables Tp and W are each divided into four
overlapping sets with about half the values in common between adjacent sets or shin-
gles as Cleveland [7] terms them. In the coplot below, we see that the shape and slope
of the relationship between O and R changes as Tp increases, indicating an interaction
effect between R and Tp. Comparing across the panels how the relationship between
O and R changes for fixed Tp, we observe an indication of change in the shape of the
curve in panels (4, 1), (4, 2), (4, 3) and (4, 4). This suggests that there may also be an
interaction effect between W and R. In practice, one would also examine the coplot of
O vs Tp given W and R as well as O vs W given R and Tp; these plots may be found
in Cleveland [7, pp. 272–292].

Parallel Coordinate Plots

Parallel coordinate plots for multivariate data analysis were introduced by Wegman
[48] and are further discussed in Wegman and Carr [49]. The coordinate axes are rep-
resented as parallel lines and a line segment joins each value. Thus, as the sample size
increases, the plot tends to become more blurred. Parallel coordinate plots nevertheless
can still be useful. They are implemented for example in XGobi. Parallel coordinate
plots are somewhat reminiscent of Andrew’s curves (Andrews [1]) in that each point is
represented by a line.

The parallel coordinate plot, Figure 6, for a subset of the ozone data shows how the
first and fourth quartiles of ozone interact with the other variables.

Principal Components and Biplots

Let Ν1and Ν2 denote the normalized eigenvectors corresponding to the two largest
eigenvalues of the sample covariance matrix after any suitable transformations such
as logging and/or sphering. Then the principal components defined byy1 = X Ν1 and
y2 = X Ν2 may be plotted. There are two interpretations of this plot. The first is that
the plotted variablesy1 andy2 are the two most important linear combinations of the
data which account for the most variance subject to the constraints of orthogonality and
fixed norm of the linear combination used. The second interpretation is that(y1, y2)
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are the projection of the data which minimizes the Euclidean distances between the
data on the plane and the data inp-space. Note that in some cases we may be inter-
ested in those linear combinations with minimal variance. We may also look at more
than two principal components and project the resulting point cloud onto two or three
dimensions as is done in XGobi.

The biplot (Gabriel [18]; Gower and Hand [19]) provides more information than the
principal component plot. It may be derived as the least squares rank two approx-
imation to X which consists ofn + p two-dimensional vectors. The firstn vectors
are formed from the data projected onto the first two principal componentsy1 and
y2. The nextp are the projections onto this subspace of the original coordinate axes,
fi = (e

¢
i Ν1, e¢i Ν2), i = 1, ..., p, whereei denotes the vector which has 1 in positioni and

zero elsewhere. The length of thesep vectors is usually scaled to one unit of standard
deviation of the associated variable,Xi . The separation between thesep projections
gives an indication of the degree of correlation between the variables. Large separation
means low correlation. Notice that the projection of a data point(x1, ..., xp) into this
subspace is simplyx1 f1 + ... + xp fp. Our mviz website contains aMathematica
notebook with more details as well as aMathematicaimplementation.

The Australian crab data (Venables and Ripley [44,x13.4]; Swayne et al. [38]) pro-
vides an interesting visualization exercise. There are 200 crabs divided in groups of 50
according to gender (male and female) and species (Blue or Orange) and there are five
measured variables denoted by FL, RW, CL, CW and BD. Venables and Ripley [44, p.
402] show how using a suitable data transformation is critical to a successful visual-
ization with the biplot. New variables were constructed by dividing by the square root
of an estimate of area, CL times CW and then the data was logged and mean corrected
by gender. Without such a transformation, no difference is found in the biplot. The
biplot, Figure 7, generated by the S-Plus biplot function, shows the crab data after the
indicated transformations.

Projection Pursuit and XGobi

Projections onto the principal coordinate axes are not always the most helpful or inter-
esting. Projection pursuit (PP) generalizes the idea of principal components. In PP, we
look at linear projections of the formX Λ where the directionΛ is chosen to optimize
some criterion other than variance maximization. The PP-criterion is carefully chosen
to indicate some feature of unusualness or non-normality or clustering. The original
PP-criterion of Friedman and Tukey [17] can be writteni(Λ) = s(Λ) d(Λ) wheres(Λ) is
a robust estimate of the spread of the projected data andd(Λ)describes the local den-
sity. Thus the degree to which the data are concentrated locally or the degree of spread
globally are both examined. Typically there are many local maxima ofi(Λ) and they
are all of potential interest. Friedman [15] introduced another criterion which provides
a better indication of clustering, multimodality and other types of nonlinear structures
and can be rapidly computed via Hermite polynomials. This is the default method used
in XGobi. Other methods available in XGobi are based on minimizing entropy, max-
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Figure 8: Figure 8. PP-XGobi plot of Australian crab using the untransformed vari-
ables FL, CL, CW and BD from a PP tour. The two species are color coded (black and
orange) and the two genders are symbol coded (males:2 and+; females:ç and´).

imizing skewness and minimizing central mass. As the optimization is performed in
XGobi, the current projection is viewed and this animation may be paused for closer
inspection. Finding the crystalline structure in the multiplicative congruential genera-
tor RANDU and discriminating between a sphere which has points randomly located
throughout its interior and another sphere that has the random points distributed on its
surface are two interesting artificial examples which demonstrate the potential useful-
ness of projection pursuit.

The untransformedAustralian crab dataset using the variables FL, CL, CW and BD
provides another illustration of the power of this method – recall that a quite careful
adjustment had to be made using the 2D biplot in order to successfully discriminate
between the species. Figure 8 was obtained using XGobi’s PP-guided tour. The col-
ors indicate the two species which are clearly seen to be different. This example is
discussed in more detail in the forthcoming book by Swayne et al. [38].
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Multidimensional Scaling

Multidimensional scaling (MDS) forms another body of techniques with an extensive
literature. These methods are based on representing a high dimensional dataset with
p variables in a lower dimensionk, where typicallyk = 2. A distance measure is
defined for the data sodi, j = distance between thei-th and j-th rows ofX.Then vectors
of dimensionk are found by minimizing a stress function which indicates how well
the lower dimension vectors do in representing the distancesdi, j . In metric MDS, the
stress function depends directly on the distances under a suitable metric. For example,
if the Euclidean distance function is used withk = 2, then metric MDS is simply
equivalent to plotting the first two principal components as we have already discussed.
In the nonmetric version of MDS, the stress function is some more general monotonic
function of the distances. XGvis (Buja et al. [5]) implements metric MDS visualization
methods including such advanced features as 3D rotations, animation, linking, brushing
and grand tours. A recent monograph treatment of MDS is given by Cox and Cox [10]
and a brief survey of MDS with S-Plus functions is given by Venables and Ripley
[44, p. 385]. Friedman and Rafsky [16] discuss the use of MDS for the two-sample
multivariate problem.

The Sammon map (Sammon [33]) is a popular nonmetric MDS. Given the initial dis-
tance matrixdi, j in p-space, a set of two-dimensional vectors,y1, ..., yn, is obtained
which minimize the stress function,

Jâ
i< j

di, j N
-1
â
i< j

Idi, j - d¢i, j M
2�di, j , (1)

whered¢i, j is the distance between vectorsyi and yj . The vectorsy1, ..., yn are then
plotted. The Sammon map is implemented by Venables and Ripley [44] in S-Plus and
R; it is also available in the SOM toolbox for MatLab. Figure 9 for the Australian crab
data shown in the biplot (Figure 7) was obtained using Splus (Venables and Ripley
[44], Figure 13.12). The Sammon map is also implemented inMathematicaon our
mviz website.

Self-Organizing Maps

Self-organizing maps (SOM) are a type of neural net, loosely based on how the eye
works. SOM were conceived by Kohonen in the early 1980’s. AC code imple-
mentation and a toolkit for MatLab are both freely available at the SOM website,
http://www.cis.hut.fi/research/som-research/. This website also contains a tutorial and
list hundreds of articles giving applications of SOM to visualization in science and
technology. The monograph edited by Deboeck and Kohonen [11] contains a num-
ber of applications of SOM in finance. Muruz´abal and Mu˜noz [28] show how SOM
can be used to identify outliers. SOM is a nonlinear projection of high dimensional
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Figure 9: Figure 9. Sammon map of adjusted Australian crab data. B: blue, male; b:
blue, female; O: orange, male; o: orange, female.
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data to a lower dimensional space, typically the plane. SOM enjoys a number of in-
teresting properties. Under some regularity conditions, it provides an estimate of the
true underlying multivariate density function. Furthermore, SOM has been shown to
be approximately equivalent to the principal curve analysis of Hastie and Stutzle [20].
S-Plus/R libraries are available from StatLib for principal curves. The SOM algorithm
is similar to theK-means algorithm used in clustering. Unlike other clustering algo-
rithms, SOM visually indicates the proximity of various clusters and it does not require
knowing a priori the number of clusters.

As an application of SOM, we consider data on the spectrographic analysis of engine
oil samples. Some of the oil samples were found after being illegally dumped in the
Atlantic and others were taken from possible suspect vessels. There aren = 17 samples
altogether andp = 173 normalized ion measurements. The samples are indicated
by the letters a, b, ..., q. The problem consists of matching up the spectrographic
fingerprints.

We now give an overview of how the SOM algorithm for projecting onto the plane
works with our data. The recommended topology is hexagonal. In the present case,
there are five rows and four columns in Figure 10. Using the SOM toolbox, the dimen-
sions can be determined by making use of an automatic information criterion which
depends onX, as was done in Figure 10, or the dimensions and other topologies can
be specified by the user. Each hexagon represents a neuron and, initially, has a ran-
domp-dimensional value. During training which has both competitive and cooperative
components, these model vectors are modified until there is no change. At this point,
the SOM has converged and each observation is mapped into ap-dimensional model
which is associated a specific neuron and represented by an hexagon. Model vectors
which are in the same neighborhood on the hexagonal grid lie closer together.

Assuming there ared neurons, letmj, j = 1, ..., ddenote thei-th model vector. In the
sequential version of the SOM algorithm each observation,xi, i = 1, ..., n, is presented
and the best-matching-unit (BMU) is calculated,c = arg min i 9 || xj - mi ||

2 =. Thenmc
and all model vectors in the neighborhood ofmc are drawn towardxj as specified by the
updating equation,mi(t +1) = mi (t) + hc,i(t) (xj -mi (t) ), wheret denotes thet-th SOM
iteration,mi(t) is the value of model vector at thet-th iteration andhc,i(t) denotes the
neighborhood function. This whole process is repeated many times. During the first
phase of the algorithm (organization),hc,i(t) is relatively large but it shrinks witht and
in the second phase (convergence), becomes smaller. More details and theory are given
by Kohonen [23]. Also see our mviz website for our implementation inMathematica.
In Figure 10, we plot the observations labels a,b,...,q corresponding to the hexagon of
the model vector for which the observation is the BMU. The SOM shown in Figure 10
indicates which oil samples lie nearest together.

The trained SOM is characterized by two types of errors. The first error is the dis-
tance between the model vector and all observations which map into it and the second,
the percentage of observations for which the first and second BMUs are not adjacent.
These errors are referred to specifically as quantization and topographical errors. In the
oil dumping example, the trained SOM had quantization error 7.935 and topographic
error zero. The mean norm of the 17 samples is 14.17 so that the trained SOM accounts
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Figure 10: Figure 10. SOM visualization of the oil dumping data.

for about half the variability.

Concluding Remarks

We briefly outlined some of the general considerations for multivariate visualization
and indicated some of the most popular current methods. There are many other meth-
ods that may also be helpful. The loess method for fitting nonparametric curves and
surfaces has been generalized by Loader [25] and an S-Plus/R package has been made
available. Chernoff faces is a perennial favorite although the task of relating the fa-
cial features back to the data is demanding and limits the usefulness of this method.
Scott [36, p. 12] cites a useful application of this method though. A generalization to
the multivariate case of the widely used Q-Q plot has been developed by Easton and
McCulloch [12] and shown to be effective in detecting complex types of multivariate
non-normality. Functional magnetic resonance imaging and ultrasound imaging which
generate massive quantities of multidimensional data are areas under active develop-
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ment (Eddy et al. [13]). On the environmental front, massive multivariate datasets are
becoming available from satellite remote sensing (Levy et al. [24]; Kahn and Braver-
man [22]). And beyond multivariate data analysis lies the challenge of functional data
analysis (Ramsay and Silverman [31]).
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