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1 Introduction

Although well understood, developing statistical inference for quantiles, denoted by F−1(p)

for various p ∈ [0, 1] and known as values-at-risk in banking and insurance, is a challenging

task. This is due to the fact that empirical quantiles are order statistics (e.g., Arnold et al.,

2008; David and Nagaraja, 2003), unlike empirical cumulative distribution functions (cdf’s)

that are sums of (Bernoulli) random variables and can therefore be easily tackled using

classical techniques of mathematical statistics and probability theory (e.g., Shorack, 2017).

Inevitably, therefore, in the case of quantiles, quite restrictive assumptions on the population

cdf F arise. For example, consistency of the empirical quantile requires continuity of the

population quantile function at the specified probability level, while asymptotic normality

requires conditions on the underlying probability density function (pdf) at the specified

quantile (e.g. Serfling, 1980; Shao, 2003).

In many applications that arise in economics, finance, and insurance, quantiles are often

integrated. Visualized in Figure 1.1 in the case of a Pareto distribution (specifics in Section 7)

are four illustrative examples of such integrals and their combinations. Namely, with p

running through the unit interval (0, 1), they are the upside tail-value-at-risk

TVaR(p) =
1

1− p

∫ 1

p

F−1(u)du, (1.1)

the downside tail-value-at-risk

TV@R(p) =
1

p

∫ p

0

F−1(u)du, (1.2)

the Lorenz curve

LC(p) =
1

µ

∫ p

0

F−1(u)du, (1.3)

and the Gini curve

GC(p) =
1

µ

(∫ 1

1−p
F−1(u)du−

∫ p

0

F−1(u)du

)
, (1.4)

where

µ =

∫ 1

0

F−1(u)du (1.5)

is the mean of the population cdf F . Of course, the mean could serve a fifth illustrative
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(a) Upside tail-value-at-risk TVaR(p).
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(b) Downside tail-value-at-risk TV@R(p).
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(c) Lorenz curve LC(p).
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(d) Gini curve GC(p).

Figure 1.1: Four illustrative curves, whose definitions are based on integrated quantiles,
depicted here in the case of a Pareto distribution.

example, but it is trivial in the context of the present paper and, therefore, is viewed here

only as an auxiliary quantity. We shall give more details on the four measures of risk and

economic inequality in Section 7. In Section 9, we shall discuss more complex (i.e., distorted

or weighted) integrals of quantiles, known in statistics as L-integrals, and show how they

can be reduced to those of the type that we see in the above examples.

Since, generally speaking, integrals are linear functionals of their integrands, which are

quantiles in our case, researchers often use the aforementioned asymptotic results for quan-

tiles and then apply the continuous mapping theorem (e.g., Billingsley, 1999) to derive

desired results for integrated quantiles (e.g., Csörgő et al., 1986; Bellini et al., 2022; Han et

al., 2024). This approach, however, involves the aforementioned assumptions on the popu-

lation pdf, although we shall soon see that such assumptions are unnecessary for integrated

quantilies; even the very existence of pdf is unnecessary.
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Indeed, when developing an asymptotic theory for the Lorenz curve, whose definition

is based on integrated quantiles as pointed out by Gastwirth (1971), Csörgő and Zitikis

(1996) observed that neither the original formulation of the problem nor the obtained large-

sample asymptotic distribution requires the existence of pdf, let alone assumptions on it.

Based on the observation, they set out to find a path that would lead to desired asymptotic

results without involving pdf’s. They succeeded in achieving this goal by introducing a

technical tool that they called the Vervaat process, named after the Dutch mathematician

Wim Vervaat, whose pioneering results (Vervaat, 1972a,b) on a combination of the uniform

on [0, 1] quantile and empirical processes served an inspiration. We refer to Zitikis (1998)

for details and references on the topic.

Note 1.1. The origin of the research path taken by Csörgő and Zitikis (1996) was humble:

it was the equation ∫ 1

0

(
G−1(u)− F−1(u)

)
du =

∫ ∞
−∞

(
F (x)−G(x)

)
dx (1.6)

that is known to hold (see Appendix A.6.1 for details) for every pair of random variables X

and Y with finite first moments, where F is the cdf of X (shorthanded as X ∼ F ) and G

is the cdf of Y (shorthanded as Y ∼ G), and F−1 and G−1 are the corresponding quantile

functions. For example, the quantile function F−1 of X is given by the equation

F−1(u) = inf{x ∈ R : F (x) ≥ u} (1.7)

for all u ∈ (0, 1], while at the point u = 0 it is defined as the right-hand limit

F−1(0) = lim
u↓0

F−1(u). (1.8)

(Mathematicians would call F−1 the left-continuous generalized inverse of F .) Since the

quantile function is not the ordinary inverse of F , as such may not exist unless the cdf

is continuous and strictly increasing, technical difficulties and even overlooks do arise (e.g.

Wacker, 2023, and references therein). Note also that F−1(0) and F−1(1) are the two end-

points (finite or infinite) of the support of the cdf F , which is the smallest closed-in-R interval

that contains all the points x ∈ R such that F (x) ∈ (0, 1).

A long series of research articles by various authors followed Csörgő and Zitikis (1996),
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exploring theoretical and empirical aspects of integrated quantiles without involving pdf’s.

Recently, Wei and Zitikis (2023) suggested an extension of the theory initiated by Csörgő

and Zitikis (1996). The current paper takes these developments even further by establishing

asymptotic results for integrated quantiles without assuming any specific sampling design

or dependence structure between the underlying random variables. In fact, the main results

are formulated for generic cdf’s F and approximating sequences Fn, n ∈ N, of cdf’s, which

may or may not be random, depending on the problem.

2 An overview

We have organized the rest of the paper as follows. In Section 3, we develop a general

statistical inference theory for the integral∫ 1

p

F−1(u)du (2.1)

of quantiles over the upper-most layer (p, 1) of probabilities, where p ∈ (0, 1) is a fixed

boundary probability. We call integral (2.1) the upper-layer integral. It plays a particularly

prominent role in insurance, where loss random variables are often non-negative, and thus

the right-hand tails of their distributions become of particular concern. Risk measures such

as the expected shortfall (ES) and its sister risk measure called the “upside” tail-value-at-risk

(TVaR) arise (e.g., Denuit et al., 2005), which in turn lead to considerations of more general

integrals called distorted expectations (e.g., Dhaene et al., 2012, and references therein). We

shall rigorously define and discuss TVaR later in this paper (see Example 7.1 in particular).

In Section 4 we shall offer several simulated experiments that will clarify some of the

statistical properties of the empirical upper-layer integral.

Before we delve into the topics of the following sections, we present several notes that

are useful for understanding and appreciating the results of this paper, and in particular the

assumptions under which the results will be established.

Note 2.1. When p = 0, integral (2.1) reduces to the mean µ of the cdf F , given by equa-

tion (1.5). Statistical inference for µ under various sampling designs can, of course, be

developed without invoking the existence of the pdf of F . When p = 1, integral (2.1) van-

ishes. Hence, by restricting ourselves to p ∈ (0, 1) we are just excluding the two statistically

trivial cases p = 0 and p = 1.
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Note 2.2. There is a deeper reason for separating the boundary case p = 0 from p ∈ (0, 1).

First, when p = 0, in the case of the simple random sampling (SRS), that is, when we work

with n independent and identically distributed (iid) random variables, the empirical estima-

tor of µ is an asymptotically normal estimator under the only requirement that the second

moment of the underlying random variable is finite. No assumption related to continuity

of the cdf F at any point of the real line is needed. In the case p ∈ (0, 1), however, for

an empirical estimator of the upper-layer integral
∫ 1

p
F−1(u)du to be asymptotically normal,

it is necessary to assume that the quantile function F−1 is continuous at the point p. The

necessity of this condition is demonstrated by Stigler (1973) when the empirical estimator

is a trimmed mean based on SRS. This assumption is also needed for our general results as

they absorb the SRS-based trimmed mean as a special case. No such condition, however, is

required for consistency of the empirical estimator of the upper-layer integral
∫ 1

p
F−1(u)du.

We shall illustrate this phenomenon with a simulated example in Section 4.

Note 2.3. The aforementioned continuity of the quantile function F−1 at the point p per-

meates the entire paper. In our minds, however, we rarely visualize distributions in terms of

quantiles – we often think of them in terms of cdf’s. For this reason it is beneficial to follow

Shao (2003) and reformulate the continuity of F−1 at the point p ∈ (0, 1) in the form of the

bounds

F
(
F−1(p)− ε

)
< p < F

(
F−1(p) + ε

)
(2.2)

that need to be satisfied for every ε > 0. Figure 2.1 illustrates the reformulation. Note in

the figure that F is strictly increasing at the point F−1(p) for every p ∈ (0, 1) except when

p = p2, in which case there is a flat region adjacent to x1 = F−1(p2) and, therefore, the

quantile function has a jump of size x2 − x1 at the point p2. Given this explanation, for the

sake of brevity, throughout the rest of the paper we follow Stigler (1973) and formulate the

condition simply as continuity of the quantile function F−1 at the point p.

In Section 5, we develop a general statistical inference theory for the integral∫ p

0

F−1(u)du (2.3)

of quantiles over the lower-most layer (0, p) of probabilities, where p ∈ (0, 1) is a fixed

boundary probability. Throughout the current paper we call integral (2.3) the lower-layer

integral, although in the literature the integral is often called the generalized (or absolute)
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(a) Cdf: The only p ∈ (0, 1) that fails
condition (2.2) is p = p2, provided that
x1 < x2. When x1 = x2 (no gap), every
p ∈ (0, 1) satisfies the condition.
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(b) Quantile function: The only disconti-
nuity of F−1 is at p = p2, provided that
x1 < x2. When x1 = x2 (no jump), the
quantile function is continuous.

Figure 2.1: An illustrative cdf and its quantile function with the boundary points p1 ≤ p2
and x1 ≤ x2 of the distributional jump and gap, respectively, where x1 = F−1(p2).

Lorenz curve (e.g., Davydov and Zitikis, 2002; Helmers and Zitikis, 2005; Davydov et al.,

2007, and references therein) to reflect the fact that by dividing the integral by the mean

µ of F , we obtain the Lorenz curve (see Example 7.3) that permeates the literature on

economic inequality. Integral (2.3) also plays a significant role in finance, because financial

losses are usually modelled using negative random variables. Risk measures such as the

“downside” tail-value-at-risk (TV@R) arise (e.g., Pflug and Römisch, 2007). Its formula

with an accompanying discussion will be provided in Example 7.2.

Note 2.4. Analogous observations to those made in Notes 2.1 and 2.2 apply to integral (2.3)

as well: first, we exclude the statistically trivial cases p = 0 and p = 1, and second, asymp-

totic normality of the empirical estimator when p ∈ (0, 1), unlike in the case p = 1 that gives

the mean µ, requires the quantile function F−1 to be continuous at the point p, as shown by

Stigler (1973) in the case of trimmed mean arising from SRS. No such condition is required

for consistency of the estimator of the lower-layer integral. Details are in Section 5.

There are also problems, like those associated with insurance layers (e.g, Wang, 1996),

when aggregating middle quantiles is of interest. Hence, in Section 6 we develop a general
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statistical inference theory for the integral∫ p2

p1

F−1(u)du (2.4)

of quantiles over the middle layer (p1, p2) of probabilities, where 0 < p1 < p2 < 1 are fixed

boundary probabilities. We call integral (2.4) the middle-layer integral.

Note 2.5. When p1 = 0 and p2 = 1, integral (2.4) reduces to the mean µ of the cdf F .

When p1 = 0 < p2 < 1, integral (2.4) reduces to integral (2.3), and when 0 < p1 < p2 = 1,

integral (2.4) reduces to integral (2.1). Hence, by restricting our study of the middle-layer

integral to the case 0 < p1 < p2 < 1 only, we are not losing anything from the statistical

point of view.

Note 2.6. Asymptotic normality of the empirical estimator when 0 < p1 < p2 < 1 requires

the quantile function F−1 to be continuous at the points p1 and p2, as seen from Stigler

(1973) in the case of trimmed mean arising from SRS. No such condition is required for

consistency of the estimator. Details are in Section 6.

When modeling both profits and losses (so-called P&L variables), the underlying pop-

ulation distribution may span the entire real line R, and thus both upper- and lower-layer

integrals (2.1) and (2.3) may show up simultaneously. There are also problems that give rise

to various combinations of the three integrals introduced above, and one of such instances

is the Gini curve (GC), whose formula with an accompanying discussion will be provided in

Example 7.4. The general results that we shall develop in the following sections are readily

applicable to such combinations as well.

As we have already alluded to, in Section 7 we shall illustrate asymptotic results that can

be obtained for the upside and downside tail-values-at-risk, as well as for the Lorenz and Gini

curves. To maximally simplify the illustrations, yet to maintain their informative nature, we

shall use SRS, that is, we shall work with iid random variables. We stress, however, that this

choice of the sampling design is only to facilitate illustrations of our general results, which

do not rely on any particular sampling design or dependence structure.

In Section 8 we shall show how our general results can be used in the case of time series

data. In particular, we shall show that all that needs to be done is:

• to verify uniform convergence, as well as the rate of uniform convergence, of approxi-

mating empirical cdf’s to the population cdf;
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• to establish convergence of empirical integrated cdf’s to the corresponding integrated

population cdf’s;

• to determine limiting distributions.

We shall implement this program in the case of two very broad classes of stationary time

series, whose dependence structures are called S- and M -mixing.

Section 9 connects the results of previous sections with research areas such as L-statistics,

distortion and spectral risk measures. Section 10 concludes the paper with a brief summary.

Longer proofs, accompanying lemmas, and some cursory technicalities are in Appendix A.

3 The upper-layer integral

In this section we develop statistical inference for the upper-layer integral
∫ 1

p
F−1(u)du at

any fixed lower probability level

p ∈ (0, 1).

Of course, we need to assume that F is from the class F+
1 of those cdf’s for which the upper

quantiles are integrable, that is, the integral
∫ 1

p
F−1(u)du is finite. Note that this condition

is the same as to require that the positive part X+ := X ∨ 0 of the random variable X ∼ F

has a finite first moment E(X+) <∞.

The functional

F+
1 3 F 7→

∫ 1

p

F−1(u)du ∈ R

is not linear, which makes it challenging to derive statistical inference. It appears, however,

that when developing statistical inference, the functional can be approximated by the linear

one

F+
1 3 G 7→

∫ ∞
F−1(p)

(
1−G(x)

)
dx ∈ R. (3.1)

Indeed, we shall see from the following corollaries that the difference between the empirical

upper-layer integral
∫ 1

p
F−1n (u)du and its population counterpart

∫ 1

p
F−1(u)du gets asymp-

totically close to the difference between
∫∞
F−1(p)

(
1−Fn(x)

)
dx and

∫∞
F−1(p)

(
1−F (x)

)
dx, where

Fn ∈ F+
1 , n ∈ N, are cdf’s approaching F when the parameter n grows indefinitely.

Note 3.1. If Fn is a deterministic cdf, that is, Fn : R→ [0, 1], then the meaning of statements

like Fn ∈ F+
1 and

∫∞
F−1(p)

(
1 − Fn(x)

)
dx ∈ R is clear. If, however, Fn is a random cdf, that

10



is, Fn : Ω × R → [0, 1], where Ω denotes the sample space, then Fn ∈ F+
1 means that,

for almost all ω ∈ Ω, the deterministic cdf Fn(ω, ·) : R → [0, 1] is an element of F+
1 .

Likewise,
∫∞
F−1(p)

(
1−Fn(x)

)
dx ∈ R means

∫∞
F−1(p)

(
1−Fn(ω, x)

)
dx ∈ R for almost all ω ∈ Ω.

Furthermore, to enable ourselves to calculate, e.g., the expected values of integrals like∫ 1

p
F−1n (u)du and

∫∞
F−1(p)

(
1− Fn(x)

)
dx, we need joint measurability of Fn : Ω× R → [0, 1].

We do not emphasize these subtle properties in the paper because they are automatically

satisfied by empirical cdf’s arising from n random variables X1, . . . , Xn, and all random cdf’s

in this paper are of such type. Note in this regard, for example, that
∫ 1

0
F−1n (u)du ∈ R is

equivalent to (X1 + · · · + Xn)/n ∈ R, and the latter statement is, of course, true almost

surely. Nevertheless, it is prudent to keep a watchful eye on all these matters.

The aforementioned corollaries rely on the following fundamental theorem, whose proof

is given in Appendix A.2.

Theorem 3.1. Let F and G be any two cdf’s from F+
1 . Then∫ 1

p

(
G−1(u)− F−1(u)

)
du =

∫ ∞
F−1(p)

(
F (x)−G(x)

)
dx− Rem(p;F,G), (3.2)

where the remainder term

Rem(p;F,G) =

∫ F−1(p)

G−1(p)

(
G(x)− p

)
dx (3.3)

is non-negative, that is, Rem(p;F,G) ≥ 0, and satisfies the bounds

Rem(p;F,G) ≤
∫ F−1(p)

G−1(p)

(
G(x)− F (x)

)
dx (3.4)

≤
∣∣G−1(p)− F−1(p)∣∣ sup

x∈R

∣∣G(x)− F (x)
∣∣. (3.5)

Note 3.2. The functional (F,G) 7→ Rem(p;F,G) ∈ [0,∞) is not symmetric. Note that its

symmetrization Rem(p;F,G) + Rem(p;G,F ) is equal to the right-hand side of bound (3.4),

that is,

Rem(p;F,G) + Rem(p;G,F ) =

∫ F−1(p)

G−1(p)

(
G(x)− F (x)

)
dx. (3.6)

This equation implies bound (3.4) because the remainder term Rem(p;G,F ) is non-negative,

just like Rem(p;F,G) is.
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We are now ready to formulate and discuss several corollaries to Theorem 3.1. Their

formulations will involve approximating sequences F1, F2, . . . of cdf’s, which may or may

not be random, depending on the application. For example, we might be dealing with

deterministic “contaminated” cdf’s Fn given by the equation

Fn(x) = (1− δn)F (x) + δnC(x),

where C is a (deterministic) cdf and (0, 1) 3 δn ↓ 0 are contamination proportions. An

obvious example of random cdf’s would be the empirical cdf

Fn(x) =
1

n

n∑
i=1

1{Xi ≤ x}

based on random variables X1, . . . , Xn, where 1{Xi ≤ x} is the indicator that takes value 1

when the statementXi ≤ x is correct and 0 otherwise. Nevertheless, since every deterministic

case is a special (i.e., degenerate) case of the random one, irrespective of the nature of the

approximating cdf’s Fn we can always treat them as random functions, that is, defined on

Ω×R, where Ω is the sample space, given the underlying probability space {Ω,A,P}. Hence,

for example, the requirement Fn ∈ F+
1 that we shall see in the following corollary will mean

that, almost surely, Fn is an element of the class F+
1 , that is, the integral

∫ 1

p
F−1n (u)du is

finite almost surely, for every value of p ∈ (0, 1).

Corollary 3.1 (consistency). Suppose that F ∈ F+
1 , and let F1, F2, . . . ∈ F+

1 be any sequence

of cdf ’s such that

sup
x∈R

∣∣Fn(x)− F (x)
∣∣ P→ 0 (3.7)

when n→∞. Then∫ 1

p

F−1n (u)du−
∫ 1

p

F−1(u)du =

∫ ∞
F−1(p)

(
F (x)− Fn(x)

)
dx+ oP(1) (3.8)

and, therefore, the consistency statement∫ 1

p

F−1n (u)du
P→
∫ 1

p

F−1(u)du (3.9)
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holds if and only if ∫ ∞
F−1(p)

(
1− Fn(x)

)
dx

P→
∫ ∞
F−1(p)

(
1− F (x)

)
dx. (3.10)

Proof. The corollary follows from Theorem 3.1 with Fn instead of G, because F−1(p) is

finite and F−1n (p) is asymptotically bounded. Hence, condition (3.7) implies Rem(p;F,G) =

oP(1) due to bound (3.5). This establishes statement (3.8), which implies the equivalence of

statements (3.9) and (3.10), and concludes the proof of Corollary 3.1.

Example 3.1 (SRS). Let X1, . . . , Xn be SRS, that is, iid random variables. The empirical

cdf Fn,srs is defined by the equation

Fn,srs(x) =
1

n

n∑
i=1

1{Xi ≤ x},

which is the arithmetic mean of n independent copies of the Bernoulli random variable

1{X ≤ x} taking value 1 with probability F (x) and 0 otherwise. In other words, 1{X ≤ x}
is the indicator that takes value 1 when the statement X ≤ x is true and 0 otherwise.

Analogously to equation (1.7), the empirical quantile function F−1n,srs is defined by

F−1n,srs(u) = inf{x ∈ R : Fn,srs(x) ≥ u} (3.11)

= Xdnue:n (3.12)

for all u ∈ (0, 1], where X1:n ≤ · · · ≤ Xn:n are the order statistics of the random variables

X1, . . . , Xn, and, for any real x ∈ R, dxe denotes the smallest integer k such that x ≤ k,

that is, x 7→ dxe is the classical ceiling function. When u = 0, we define

F−1n,srs(0) = X1:n = min
1≤i≤n

Xi.

Condition (3.7) with Fn,srs in place of Fn is satisfied by the Glivenko-Cantelli theorem.

Hence, we are left to verify condition (3.10). By linearity of functional (3.1), the integral∫∞
F−1(p)

(
1−Fn,srs(x)

)
dx is the arithmetic mean n−1

∑n
i=1 Yi,upper(p) of n independent copies

13



of the random variable

Yupper(p) =

∫ ∞
F−1(p)

1{X > x}dx

=
(
X − F−1(p)

)+
. (3.13)

The random variable Yupper(p) has a finite first moment because F ∈ F+
1 (see Lemma A.1 for

details). Hence, statement (3.10) holds and so, by Corollary 3.1, we have that
∫ 1

p
F−1n,srs(u)du

is a consistent estimator of
∫ 1

p
F−1(u)du. In summary, we conclude that when F ∈ F+

1 , we

have ∫ 1

p

F−1n,srs(u)du
P→
∫ 1

p

F−1(u)du. (3.14)

Note 3.3. In addition to equation (3.12), there are also other ways to express F−1n,srs(u) in

terms of the order statistics X1:n ≤ · · · ≤ Xn:n. For example, using the integer part [x] of

x ∈ R, in the section on sample quantiles by Shao (2003), we find the equation

F−1n,srs(u) = cnuX[nu]:n + (1− cnu)X([nu]+1):n,

where cnu = 1 if nu is an integer and cnu = 0 otherwise.

Corollary 3.2 (bias). Suppose that F ∈ F+
1 , and let F1, F2, . . . ∈ F+

1 be any sequence of

cdf ’s that are unbiased estimators of F , that is,

E
(
Fn(x)

)
= F (x) (3.15)

for all x ∈ R and n ∈ N, and such that

E
(
F−1n (p)

)
∈ R (3.16)

for all n ∈ N. Then
∫ 1

p
F−1n (u)du is a non-positively biased estimator of

∫ 1

p
F−1(u)du.

Proof. Using Theorem 3.1 with Fn instead of G, we have

Biasuppern (p) :=E
(∫ 1

p

F−1n (u)du

)
−
∫ 1

p

F−1(u)du

=− E
(
Rem(p;F, Fn)

)
∈(−∞, 0]

14



for every n ∈ N. Note that E
(
Rem(p;F, Fn)

)
is finite because of bound (3.5) and condi-

tion (3.16). This establishes Corollary 3.2.

Example 3.2 (SRS). When Fn is Fn,srs, condition (3.15) is obviously satisfied. Condi-

tion (3.16) is satisfied when (Stigler, 1974, Proposition 2, p. 679)

there is ε > 0 such that xε(1 − F (x) + F (−x)) → 0 when x → ∞, which is

equivalent to saying that xεP(|X| ≥ x)→ 0, where X ∼ F .

For a related study that connects condition (3.16) with the order of finite moments of F ,

we refer to Gribkova (1995) (see also next Note 3.4). Denote the class of all cdf’s satisfying

the aforementioned tail-based condition of Stigler (1974) by Tε. Hence, Corollary 3.2 tells

us that when F ∈ F+
1 ∩ Tε for some ε > 0, the estimator

∫ 1

p
F−1n,srs(u)du of the upper-layer

integral
∫ 1

p
F−1(u)du, although being consistent by Example 3.1, has non-positive bias

Biasuppern,srs (p) := −E
(
Rem(p;F, Fn,srs)

)
∈ (−∞, 0]. (3.17)

Note 3.4. The condition that F ∈ F+
1 ∩Tε for some ε > 0 can equivalently be reformulated

as F ∈ F+
1 ∩T −ε for some ε > 0, where T −ε consists of all those cdf’s that satisfy |x|εF (x)→

0 when x → −∞. This reformulation is possible due to the fact that F ∈ F+
1 implies

xε(1− F (x)) → 0 when x → ∞ for every ε ∈ (0, 1), and we need this condition to hold for

just one ε > 0. For those researchers who think in terms of moments, a sufficient condition

that ensures the existence of ε > 0 such that F ∈ F+
1 ∩ T −ε would be the requirement that

E(X+) <∞ and E((X−)ε) <∞ (3.18)

for some ε > 0, where X− = (−X) ∨ 0 is the negative part of the random variable X ∼ F .

Note that requirement (3.18) can equivalently be rewritten as F ∈ F+
1 ∩ F−ε .

The next corollary plays a pivotal role in deriving the asymptotic distribution of the

empirical upper-layer integral. We note at the outset that the corollary crucially relies on

the rate of convergence to 0, denoted by OP(1/An), of the supremum in condition (3.7).

For example, we would typically have An =
√
n for iid sequences and, more broadly, for

weakly-dependent stationary sequences (Xn), whereas we would have An = nθ with some

θ ∈ (0, 1/2) for long-memory random sequences. We shall give a more detailed note on the

topic near the end of this section. At the moment we emphasize that next Corollary 3.3 does

not depend on any sampling design or dependence structure.
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Corollary 3.3 (asymptotic distribution). Suppose that F ∈ F+
1 , and let F1, F2, . . . ∈ F+

1 be

any sequence of cdf ’s such that

F−1n (p)
P→ F−1(p) (3.19)

and

An sup
x∈R

∣∣Fn(x)− F (x)
∣∣ = OP(1) (3.20)

when n→∞, where An →∞ are some normalizing constants. Then

An

(∫ 1

p

F−1n (u)du−
∫ 1

p

F−1(u)du

)
= An

∫ ∞
F−1(p)

(
F (x)− Fn(x)

)
dx+ oP(1) (3.21)

and, therefore, the convergence-in-distribution statement

An

(∫ 1

p

F−1n (u)du−
∫ 1

p

F−1(u)du

)
d→ Lupper(p) (3.22)

holds if and only if

An

(∫ ∞
F−1(p)

(
1− Fn(x)

)
dx−

∫ ∞
F−1(p)

(
1− F (x)

)
dx

)
d→ Lupper(p), (3.23)

where Lupper(p) is a random variable determined by statement (3.23).

Proof. Using Theorem 3.1 with Fn instead of G, we only need to show that An Rem(p;F, Fn)

converges in probability to 0. Since Rem(p;F, Fn) is non-negative and does not exceed

∣∣F−1n (p)− F−1(p)
∣∣ sup
x∈R

∣∣Fn(x)− F (x)
∣∣,

the statement AnRem(p;F, Fn) = oP(1) follows from conditions (3.19) and (3.20). This

establishes equation (3.21), which implies the equivalence of statements (3.22) and (3.23),

and concludes the proof of Corollary 3.3.

Note 3.5. The limiting random variable Lupper(p) may or may not be normal. The nature

of this random variable is determined by the sequence (Xn): if it is iid or, more broadly,

stationary and weakly dependent, then Lupper(p) is normal, but if the stationary sequence

(Xn) is long-range dependent, then the limiting random variable Lupper(p), if it exists, is

typically non-normal.
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Concerning condition (3.19), it is a simple probability exercise to check the validity of the

following lemma by imitating related considerations in the section on SRS-based quantiles

by Shao (2003).

Lemma 3.1. When the quantile function F−1 is continuous at the point p, condition (3.7)

implies condition (3.19) and, therefore, the latter condition can be dropped from Corollary 3.3

because condition (3.20) implies (3.7) and, therefore, it also implies condition (3.19).

Note 3.6. In the SRS-based context, that is, when Fn is Fn,srs, Shao (2003) derives expo-

nential bounds for the probability P(|F−1n,srs(p) − F−1(p)| ≥ ε) with the aim at establishing

strong consistency. We are concerned with (weak) consistency and so do not need exponen-

tial bounds. In other words, we just need convergence of P(|F−1n (p)− F−1(p)| ≥ ε) to 0 for

every ε > 0 when n → ∞, and for this, condition (3.20) imposed on the generic sequence

Fn, n ∈ N, is sufficient.

In Section 4 we shall give an illustrative numerical study showing that statement (3.19)

fails for a cdf F for which the quantile function F−1 is discontinuous at a point p. The same

example will also show that the empirical upper-layer integral
∫ 1

p
F−1n,srs(u)du fails asymptotic

normality. This phenomenon is natural given the results of Stigler (1973); see also Gribkova

and Helmers (2011) for further notes on the topic.

Example 3.3 (SRS). When Fn is Fn,srs, condition (3.20) is a consequence of the Kolmogorov-

Smirnov theorem. Since condition (3.20) is satisfied, condition (3.19) is satisfied as well, pro-

vided that, according to Lemma 3.1, the quantile function F−1 is continuous at the point p.

Furthermore, since the integral
∫∞
F−1(p)

(
1−Fn,srs(x)

)
dx is the arithmetic mean of n indepen-

dent copies of random variable (3.13), we conclude that the integral
∫∞
F−1(p)

(
1−Fn,srs(x)

)
dx

satisfies the central limit theorem provided that random variable (3.13) has a finite second

moment. This is so provided that F ∈ F+
2 (see Lemma A.1 for details), where F+

2 denotes

the set of all cdf’s such that the integral
∫ 1

p

(
F−1(u)

)2
du is finite. Note that F ∈ F+

2 is

equivalent to saying that the positive part X+ of the random variable X ∼ F has a finite

second moment E((X+)2) <∞. In summary, when F ∈ F+
2 and the quantile function F−1

is continuous at the point p, we have the asymptotic normality result

√
n

(∫ 1

p

F−1n,srs(u)du−
∫ 1

p

F−1(u)du

)
d→ N (0, σ2

upper(p)), (3.24)
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where σ2
upper(p) is the variance of the random variable Yupper(p). Note that the variance can

be expressed in terms of the cdf F by the formula

σ2
upper(p) =

∫ ∞
F−1(p)

∫ ∞
F−1(p)

(
F (x ∧ y)− F (x)F (y)

)
dxdy, (3.25)

although we have found that the following alternative representations (recall equation (3.13))

σ2
upper(p) = Var

((
X − F−1(p)

)+)
= Var

((
F−1(U)− F−1(p)

)+)
(3.26)

are sometimes easier to use, where U denotes a uniform on [0, 1] random variable.

Note 3.7 (existence of uniform rv’s). We often assume for granted that a uniform on [0, 1]

random variable exists, but whether or not this is the case depends on the underlying prob-

ability space {Ω,A,P} upon which we are building our statistical experiments and theories.

As shown by, for example, Föllmer and Schied (2016, Proposition A.31, p. 547), a neces-

sary and sufficient condition for the existence of a uniform on [0, 1] random variable is for

the underlying probability space to be atomless. Pertaining to the equality X = F−1(U)

P-a.s., we refer to Föllmer and Schied (2016, Lemma A.32, p. 548). The write-up by Ram-

das and Wang (2024, Appendix A.1) on atomless probability spaces and their properties is

particularly illuminating.

Note 3.8 (dependent data). Quite often in applications, data arrive in the form of time

series, and thus researchers have been interested in deriving large sample properties for

various tail risk measures based on such data (e.g., Davydov and Zitikis, 2002, 2003; Helmers

and Zitikis, 2005; Davydov et al., 2007; Chen, 2008; Linton and Xiao, 2013; Ziegel et al., 2020;

Li and Wang, 2023; Moutanabbir and Bouaddi, 2024; Garca-Risueño, 2025, and references

therein). Corollaries 3.1 and 3.3, which are not attached to any particular sampling design

or dependence structure, are applicable in such scenarios. Indeed, statements like those in

condition (3.7) for consistency and condition (3.20) for asymptotic distribution have been

verified for various classes of time series, where the empirical cdf plays the role of Fn. To give

some flavour of what is known, we first note that in the case of weakly-dependent stationary

time series, the normalizing constant An is
√
n and the limiting process of An(Fn − F ) is

normal (centered at 0 and with a variance reflecting the marginal variability as well as the

dependence structure of the underlying time series), whereas in the case of long-memory
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stationary time series, the normalizing constant An is of the order nθ for various θ ∈ (0, 1/2)

and the limiting process, if exists, is non-normal. For a glimpse of the various normalizing

constants and limiting distributions, albeit in the case of the lower-layer integral, we refer

to Davydov and Zitikis (2004). The monographs by Dehling et al. (2002), Rio (2017), and

Doukhan (2018) offer a wealth of information on empirical processes arising from various

classes of times series. In Section 8 we shall provide more detailed user-oriented notes and

references.

We next present convenient computational formulas for the SRS-based empirical upper-

layer integral
∫ 1

p
F−1n,srs(u)du.

Computation 3.1 (SRS). When computing, estimators in the form of integrals are not

convenient to work with. Hence, using equation (3.12), we shall next express
∫ 1

p
F−1n,srs(u)du

in terms of the order statistics X1:n ≤ · · · ≤ Xn:n, whose realized values are known in

practice. Namely, we have

∫ 1

p

F−1n,srs(u)du =

∫ dnpe/n
p

F−1n,srs(u)du+
n∑

i=dnpe+1

∫ i/n

(i−1)/n
F−1n,srs(u)du

=
1

n

n∑
i=dnpe+1

Xi:n︸ ︷︷ ︸
main term

+

(
dnpe
n
− p
)
Xdnpe:n︸ ︷︷ ︸

asymptotically negligible term

(3.27)

=

(
1− dnpe

n

)
1

n− dnpe

n∑
i=dnpe+1

Xi:n︸ ︷︷ ︸
left-trimmed mean

+

(
dnpe
n
− p
)
Xdnpe:n︸ ︷︷ ︸

asymptotically negligible term

. (3.28)

Equations (3.27) and (3.28) give computationally-friendly formulas for the empirical upper-

layer integral, which is connected to the left-trimmed mean (e.g., Stigler, 1973) via equa-

tion (3.28).

4 The upper-layer integral: simulated experiments

In this section we present several experiments that empirically illustrate some of the theo-

retical considerations in previous Section 3.

Simulation 4.1 (SRS; bias). We shall now empirically illustrate that Biasuppern,srs (p) is non-

positive, as stated in Example 3.2. To avoid confounding negativity of bias with skewness
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of distributions, we work with a symmetric (around its mean) and light-tailed distribution.

Namely, let V be the uniform on [0, 2] random variable, whose quantile function is F−1(u) =

2u for 0 ≤ u ≤ 1. We fix the lower-layer probability level

p =
3

4

and choose several values of n (to be specified in a moment) to get an insight into the

behaviour of the bias with respect to the sample size. The population upper-layer integral∫ 1

p
F−1(u)du is equal to 1− p2 = 7/16. We obtain the first SRS by observing n independent

copies V1, . . . , Vn of V , and then calculate the empirical upper-layer integral
∫ 1

p
F−1n,srs(u)du

according to formula (3.27). This gives us the first difference

1

n

n∑
i=d3n/4e+1

Vi:n +

(
d3n/4e
n

− 3

4

)
Vd3n/4e:n︸ ︷︷ ︸

empirical

− 7

16︸︷︷︸
population

between the empirical and population upper-layer integrals. We denote the difference by

Bn(1) and call it the first individual bias. We repeat the procedure m = 10 000 times, keeping

the same p and n values, and obtain m values of the individual biases Bn(1), . . . , Bn(m).

We calculate their arithmetic mean Bave
n and also the median Bmed

n . In Table 4.1 we report

n 40 100 200 500 1000
Bave
n -0.004855 -0.002113 -0.000944 -0.000311 -0.000154

Bmed
n -0.002482 -0.001203 -0.000463 -0.000207 -0.000099

Table 4.1: The averages and medians of m = 10 000 biases for various sample sizes n.

the values of Bave
n and Bmed

n for different n’s. Since m is very large, we expect the averages

Bave
n reported in Table 4.1 to be close to the corresponding theoretical biases Biasuppern,srs ,

which are defined by equation (3.17). Indeed, the table shows that all Bave
n ’s are negative.

Furthermore, their absolute values are decreasing when n grows, which is expected given

the proven consistency of the empirical upper-layer integral. Nevertheless, as a follow-up

research topic, it is worth thinking of modifying the empirical upper-layer integral to reduce

its bias. Finally, we note that the reason behind presenting the medians Bmed
n in Table 4.1

is that by comparing them with the averages Bave
n , we can get insights about the skewness

of the distribution of individual biases.
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Simulation 4.2 (SRS; asymptotic normality holds). Let V be a uniform on [0, 2] random

variable, and so its cdf is F (x) = x/2 for all 0 ≤ x ≤ 2. We set the parameter p value to

p =
1

2

and let the sample size be n = 100 000, which is an even number and thus satisfies dn/2e =

n/2. We simulate n independent copies V1, . . . , Vn of V . Statement (3.24) becomes

∆n :=

√
n

σupper(1/2)

(∫ 1

1/2

F−1n,srs(u)du−
∫ 1

1/2

F−1(u)du

)
d→ N (0, 1), (4.1)

where ∫ 1

1/2

F−1n,srs(u)du =
1

n

n∑
i=(n/2)+1

Vi:n
(
because dn/2e = n/2

)
,

∫ 1

1/2

F−1(u)du =
3

4
,

σ2
upper(1/2) =

5

48
. (4.2)

To arrive at the value of σ2
upper(p) noted in equation (4.2), we have used representation (3.26)

with F−1(u) = 2u for all 0 ≤ u ≤ 1. Simulation results based on m = 10 000 replications

of ∆n are depicted in the form of a relative histogram in Figure 4.1, which supports the

∆n
−4 −3 −2 −1 0 1 2 3 4

0
0.

1
0.

2
0.

3
0.

4

Figure 4.1: The relative histogram of m = 10 000 values of ∆n in (4.1) when n = 100 000.

limiting standard normal distribution claimed in statement (4.1).
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Simulation 4.3 (SRS; asymptotic normality fails). To illustrate the pivotal role of continuity

of the quantile function F−1 at the point p and thus of condition (3.19) in the statement of

asymptotic normality of the empirical upper-layer integral, we next introduce a new random

variable, denoted by Z. Its definition is based on a uniform on [0, 2] random variable V .

Namely, we fix any constant a ∈ [0, 1] and define a “gapped” random variable Z by the

formula

Z = (1− a)V 1{V ≤ 1}+
(
2a+ (1− a)V

)
1{V > 1}.

Note that when a = 0, the gap vanishes and Z turns into the original uniform random variable

V , the case that we have discussed in previous Simulation 4.2. When a = 1, the random

variable Z turns into a discrete random variable taking values 0 and 2 with probabilities 1/2.

To better understand and appreciate the random variable Z with respect to the parameter

a ∈ (0, 1), we note the following properties of Z when it is viewed as a function of the

argument V :

• if V = 0, then Z = 0;

• if V = 1, then Z = 1− a;

• if V ↓ 1, then Z ↓ 1 + a;

• if V = 2, then Z = 2;

Hence, all the values of Z are in the interval [0, 2], although there are no values in (1−a, 1+a],

which represents the gap in the distribution of Z. The cdf z 7→ H(z) of Z, which is visualized

in Figure 4.2, is strictly increasing at every point z ∈ (0, 2) \ [1− a, 1 + a] and is constant on

the interval [1− a, 1 + a]. The quantile H−1(1/2), which is the median of Z, is the left-hand

endpoint 1 − a of the gap of Z. Consequently, the quantile function H−1 is not continuous

at the point p = 1/2. This helps us to understand the reason why in the case

p =
1

2
, (4.3)

we have the following two non-convergence statements: first, non-consistency

H−1n,srs(1/2)
P9 H−1(1/2), (4.4)
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Figure 4.2: The distribution of the gapped random variable Z.

and, second, asymptotic non-normality

∆n :=

√
n

σupper(1/2)

(∫ 1

1/2

H−1n,srs(u)du−
∫ 1

1/2

H−1(u)du

)
d9 N (0, 1), (4.5)

where (recall equation (3.25))

σ2
upper(1/2) =

∫ 2

1−a

∫ 2

1−a

(
H(x ∧ y)−H(x)H(y)

)
dxdy. (4.6)

Although statements (4.4) and (4.5) can be verified theoretically, which we shall discuss in

a moment, we find it illuminating to demonstrate the two statements empirically. For this,

we set the gap radius to

a =
1

2
.

Hence, the distribution of Z has the gap [1/2, 3/2] in its support [0, 2]. When simulating

we conveniently work with even sample sizes n and thus have the equation dn/2e = n/2,

which simplifies formulas of the empirical estimators, especially of the upper-layer integral.

We proceed by noting that given the nature of the random variable V , which is symmetric

around its mean 1, and given the definition of the gapped Z, we expect to see approximately

a half of the simulated Z values below 1/2 and the remaining ones above 3/2. Indeed, when
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n→∞, we have the following two statements (see Appendix A.6.2)

P
(
Zdn/2e:n > 3/2

)
→ 1/2, (4.7)

P
(
Zdn/2e:n < 1/2

)
→ 1/2. (4.8)

This explains non-consistency statement (4.4), which we have visualized in Figure 4.3 using

n

H
n,

S
R

S
 −

1
(1

2)

10 100 1000 10000 100000

0
0.

5
1

1.
5

2

Figure 4.3: Simulated m = 100 values of H−1n,srs(1/2) for various sample sizes n.

the formulas

H−1n,srs(1/2) = Zdn/2e:n (= Z(n/2):n),

H−1(1/2) = 1/2

for various (even) sample sizes n. As to asymptotic non-normality statement (4.5), we have

used the formulas∫ 1

1/2

H−1n,srs(u)du =
1

n

n∑
i=(n/2)+1

Zi:n
(
because dn/2e = n/2

)
,

∫ 1

1/2

H−1(u)du =
7

8
,

σ2
upper(1/2) =

77

192
. (4.9)

Figure 4.4 depicts the simulation results based on the sample size n = 100 000 and the

number of replications m = 10 000. Both n and m are very large, thus depriving us of any

hope that a standard normal density could somehow emerge if even larger values were used.
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Figure 4.4: The relative histogram of m = 10 000 values of ∆n when n = 100 000.

In fact, we know from theoretical studies on trimmed means (Stigler, 1973) that asymptotic

normality does fail when (recall Note 2.3) continuous distributions have gaps (i.e., their

cdf’s have flat regions) adjacent to the quantiles where trimming occurs, as is the case in

the present example (see Figure 4.2).

Note 4.1. When calculating the variance σ2
upper(1/2) in equation (4.9), we found that the

quantile-based expression (recall equation (3.26))

σ2
upper(1/2) = Var

((
H−1(U)−H−1(1/2)

)+)
= Var

((
H−1(U)− (1− a)

)+)
(4.10)

is a particularly convenient starting point, where U denotes a uniform on [0, 1] random

variable, with 1/2 referring to our choice of p made in (4.3). In this way, we also easily arrive

at the expression
29a2 + 14a+ 5

48
(4.11)

for σ2
upper(1/2) in the case of arbitrary a ∈ [0, 1] (see Appendix A.6.3 for details). Hence,

σ2
upper(1/2) = 5/48 when a = 0 (equation (4.2)), σ2

upper(1/2) = 77/192 when a = 1/2

(equation (4.9)), and σ2
upper(1/2) = 1 when a = 1 (in which case Z turns into a discrete

random variable taking values 0 and 2 with probabilities 1/2). Of course, we could have also

calculated σ2
upper(1/2) using equation (4.6) but this cdf-based route is more involved.
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5 The lower-layer integral

In this section we develop statistical inference for the lower-layer integral
∫ p
0
F−1(u)du for

any fixed upper probability level

p ∈ (0, 1).

Naturally, we assume that the cdf F is from the class F−1 of those cdf’s for which the integral∫ p
0
F−1(u)du is finite, which is the same as to require that the negative part X− = (−X)∨ 0

of the random variable X ∼ F has a finite first moment E(X−) <∞.

Note 5.1. When progressing through this section, we shall see that the narrative closely

follows that of Section 3. This may prompt us to think that the results could be derived

from those of Section 3 by simply replacing X by −X. This train of thought, though useful,

is fraught with danger because F−1 is not the ordinary inverse of F and so subtleties do

arise. It is our desire, therefore, to present the results in such a way that the user would be

able to use them directly, without needing to work out the underlying theory.

We continue our analysis of the lower-layer integral by noting that the functional

F−1 3 F 7→
∫ p

0

F−1(u)du ∈ R

is not linear. It appears that when developing statistical inference it can be approximated

by the linear one

F−1 3 G 7→
∫ F−1(p)

−∞
G(x)dx ∈ R. (5.1)

Indeed, we shall see from the following corollaries that the difference between the empirical

lower-layer integral
∫ p
0
F−1n (u)du and its population counterpart

∫ p
0
F−1(u)du gets asymp-

totically close to the difference between the integrals
∫ F−1(p)

−∞ F (x)dx and
∫ F−1(p)

−∞ Fn(x)dx,

where Fn ∈ F−1 , n ∈ N, are cdf’s approaching F when the parameter n grows indefinitely.

The corollaries rely on the following theorem, whose proof is given in Appendix A.2.

Theorem 5.1. Let F and G be any two cdf’s from F−1 . Then

∫ p

0

(
G−1(u)− F−1(u)

)
du =

∫ F−1(p)

−∞

(
F (x)−G(x)

)
dx+ Rem(p;F,G), (5.2)

where the non-negative remainder term Rem(p;F,G) is defined by equation (3.3) and satisfies

bounds (3.4) and (3.5).
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Theorem 5.1 is fundamental for the current section, and it also serves a direct link

between the topic of the current paper and the Vervaat process Vn mentioned in Section 1.

The following note elucidates the connection in detail.

Note 5.2. The (general) Vervaat process Vn is defined on the unit interval (0, 1) by the

equation

Vn(p) :=

∫ p

0

(
F−1n (u)− F−1(u)

)
du+

∫ F−1(p)

−∞

(
Fn(x)− F (x)

)
dx

=Rem(p;F, Fn),

where Fn, which replaces G in equation (5.2), is the empirical cdf based on n random

variables X1, . . . , Xn, each following the cdf F . Originally, the process Vn was introduced

and considered by Csörgő and Zitikis (1996) in the case of iid random variables, with a

number of subsequent studies by various authors devoted to asymptotic properties of Vn in

the case of independent as well as dependent random variables, such as those generated by

time series models. As to the pioneering studies of Vervaat (1972a,b), they concentrated

on the process Vn in the case of n independent and uniformly on [0, 1] distributed random

variables U1, . . . , Un, in which case Vn reduces to

V U
n,srs(p) :=

∫ p

0

(
E−1n,srs(u)− u

)︸ ︷︷ ︸
uniform quantile process

du +

∫ p

0

(
En,srs(u)− u

)︸ ︷︷ ︸
uniform empirical process

du

=

∫ p

0

( (
E−1n,srs(u)− u

)
+
(
En,srs(u)− u

)︸ ︷︷ ︸
uniform Bahadur-Kiefer process

)
du,

where En,srs is the empirical cdf based on U1, . . . , Un, and E−1n,srs is the corresponding em-

pirical quantile function. We infer from Theorem 5.1 that V U
n,srs(p) ≥ 0 for all p ∈ [0, 1],

with the boundary values V U
n,srs(0) = 0 and V U

n,srs(1) = 0. Sample paths of the uniform Ver-

vaat process V U
n,srs(p), 0 ≤ p ≤ 1, and those of the uniform empirical process En,srs(p) − p,

0 ≤ p ≤ 1, are illustrated in Figure 5.1. (We shall discuss computational formulas and

normalizing constants of these two stochastic processes at the end of this section; see Com-

putation 5.2.) Mathematically, V U
n,srs(p) is the lower-layer integral of the uniform version of

the Bahadur-Kiefer process (Bahadur, 1966; Kiefer, 1967). In the case of general sequences

X1, . . . , Xn ∼ F of iid random variables, Vn,srs(p) is the lower-layer integral of the (general)
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(a) Vervaat process nV U
n,srs(p).
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(b) Empirical process n1/2(En,srs(p)−p).

Figure 5.1: Sample paths of normalized uniform Vervaat and empirical processes based on
three uniform-on-[0, 1] SRS’s of sizes n = 100 000.

Bahadur-Kiefer process, as seen from the equations

Vn,srs(p) =

∫ p

0

(
F−1n,srs(u)− F−1(u)

)
du+

∫ F−1(p)

−∞

(
Fn,srs(x)− F (x)

)
dx

=

∫ p

0

((
F−1n,srs(u)− F−1(u)

)
+

1

f(F−1(u))

(
Fn,srs(F

−1(u))− u
)

︸ ︷︷ ︸
Bahadur-Kiefer process

)
du,

but this interpretation necessarily requires the pdf f = F ′ to exist and be positive at all

quantiles F−1(u), 0 < u < p, as only in this case the (general) Bahadur-Kiefer process is

meaningfully defined.

We are now ready to formulate and discuss several corollaries to Theorem 5.1.

Corollary 5.1 (consistency). Suppose that F ∈ F−1 , and let F1, F2, . . . ∈ F−1 be any sequence

of cdf ’s satisfying condition (3.7). Then

∫ p

0

F−1n (u)du−
∫ p

0

F−1(u)du =

∫ F−1(p)

−∞

(
F (x)− Fn(x)

)
dx+ oP(1) (5.3)

and, therefore, the consistency statement∫ p

0

F−1n (u)du
P→
∫ p

0

F−1(u)du (5.4)
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holds if and only if ∫ F−1(p)

−∞
Fn(x)dx

P→
∫ F−1(p)

−∞
F (x)dx. (5.5)

Proof. The corollary follows from Theorem 5.1 and bound (3.5) with Fn instead of G, because

F−1(p) is finite and F−1n (p) is asymptotically bounded, and therefore condition (3.7) implies

Rem(p;F,G) = oP(1) due to bound (3.5). This establishes statement (5.3), which implies

the equivalence of statements (5.4) and (5.5), and concludes the proof of Corollary 5.1.

Example 5.1 (SRS). Condition (3.7) with Fn,srs instead of Fn is satisfied by the Glivenko-

Cantelli theorem. Furthermore, by linearity of functional (5.1), the integral
∫ F−1(p)

−∞ Fn(x)dx

is the arithmetic mean n−1
∑n

i=1 Yi,lower of n independent copies of the random variable

Ylower(p) =

∫ F−1(p)

−∞
1{X ≤ x}dx

=
(
F−1(p)−X

)+
. (5.6)

The random variable Ylower(p) has a finite first moment because F ∈ F−1 (see Lemma A.2 for

details), and so statement (5.5) with Fn,srs instead of Fn holds. By Corollary 5.1, therefore,

the empirical lower-level integral
∫ p
0
F−1n,srs(u)du is a consistent estimator of

∫ p
0
F−1(u)du. In

summary, when F ∈ F−1 , we have∫ p

0

F−1n,srs(u)du
P→
∫ p

0

F−1(u)du. (5.7)

Note 5.3 (dependent data). Although we work with the case p ∈ (0, 1), let us set p = 1 for

a moment. In this case, statement (5.7) turns into the law of large numbers

µn,srs =

∫ 1

0

F−1n,srs(u)du
P→ µ, (5.8)

which of course holds under SRS. A departure from this sampling design leads to ergodic

theory, and in particular to sequences X1, X2, . . . that are stationary and ergodic. Hence, it is

only natural that results of the type of statement (5.7) when p ∈ (0, 1) have been established

within the class of stationary and ergodic sequences (e.g., Aaronson et al., 1996; Gilat and

Helmers, 1997; Davydov and Zitikis, 2002; Helmers and Zitikis, 2005, and references therein).

It is also useful to point out that while the latter two references deal with the integral∫ p
0
F−1(u)du, the first two references deal with the more general integral

∫ 1

0
F−1(u)w(u)du,
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which we shall discuss in more detail in Section 9.

Corollary 5.2 (bias). Suppose that F ∈ F−1 , and let F1, F2, . . . ∈ F−1 be any sequence of

cdf ’s that are unbiased estimators of F , that is, satisfy condition (3.15), and let these cdf ’s

also be such that condition (3.16) is satisfied. Then
∫ p
0
F−1n (u)du is a non-negatively biased

estimator of
∫ p
0
F−1(u)du.

Proof. Using Theorem 5.1 with Fn instead of G, and also recalling that the remainder term

Rem(p;F,G) is non-negative, we have

Biaslower
n (p) :=E

(∫ p

0

F−1n (u)du

)
−
∫ p

0

F−1(u)du

=E
(
Rem(p;F, Fn)

)
∈[0,∞)

for every n ∈ N. Note that E
(
Rem(p;F, Fn)

)
is finite because of bound (3.5) and condi-

tion (3.16). This establishes Corollary 5.2.

Example 5.2 (SRS). When Fn is Fn,srs, condition (3.15) is satisfied. Furthermore, condi-

tion (3.16) is satisfied when F ∈ Tε for some ε > 0 (recall Example 3.2 for details). Hence, we

conclude from Corollary 5.2 that when F ∈ F−1 ∩ Tε, the empirical estimator
∫ p
0
F−1n,srs(u)du

of the lower-layer integral
∫ p
0
F−1(u)du, although being consistent by Example 5.1, has the

positive bias

Biaslower
n,srs (p) := E

(
Rem(p;F, Fn,srs)

)
∈ [0,∞). (5.9)

Note 5.4. The condition that F ∈ F−1 ∩Tε for some ε > 0 can equivalently be reformulated as

F ∈ F−1 ∩T +
ε for some ε > 0, where T +

ε consists of all those cdf’s that satisfy xε(1−F (x))→ 0

when x→∞. This reformulation is possible due to the fact that F ∈ F−1 implies |x|εF (x)→
0 when x→ −∞ for every ε ∈ (0, 1), and we need this condition to hold for just one ε > 0.

For those researchers who think in terms of moments, a sufficient condition that ensures the

existence of ε > 0 such that F ∈ F−1 ∩ T +
ε would be the requirement that

E(X−) <∞ and E((X+)ε) <∞ (5.10)

for some ε > 0, where X ∼ F . Note that requirement (5.10) can equivalently be rewritten

as F ∈ F−1 ∩ F+
ε .
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Note 5.5. Let F ∈ F1, where F1 := F−1 ∩ F+
1 . Hence, F ∈ F1 is equivalent to saying that∫ 1

0
F−1(u)du ∈ R, which is the same as saying that the random variable X ∼ F has a finite

first moment E(X) ∈ R. When in addition to this moment requirement, condition (3.15) is

also satisfied, we have the equation

Biaslower
n (p) = −Biasuppern (p)

because, due to equation (1.6) with Fn instead of G,

Biasuppern (p) + Biaslower
n (p) = E

(∫ 1

0

F−1n (u)du−
∫ 1

0

F−1(u)du

)
= E

(∫ ∞
−∞

(
F (x)− Fn(x)

)
dx

)
=

∫ ∞
−∞

E
(
F (x)− Fn(x)

)
dx,

where the right-hand side is equal to 0 due to condition (3.15).

Corollary 5.3. Suppose that F ∈ F−1 , and let F1, F2, . . . ∈ F−1 be any sequence of cdf ’s

satisfying condition (3.19) and also condition (3.20) with some normalizing constants An →
∞ when n→∞. Then

An

(∫ p

0

F−1n (u)du−
∫ p

0

F−1(u)du

)
= An

∫ F−1(p)

−∞

(
F (x)− Fn(x)

)
dx+ oP(1) (5.11)

and, therefore, the convergence-in-distribution statement

An

(∫ p

0

F−1n (u)du−
∫ p

0

F−1(u)du

)
d→ Llower(p) (5.12)

holds if and only if

An

(∫ F−1(p)

−∞
Fn(x)dx−

∫ F−1(p)

−∞
F (x)dx

)
d→ −Llower(p), (5.13)

where Llower(p) is a random variable determined by statement (5.13).

Proof. Using Theorem 5.1 with Fn instead of G, we only need to show that AnRem(p;F, Fn)

converges in probability to 0, which we showed in the proof of Corollary 3.3. This establishes

equation (5.11), which implies the equivalence of statements (5.12) and (5.13), and concludes
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the proof of Corollary 5.3.

Example 5.3 (SRS). When Fn is Fn,srs, condition (3.20), which is a requirement in Corol-

lary 5.3, is satisfied by the Kolmogorov-Smirnov theorem. Hence, condition (3.19) is satisfied

as well, provided that, according to Lemma 3.1, the quantile function F−1 is continuous at

the point p. Furthermore, since the integral
∫ F−1(p)

−∞ Fn(x)dx is the arithmetic mean of n

independent copies of random variable (5.6), we conclude that
∫ F−1(p)

−∞ Fn(x)dx satisfies the

central limit theorem provided that random variable (5.6) has a finite second moment. This

is so provided that F ∈ F−2 (see Lemma A.2 for details), where F−2 denotes the set of all

cdf’s such that the integral
∫ p
0

(
F−1(u)

)2
du is finite. Note that F ∈ F−2 is equivalent to

saying that the negative part X− of the random variable X ∼ F has a finite second moment

E((X−)2) <∞. In summary, when F ∈ F−2 and the quantile function F−1 is continuous at

the point p, we have the asymptotic normality result

√
n

(∫ p

0

F−1n,srs(u)du−
∫ p

0

F−1(u)du

)
d→ N (0, σ2

lower(p)), (5.14)

where σ2
lower(p) is the variance of the random variable Ylower(p). The variance can be

expressed by the formula

σ2
lower(p) =

∫ F−1(p)

−∞

∫ F−1(p)

−∞

(
F (x ∧ y)− F (x)F (y)

)
dxdy. (5.15)

Note 5.6 (dependent data). Limiting distributions extending statement (5.14) to classes

of dependent random sequences were studied by Davydov and Zitikis (2003), Davydov and

Zitikis (2004), and Davydov et al. (2007). The knowledge of empirical processes and their

asymptotic behaviour based on such random sequences becomes particulary useful, and we

refer to Dehling et al. (2002) for details on the topic. Due to space considerations, we only

note here that dependence structures affect asymptotic variances, normalizing constants,

and even limiting distributions. For a bird’s-eye view of the variety of normalizing constants

and limiting distributions in the case of lower-layer integrals (also known as convexifications,

absolute Lorenz curves, and by some other names), we refer to Davydov and Zitikis (2004).

Computation 5.1 (SRS). Using equation (3.12) for calculating the quantile F−1n,srs(u), we
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have

∫ p

0

F−1n,srs(u)du =

dnpe∑
i=1

∫ i/n

(i−1)/n
F−1n,srs(u)du−

∫ dnpe/n
p

F−1n,srs(u)du

=
1

n

dnpe∑
i=1

Xi:n︸ ︷︷ ︸
main term

−
(
dnpe
n
− p
)
Xdnpe:n︸ ︷︷ ︸

asymptotically negligible term

(5.16)

=
dnpe
n

1

dnpe

dnpe∑
i=1

Xi:n︸ ︷︷ ︸
right-trimmed mean

−
(
dnpe
n
− p
)
Xdnpe:n︸ ︷︷ ︸

asymptotically negligible term

. (5.17)

These expressions give computationally-friendly formulas for the empirical lower-layer inte-

gral, which is connected to the right-trimmed mean (e.g., Stigler, 1973) via equation (5.17).

Computation 5.2 (Uniform Vervaat process). Using formulas (5.6) and (5.16) in the case

of independent and uniformly on [0, 1] distributed random variables U1, . . . , Un, we obtain

the formulas

V U
n,srs(p) =

∫ p

0

E−1n,srs(u)du+
1

n

n∑
i=1

(p− Ui)+ − p2

=
1

n

dnpe∑
i=1

Ui:n −
(
dnpe
n
− p
)
Udnpe:n +

1

n

n∑
i=1

(p− Ui)+ − p2

that we used to visualize the normalized Vervaat process

nV U
n,srs(p), 0 ≤ p ≤ 1,

in Figure 5.1a. The appropriateness of the normalization n for the process V U
n was established

by Vervaat (1972a,b), who showed that nV U
n,srs converges weakly to a half of the squared

Brownian bridge, that is, to B2/2, when n→∞. On the other hand, the normalized uniform

empirical process

n1/2(En,srs(p)− p), 0 ≤ p ≤ 1,

which we have visualized in Figure 5.1b, converges weakly to the Brownian bridge B when

n→∞ (e.g., Billingsley, 1999). Hence, what we essentially see in the two panels of Figure 5.1

are sample paths of a half of the squared Brownian bridge B2/2 (left-hand panel) and of
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the classical Brownian bridge B (right-hand panel). For additional insights into these and

related results, we refer to Csörgő and Zitikis (1999, 2001), and Csáki et al. (2002).

6 The middle-layer integral

Let F denote the class of all cdf’s. Fix any pair of probability levels p1 and p2 such that

0 < p1 < p2 < 1.

The middle-layer integral
∫ p2
p1
F−1(u)du is finite for every F ∈ F . The functional

F 3 F 7→
∫ p2

p1

F−1(u)du ∈ R

is not linear, but when developing statistical inference it can be approximated by the linear

one

F 3 G 7→
∫ F−1(p2)

F−1(p1)

G(x)dx ∈ R. (6.1)

Indeed, we shall see from the following corollaries that the difference between the empirical

middle-layer integral
∫ p2
p1
F−1n (u)du and its population counterpart

∫ p2
p1
F−1(u)du gets asymp-

totically close to the difference between the integrals
∫ F−1(p2)

F−1(p1)
F (x)dx and

∫ F−1(p2)

F−1(p1)
Fn(x)dx,

where Fn, n ∈ N, are cdf’s approaching F when the parameter n grows indefinitely. The

corollaries rely on the following theorem, whose proof is given in Appendix A.2.

Theorem 6.1. Let F and G be any two cdf’s. Then

∫ p2

p1

(
G−1(u)− F−1(u)

)
du =

∫ F−1(p2)

F−1(p1)

(
F (x)−G(x)

)
dx+ Rem(p2;F,G)− Rem(p1;F,G),

(6.2)

where the non-negative remainder terms Rem(p1;F,G) and Rem(p2;F,G) are defined by

equation (3.3) and satisfy bounds (3.4) and (3.5).

Note 6.1. It is tempting to collapse equations (1.6), (3.2), (5.2), and (6.2) into one by

relaxing the restriction 0 < p1 < p2 < 1 to 0 ≤ p1 < p2 ≤ 1. This is indeed possible by

augmenting the definition of the remainder term Rem(p;F,G), which has so far been given

only for p ∈ (0, 1), by setting Rem(p;F,G) to 0 when p ∈ {0, 1}. If we agree with this

augmentation, then it is also imperative to replace F−1(p1) by −∞ when p1 = 0 in the
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integral ∫ F−1(p2)

F−1(p1)

(
F (x)−G(x)

)
dx (6.3)

on the right-hand side of equation (6.2), and to also replace F−1(p2) by∞ when p2 = 1. Note

that F−1(0) may or may not be equal to −∞, and F−1(1) may or may not be equal to ∞.

Hence, although the noted replacements may look artificial, they are absolutely necessary, as

next Example 6.1 shows. Consequently, the role of infinities −∞ and ∞ instead of F−1(p1)

and F−1(p2) in integral (6.3) when p1 = 0 and p2 = 1, respectively, is crucial. In summary,

we recommend having four separate equations (1.6), (3.2), (5.2), and (6.2) in the toolbox,

instead of having just one general equation with a number of caveats and adjustments – the

four separate equations should help to avoid potential overlooks and pitfalls.

Example 6.1. Let F ∼ U[0,1] and G ∼ U[0,2] be two random variables with uniform on the

intervals [0, 1] and [0, 2] distributions, respectively. That is, F (x) = x when 0 ≤ x ≤ 1 and

G(x) = x/2 when 0 ≤ x ≤ 2. Consequently, F−1(t) = t and G−1(t) = 2t when 0 ≤ t ≤ 1.

From these formulas, we obtain∫ 1

0

(
G−1(t)− F−1(t)

)
dt =

1

2
,∫ F−1(1)

F−1(0)

(
F (x)−G(x)

)
dx =

1

4
,∫ ∞

−∞

(
F (x)−G(x)

)
dx =

1

2
.

Hence, ∫ 1

0

(
G−1(t)− F−1(t)

)
dt =

∫ ∞
−∞

(
F (x)−G(x)

)
dx,

which is what equation (1.6) says, but

∫ 1

0

(
G−1(t)− F−1(t)

)
dt 6=

∫ F−1(1)

F−1(0)

(
F (x)−G(x)

)
dx.

This concludes Example 6.1.

We are now ready to formulate and discuss several corollaries to Theorem 6.1.

Corollary 6.1 (consistency). Let F be any cdf, and let F1, F2, . . . be any sequence of cdf ’s
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satisfying condition (3.7). Then

∫ p2

p1

F−1n (u)du−
∫ p2

p1

F−1(u)du =

∫ F−1(p2)

F−1(p1)

(
F (x)− Fn(x)

)
dx+ oP(1) (6.4)

and, therefore, the consistency statement∫ p2

p1

F−1n (u)du
P→
∫ p2

p1

F−1(u)du (6.5)

holds if and only if ∫ F−1(p2)

F−1(p1)

Fn(x)dx
P→
∫ F−1(p2)

F−1(p1)

F (x)dx. (6.6)

Proof. The corollary follows from Theorem 6.1 and bound (3.5) with Fn instead of G, because

for p ∈ {p1, p2} ⊂ (0, 1), F−1(p) is finite and F−1n (p) is asymptotically bounded. Therefore

condition (3.7) implies Rem(p;F, Fn) = oP(1) for both p = p1 and p = p2, and thus, in turn,

implies statement (6.4). This establishes the equivalence of statements (6.5) and (6.6), and

concludes the proof of Corollary 6.1.

Example 6.2 (SRS). Condition (3.7) with Fn,srs in place of Fn is satisfied by the Glivenko-

Cantelli theorem. Furthermore, by linearity of functional (6.1), the integral
∫ F−1(p2)

F−1(p1)
Fn(x)dx

is the arithmetic mean n−1
∑n

i=1 Yi,middle(p1, p2) of n independent copies of the random vari-

able

Ymiddle(p1, p2) =

∫ F−1(p2)

F−1(p1)

1{X ≤ x}dx

=
(
F−1(p2)−X

)+ − (F−1(p1)−X)+. (6.7)

The random variable Ymiddle(p1, p2) always has a finite first moment (see Note A.1 for details).

Consequently,
∫ p2
p1
F−1n,srs(u)du is a consistent estimator of

∫ p2
p1
F−1(u)du, that is, for every cdf

F , we have ∫ p2

p1

F−1n,srs(u)du
P→
∫ p2

p1

F−1(u)du. (6.8)

Corollary 6.2 (bias). Let F be any cdf, and let F1, F2, . . . be any sequence of cdf ’s that

are unbiased estimators of F , that is, satisfy condition (3.15), and let the cdf ’s be such that
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condition (3.16) is satisfied with p ∈ {p1, p2}. Then

Biasmiddlen (p1, p2) :=E
(∫ p2

p1

F−1n (u)du

)
−
∫ p2

p1

F−1(u)du

=E
(
Rem(p2;F, Fn)

)
− E

(
Rem(p1;F, Fn)

)
∈R.

Proof. Theorem 6.1 with Fn instead of G implies Corollary 6.2.

Example 6.3 (SRS). When Fn is Fn,srs, condition (3.15) is satisfied. Furthermore, condi-

tion (3.16) is satisfied when F ∈ Tε for some ε > 0 (recall Example 3.2 for details). Hence,

we conclude from Corollary 6.2 that when F ∈ Tε, the estimator
∫ p2
p1
F−1n,srs(u)du of the

middle-layer integral
∫ p2
p1
F−1(u)du, although being consistent by Example 6.2, has the bias

Biasmiddlen,srs (p1, p2) = E
(
Rem(p2;F, Fn,srs)

)
− E

(
Rem(p1;F, Fn,srs)

)
∈ R,

which might be any real number. Note that a sufficient condition for F ∈ Tε for some ε > 0

is the requirement F ∈ Fε, that is, E(|X|ε) <∞ for some ε > 0.

Remark 6.1. Naturally, we can get more insights into the bias if we are willing to make

additional assumptions about F . For example, following the studies of Gribkova and Helmers

(2006, 2007) on trimmed means, if we assume that F has a pdf f = F ′ that is strictly positive

and continuous at the quantiles F−1(p1) and F−1(p2), then

Biasmiddlen,srs (p1, p2) =
p2(1− p2)

2nf(F−1(p2))︸ ︷︷ ︸
vanishes when p2 = 1

− p1(1− p1)
2nf(F−1(p1))︸ ︷︷ ︸

vanishes when p1 = 0

+ o

(
1

n

)
. (6.9)

This asymptotic formula helps us to appreciate the fact that in Example 6.3 we were not able

to say anything definitive about the sign of the bias Biasmiddlen,srs (p1, p2), and it also helps us to

see why we could earlier show that Biasuppern,srs (p) ≤ 0 (statement (3.17)) and Biaslower
n,srs (p) ≥ 0

(statement (5.9)) for any p ∈ (0, 1). Furthermore, asymptotic formula (6.9) helps us to

understand why the Vervaat process needs to be normalized by n to stabilize its asymptotic

behaviour and hence to obtain a non-degenerate limit, which is a half of the squared Brownian

bridge, that is, B2(p)/2, 0 ≤ p ≤ 1. Note in this regard that the expected value of B2(p)/2 is

equal to p(1− p)/2, thus serving a further clarification of the form of the two leading terms

on the right-hand side of equation (6.9).
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Corollary 6.3 (asymptotic distribution). Let F be any cdf, and let F1, F2, . . . be any se-

quence of cdf ’s satisfying condition (3.19) with p ∈ {p1, p2} and condition (3.20) with some

normalizing constants An →∞ when n→∞. Then

An

(∫ p2

p1

F−1n (u)du−
∫ p2

p1

F−1(u)du

)
= An

∫ F−1(p2)

F−1(p1)

(
F (x)− Fn(x)

)
dx+ oP(1) (6.10)

and, therefore, the convergence-in-distribution statement

An

(∫ p2

p1

F−1n (u)du−
∫ p2

p1

F−1(u)du

)
d→ Lmiddle(p1, p2) (6.11)

holds if and only if

An

(∫ F−1(p2)

F−1(p1)

Fn(x)dx−
∫ F−1(p2)

F−1(p1)

F (x)dx

)
d→ −Lmiddle(p1, p2), (6.12)

where Lmiddle(p1, p2) is a random variable determined by statement (6.12).

Proof. Using Theorem 6.1 with Fn instead of G, we only need to show that AnRem(p;F, Fn)

converges in probability to 0, which we showed in the proof of Corollary 3.3. This establishes

equation (6.10), which implies the equivalence of statements (6.11) and (6.12), and concludes

the proof of Corollary 6.3.

Example 6.4 (SRS). When Fn is Fn,srs, condition (3.20) is a consequence of the Kolmogorov-

Smirnov theorem. Since condition (3.20) is satisfied, condition (3.19) is satisfied as well, pro-

vided that, according to Lemma 3.1, the quantile function F−1 is continuous at the points

p1 and p2. Furthermore, since the integral
∫ F−1(p2)

F−1(p1)
Fn(x)dx is the arithmetic mean of n

independent copies of random variable (6.7), we conclude that the integral
∫ F−1(p2)

F−1(p1)
Fn(x)dx

satisfies the central limit theorem. In summary, therefore, when the quantile function F−1

is continuous at the points p1 and p2, we have

√
n

(∫ p2

p1

F−1n,srs(u)du−
∫ p2

p1

F−1(u)du

)
d→ N (0, σ2

middle(p1, p2)), (6.13)

where σ2
middle(p1, p2) is the variance of the random variable Ymiddle(p1, p2). The variance can
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be expressed by the formula (see Note A.1)

σ2
middle(p1, p2) =

∫ F−1(p2)

F−1(p1)

∫ F−1(p2)

F−1(p1)

(
F (x ∧ y)− F (x)F (y)

)
dxdy. (6.14)

Computation 6.1 (SRS). To obtain a convenient computational formula for the empirical

middle-layer integral
∫ p2
p1
F−1n,srs(u)du, we can start with the equation

∫ p2

p1

F−1n,srs(u)du =

∫ p2

0

F−1n,srs(u)du−
∫ p1

0

F−1n,srs(u)du (6.15)

and then apply, for example, computational formula (5.17) for the two empirical lower-layer

integrals on the right-hand side of equation (6.15). (All empirical integrals are finite, and so

manipulations like those in equation (6.15) do not pose any technical issues.) In particular,

we obtain the following equations

∫ p2

p1

F−1n,srs(u)du =
1

n

dnp2e∑
i=dnp1e+1

Xi:n −
(
dnp2e
n
− p2

)
Xdnp2e:n +

(
dnp1e
n
− p1

)
Xdnp1e:n

=
dnp2e − dnp1e

n

1

dnp2e − dnp1e

dnp2e∑
i=dnp1e+1

Xi:n︸ ︷︷ ︸
trimmed mean

−
(
dnp2e
n
− p2

)
Xdnp2e:n +

(
dnp1e
n
− p1

)
Xdnp1e:n︸ ︷︷ ︸

asymptotically negligible terms

with the right-hand side connecting the empirical middle-layer integral with the trimmed

(from both sides) mean considered by Stigler (1973).

7 Illustrations: iid random variables

To make the following illustrations less voluminous and easier connectable to what is known

in the literature and hence maximally illuminating, we use SRS throughout this section.

That is, we work with iid random variables X1, . . . , Xn and from them arising empirical cdf

Fn,srs, which is a consistent and unbiased estimator of the underlying population cdf F .
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7.1 Upside tail-value-at-risk

Given any p ∈ (0, 1) and F ∈ F+
1 , the upside tail-value-at-risk TVaR(p) is given by equa-

tion (1.1). As an illustration, in Figure 1.1a we depicted p 7→ TVaR(p) for the Pareto (Type

I) distribution, whose quantile function is p 7→ x0(1 − p)−1/α with the scale x0 > 0 and

shape α > 0 parameters, which we set to 1 and 3, respectively. The empirical counterpart

TVaRn,srs(p) is defined by equation (1.1) with Fn,srs instead of F . (For a comprehensive

review of various estimators of TVaR and its sister risk measure called Expected Shortfall,

we refer to Nadarajah et al. (2013).) We have the following three statements concerning

consistency, bias, and asymptotic normality of TVaRn,srs(p).

7.1.1 Consistency

When F ∈ F+
1 , we obtain from Example 3.1 that TVaRn,srs(p) is a consistent estimator of

TVaR(p), that is,

TVaRn,srs(p)
P→ TVaR(p). (7.1)

This result is a special case of Gribkova et al. (2022a) who consider consistency and with

it associated fixed-margin confidence intervals for the tail conditional allocation, which gen-

eralizes TVaR(p). For related bootstrap-type considerations and fixed-margin confidence

intervals, we refer to Gribkova et al. (2024).

7.1.2 Bias

When F ∈ F+
1 ∩ Tε for some ε > 0 (recall Note 3.4), we obtain from Example 3.2 that

TVaRn,srs(p) is a non-positively biased estimator of TVaR(p), that is,

E
(
TVaRn,srs(p)

)
≤ TVaR(p) (7.2)

for every n ∈ N. This property, although not stated explicitly, was earlier established by

Brazauskas et al. (2008, p. 3602). Garca-Risueño (2025) offers an illuminating discussion of

the property from the heuristic point of view.
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7.1.3 Asymptotic normality

When F ∈ F+
2 and the quantile function F−1 is continuous at the point p, we obtain from

Example 3.3 that

√
n
(
TVaRn,srs(p)− TVaR(p)

) d→ N (0, σ2
TVaR(p)), (7.3)

where the asymptotic variance is

σ2
TVaR(p) =

1

(1− p)2

∫ ∞
F−1(p)

∫ ∞
F−1(p)

(
F (x ∧ y)− F (x)F (y)

)
dxdy. (7.4)

This statement is a special case of a more general result derived by Brazauskas et al. (2008),

who consider not just pointwise convergence to the limiting distribution but also uniform

convergence over all p ∈ (0, 1), which allows one to establish confidence bands for the function

p 7→ TVaR(p). Statement (7.3) is also a special case of Gribkova et al. (2022b) who consider

the limiting distribution of the tail conditional allocation, which generalizes TVaR(p).

7.2 Downside tail-value-at-risk

Given p ∈ (0, 1) and F ∈ F−1 , the downside tail-value-at-risk TV@R(p) is given by equa-

tion (1.2). As an illustration, in Figure 1.1b we depicted p 7→ TV@R(p) for the Pareto (Type

I) distribution with the scale x0 = 1 and shape α = 3 parameters. The empirical counterpart

TV@Rn,srs(p) is defined by equation (1.2) with Fn,srs instead of F . We have the following

three statements concerning consistency, bias, and asymptotic normality of TV@Rn,srs(p).

7.2.1 Consistency

When F ∈ F−1 , we obtain from Example 5.1 that TV@Rn,srs(p) is a consistent estimator of

TV@R(p), that is,

TV@Rn,srs(p)
P→ TV@R(p). (7.5)

7.2.2 Bias

When F ∈ F−1 ∩ Tε for some ε > 0 (recall Note 5.4), we obtain from Example 5.2 that

TV@Rn,srs(p) is a non-negatively biased estimator of TV@R(p), that is,

E
(
TV@Rn,srs(p)

)
≥ TV@R(p) (7.6)
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for every n ∈ N.

7.2.3 Asymptotic normality

When F ∈ F−2 and the quantile function F−1 is continuous at the point p, we obtain from

Example 5.3 that

√
n
(
TV@Rn,srs(p)− TV@R(p)

) d→ N (0, σ2
TV@R(p)), (7.7)

where the asymptotic variance is

σ2
TV@R(p) =

1

p2

∫ F−1(p)

−∞

∫ F−1(p)

−∞

(
F (x ∧ y)− F (x)F (y)

)
dxdy. (7.8)

7.3 Lorenz curve

Let F ∈ Fµ6=0
1 , where Fµ6=0

1 denotes the set of all cdf’s that have finite but non-zero first

moments, that is, µ = E(X) ∈ R \ {0} for X ∼ F . Following Gastwirth (1971), the Lorenz

curve LC(p) is defined by equation (1.3) with p running through the unit interval [0, 1]. (The

Lorenz curve is usually defined and meaningfully interpreted only on the set of non-negative

random variables X ≥ 0.) Since the cases p = 0 and p = 1 are trivial, we restrict ourselves

to p ∈ (0, 1). As an illustration, in Figure 1.1c we depicted p 7→ LC(p) in the case of the

Pareto (Type I) distribution with the scale x0 = 1 and shape α = 3 parameters. When F is

replaced by Fn,srs on the right-hand side of equation (1.3), we obtain the empirical Lorenz

curve LCn,srs(p). We have the following three statements concerning consistency, bias, and

asymptotic normality of LCn,srs(p) for any fixed p ∈ (0, 1).

7.3.1 Consistency

When F ∈ Fµ6=0
1 , we obtain from Example 5.1 and consistency of the arithmetic mean µn,srs

that LCn,srs(p) is a consistent estimator of LC(p), that is,

LCn,srs(p)
P→ LC(p). (7.9)

7.3.2 Bias

The result of Example 5.2 suggests that LCn,srs(p) might be a positively biased estimator

of LC(p), given that the arithmetic mean µn,srs is an unbiased estimator of µ. This may
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or may not be true as demonstrated by Arnold and Villaseñor (2015), who summarize their

findings on the subject as follows:

For several parent distributions it is possible to prove that the sample Lorenz

curve is a positively biased estimate of the population Lorenz curve. In this

paper, several sufficient conditions for such positive bias are investigated. An

example shows that negative bias is not impossible, though apparently not com-

mon. (Arnold and Villaseñor, 2015, p. 3)

7.3.3 Asymptotic normality

When F ∈ Fµ6=0
2 and the quantile function F−1 is continuous at the point p, we obtain from

results of Section 5 and equation (1.6) that (see Lemma A.3 in Appendix A.3 for a proof)

√
n
(
LCn,srs(p)− LC(p)

) d→ N (0, σ2
lc(p)), (7.10)

where the asymptotic variance σ2
lc(p) is the second moment of the mean-zero random variable

Ylc(p) =
1

µ

∫ F−1(p)

−∞

(
1{X ≤ x} − F (x)

)
dx+

LC(p)

µ

(
X − µ

)
. (7.11)

For confidence bands (i.e., simultaneous confidence intervals over all p ∈ (0, 1)) for the

Lorenz curve under minimal conditions on the population distribution, we refer to Csörgő

et al. (1998). It is also useful to note that the variance σ2
lc(p) can be expressed in a form

resembling those for σ2
TVaR(p) and σ2

TV@R(p) in equations (7.4) and (7.8), respectively, but

apart from being nice theoretical exercises, we do not see much practical value in doing

so: first, this would not lead to a convenient empirical estimator for σ2
lc(p), and second, the

variance σ2
lc(p) can be easier estimated via a resampling technique (e.g., Shao and Tu, 1995).

7.4 Gini curve

Let F ∈ Fµ6=0
1 , where the class Fµ 6=0

1 is defined in Example 7.3. The Gini curve GC(p) is

given by equation (1.4), where p runs through the unit interval [0, 1]. (The Gini curve is

usually defined and meaningfully interpreted only on the set of non-negative random variables

X ≥ 0.) Since the cases p = 0 and p = 1 are trivial, we restrict ourselves to p ∈ (0, 1). As

an illustration, in Figure 1.1d we depicted p 7→ GC(p) in the case of the Pareto (Type I)

distribution with the scale x0 = 1 and shape α = 3 parameters. When F is replaced by Fn,srs
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on the right-hand side of equation (1.4), we obtain the empirical Gini curve GCn,srs(p). We

have the following three statements concerning consistency, bias, and asymptotic normality

of GCn,srs(p) for any p ∈ (0, 1).

7.4.1 Consistency

When F ∈ Fµ6=0
1 , we obtain from consistency of the arithmetic mean µn,srs and Examples 3.1

and 5.1 that GCn,srs(p) is a consistent estimator of GC(p), that is,

GCn,srs(p)
P→ GC(p). (7.12)

7.4.2 Bias

Even more so than in the case of the Lorenz curve, we cannot say anything definitive about

the bias of GCn,srs(p).

7.4.3 Asymptotic normality

When F ∈ Fµ 6=0
2 and the quantile function F−1 is continuous at the points p and 1− p, we

obtain from results of Section 5 and equation (1.6) that (see Lemma A.4 in Appendix A.3

for a proof)
√
n
(
GCn,srs(p)−GC(p)

) d→ N (0, σ2
gc(p)), (7.13)

where the asymptotic variance σ2
gc(p) is the second moment of the mean-zero random variable

Ygc(p) =
1

µ

∫ F−1(1−p)

−∞

(
1{X ≤ x} − F (x)

)
dx

+
1

µ

∫ F−1(p)

−∞

(
1{X ≤ x} − F (x)

)
dx+

1−GC(p)

µ

(
X − µ

)
. (7.14)

Estimating the asymptotic variance using a resampling technique might be the most efficient

and speediest way toward, e.g., constructing large-sample confidence intervals for GC(p).

8 Illustrations: stationary time series

Often in applications, data arrive in the form of time series. Depending on the class of time

series, and there are many of them, we may see different normalizing constants, different
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asymptotic distributions, and even in the case of normal asymptotic distributions, we may

see different asymptotic variances. Therefore, to illustrate how our general results work on

time series, we need to make a choices, and our’s is to work with those time series that are

S- and M -mixing. These two notions of mixing have been introduced by Berkes et al. (2009)

and Berkes et al. (2011), respectively, and they cover many time series (linear and non-

linear). Very importantly, it has also turned out that verifying S- and M -mixing conditions

is often easier than verifying classical mixing conditions. Berkes et al. (2009, 2011) provide

illuminating discussions of these matters with accompanying examples and references.

8.1 S-mixing and statements (3.21), (5.11) and (6.10)

We follow Berkes et al. (2009) and say that a time series (Xt)t∈Z is S-mixing if it satisfies

the following two conditions:

(A) For any t ∈ Z and m ∈ N, there is a random variable Υ
(m)
t such that the property

P
(
|Xt −Υ

(m)
t | ≥ γm

)
≤ δm (8.1)

holds for some deterministic sequences γm → 0 and δm → 0.

(B) For any disjoint intervals I1, . . . , Ir ⊂ Z of integers and for any positive integers

m1, . . . ,mr ∈ N, the vectors (Υ
(m1)
t , t ∈ I1), . . . , (Υ(mr)

t , t ∈ Ir) are independent, pro-

vided that the separation between the pairs Ii and Ij is greater than mi + mj for all

1 ≤ i < j ≤ r, that is,

dist(Ii, Ij) := inf
{
|a− b|, a ∈ Ii, b ∈ Ij

}
>mi +mj. (8.2)

We can clearly see why S-mixing has turned out to be such an attractive notion, in par-

ticular from the applications point of view: it is based on various portions of the time series

(Xt)t∈Z and not on mathematical constructs such as σ-algebras, as is the case with many

classical mixing notions. The only challenge with S-mixing is that one needs to construct

random variables Υ
(m)
t , but Berkes et al. (2009) suggest several recipes for accomplishing

this task. To gain intuition on the matter, we next follow one of the recipes and show that

the causal autoregressive of order 1 time series is S-mixing.
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Example 8.1 (AR(1) is S-mixing). Let (Xt)t∈Z be a causal AR(1) time series, that is,

Xt = ϕXt−1 + εt for all t ∈ Z, where |ϕ| < 1 is a constant and (εt)t∈Z is a mean-zero white

noise with finite marginal variances σ2
ε = Var(εt) <∞. In addition, we assume that εt’s are

iid random variables, thus making (Xt)t∈Z strictly stationary. The representation

Xt =
∞∑
i=0

ϕiεt−i (8.3)

holds for all t ∈ Z. Denote

Υ
(m)
t =

m∑
i=0

ϕiεt−i. (8.4)

Condition (B) of S-mixing is satisfied because the two random vectors

(εs−mi
, . . . , εs), s ∈ Ii,

(εt−mj
, . . . , εt), t ∈ Ij,

do not overlap and are therefore independent whenever dist(Ii, Ij) > max{mi,mj}, and so

definitely when dist(Ii, Ij) > mi +mj. To check condition (A), we write

P
(
|Xt −Υ

(m)
t | ≥ γm

)
≤ 1

γ2m
E
(( ∞∑

i=m+1

ϕiεt−i

)2)
=
ϕ2(m+1)

γ2m

σ2
ε

1− ϕ2

=: δm,

where the bound is due to Markov’s inequality. For example, if set γm = m−a for any

constant a > 0, then we have δm = O(m−A) when m→∞ for any constant A > 0. In fact,

for γm given above, the decay of δm is exponential.

The following theorem is a very special case of Berkes et al. (2009, Theorem 2, p. 1303),

but it is exactly what we currently need.

Theorem 8.1. Let (Xt)t∈Z be a strictly stationary and S-mixing time series whose marginal

cdf F is Lipschitz continuous of order θ > 0, that is, there is a constant c > 0 such that

∣∣F (x)− F (y)
∣∣ ≤ c|x− y|θ (8.5)
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for all x, y ∈ R. Furthermore, assume that condition (A) is satisfied with

γm =
1

mA/θ
and δm = O

(
1

mA

)
(8.6)

for some A > 4. Then
√
n sup

x∈R

∣∣Fn,ts(x)− F (x)
∣∣ = OP(1) (8.7)

when n→∞, where Fn,ts is the empirical cdf based on the observable portion X1, . . . , Xn of

the time series (Xt)t∈Z.

Note 8.1. If the marginal cdf F of (Xt)t∈Z has a bounded pdf, then condition (8.5) is

satisfied with θ = 1, and so γm = m−A in this case.

We can now formulate the following corollaries to Theorem 8.1.

Corollary 8.1. Let all the conditions of Theorem 8.1 be satisfied. If F ∈ F+
1 and the

quantile function F−1 is continuous at the point p, then statement (3.21) holds, that is,

√
n

(∫ 1

p

F−1n,ts(u)du−
∫ 1

p

F−1(u)du

)

=
√
n

(
1

n

n∑
i=1

hupper(Xi)− E
(
hupper(X)

))
+ oP(1), (8.8)

where

hupper(x) =
(
x− F−1(p)

)+
.

The moment condition F ∈ F+
1 is sufficient to have oP(1) in asymptotic equation (8.8),

but a stronger moment condition is surely needed to enable the normalized sum on the

right-hand side of equation (8.8) to converge to a non-degenerate limit. An analogous note

applies to the next corollary.

Corollary 8.2. Let all the conditions of Theorem 8.1 be satisfied. If F ∈ F−1 and the

quantile function F−1 is continuous at the point p, then statement (5.11) holds, that is,

√
n

(∫ p

0

F−1n,ts(u)du−
∫ p

0

F−1(u)du

)
=
√
n

(
1

n

n∑
i=1

hlower(Xi)− E
(
hlower(X)

))
+ oP(1), (8.9)
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where

hlower(x) =
(
F−1(p)− x

)+
.

Our final corollary concerns with the middle-layer integral.

Corollary 8.3. Let all the conditions of Theorem 8.1 be satisfied. If the quantile function

F−1 is continuous at the points p1 and p2, then statement (6.10) holds, that is,

√
n

(∫ p2

p1

F−1n,ts(u)du−
∫ p2

p1

F−1(u)du

)

=
√
n

(
1

n

n∑
i=1

hmiddle(Xi)− E
(
hmiddle(X)

))
+ oP(1), (8.10)

where

hmiddle(X) =
(
F−1(p2)− x

)+ − (F−1(p1)− x)+.
Corollary 8.3 does not require any moment assumption because the random variables Xi

are transformed by the function hmiddle that is bounded. Incidentally, note that the three

functions hupper, hlower and hmiddle are Lipschitz continuous of order 1, which will be an

important property in next Section 8.2.

8.2 M-mixing and statements (3.22), (5.12) and (6.11)

In view of the results of the previous section, in order to establish asymptotic distributions

of the centered and
√
n-normalized integrals of quantiles, i.e., to establish statements (3.22),

(5.12) and (6.11), we are left to verify the validity of statements (3.23), (5.13) and (6.12).

That is, in view of Corollaries 8.1–8.3, we need to show

√
n

(
1

n

n∑
i=1

hupper(Xi)− E
(
hupper(X)

)) d→ Lupper(p), (8.11)

√
n

(
1

n

n∑
i=1

hlower(Xi)− E
(
hlower(X)

)) d→ −Llower(p), (8.12)

√
n

(
1

n

n∑
i=1

hmiddle(Xi)− E
(
hmiddle(X)

)) d→ −Lmiddle(p1, p2), (8.13)

where the functions hupper, hlower and hmiddle are defined in Corollaries 8.1–8.3. Obviously,

the random variables in the sums need to have at least finite second moments, and the forms
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of the functions hupper and hlower translate this requirement into the conditions F ∈ F+
2

and F ∈ F−2 , respectively. Hence, unlike in Section 8.1 where we worked with indicators

and thus employed the probability-based notion of S-mixing, we now need to work with a

moment-based notion of mixing. This leads us to the notion of M -mixing introduced by

Berkes et al. (2011).

Namely, following Berkes et al. (2011), we say that a time series (Xt)t∈Z is Mp-mixing for

some p ≥ 1 if it satisfies the following two conditions:

(C) For any t ∈ Z and m ∈ N, there is a random variable Ψ
(m)
t such that the bound

(
E
(
|Xt −Ψ

(m)
t |p

))1/p
≤ %m (8.14)

holds for some deterministic sequence %m → 0.

(D) For any disjoint intervals I1, . . . , Ir ⊂ Z of integers and for any positive integers

m1, . . . ,mr ∈ N, the vectors (Ψ
(m1)
t , t ∈ I1), . . . , (Ψ

(mr)
t , t ∈ Ir) are independent pro-

vided that

dist(Ii, Ij) > max{mi,mj}, (8.15)

where the definition of dist(Ii, Ij) is given in condition (B) of S-mixing.

Note that condition (C) implicitly requires Xt to have a finite pth moment, that is, the

cdf of Xt must be in the class Fp = F−p ∩ F+
p . As to the random variable Ψ

(m)
t postulated

in the condition, Berkes et al. (2011) offer several recipes for constructing it. The following

example illustrates the notion and how to verify it.

Example 8.2 (AR(1) is Mp-mixing). Let (Xt)t∈Z be the same AR(1) time series as in

Example 8.1. In addition, assume that εt’s have (identical) finite pth moments E(|εt|p) <∞
for some p ≥ 2. Hence, representation (8.3) holds. Denote

Ψ
(m)
t =

m∑
i=0

ϕiεt−i,

which is the same as Υ
(m)
t defined by equation (8.4). (In general, Ψ

(m)
t and Υ

(m)
t do not need

to be the same.) Since dist(Ii, Ij) > max{mi,mj}, condition (D) of Mp-mixing is satisfied,
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just like condition (B) of S-mixing is. To check condition (C), we write

(
E
(
|Xt −Ψ

(m)
t |p

))1/p
=

(
E
(∣∣∣∣ ∞∑

i=m+1

ϕiεt−i

∣∣∣∣p)
)1/p

≤
∞∑

i=m+1

(
E
(∣∣ϕiεt−i∣∣p))1/p

=
∞∑

i=m+1

|ϕ|i
(
E
(∣∣ε0∣∣p))1/p

=
|ϕ|m+1

1− |ϕ|

(
E
(∣∣ε0∣∣p))1/p

=: %m,

where the bound is due to Minkowski’s inequality. Hence, %m = O(m−A) when m→∞ for

any constant A > 0. In fact, the decay of %m is exponential.

The following theorem is a very special case of Berkes et al. (2011, Theorem 1, p. 2445),

but it is exactly what we need.

Theorem 8.2. Let (Xt)t∈Z be a strictly stationary and Mp-mixing time series for some p > 2

and with

%m = O

(
1

mA

)
, (8.16)

where

A > max

{
1,
p− 2

2η

(
1− 1 + η

p

)}
and

1 + η

p
<

1

2
. (8.17)

Then, when n→∞,
√
n

(
1

n

n∑
i=1

Xi − E (X)

)
d→ N (0, ν2) (8.18)

with the asymptotic variance

ν2 =
∞∑

h=−∞

Cov
(
X0, Xh

)
.

Since the functions hupper, hlower and hmiddle are Lipschitz continuous of order 1, the three

transformed time series (hupper(Xt))t∈Z, (hlower(Xt))t∈Z and (hmiddle(Xt))t∈Z are Mp-mixing

with the same p and %m as the original time series (Xt)t∈Z. Furthermore, strict stationarity

of (Xt)t∈Z implies strict stationarity of the three transformed time series. Hence, we can now

formulate the following corollary.
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Corollary 8.4. Let F ∈ Fp for some p > 2, and let the conditions of Theorems 8.1 and 8.2

be satisfied.

(1) If the quantile function F−1 is continuous at the point p, then statement (8.11) and,

therefore, statement (3.22) hold with a limiting mean-zero normal random variable

Lupper(p) whose variance is

ν2upper =
∞∑

h=−∞

Cov
(
hupper(X0), hupper(Xh)

)
.

That is, when n→∞, we have

√
n

(∫ 1

p

F−1n,ts(u)du−
∫ 1

p

F−1(u)du

)
d→ N

(
0, ν2upper

)
.

(2) If the quantile function F−1 is continuous at the point p, then statement (8.12) and,

therefore, statement (5.12) hold with a limiting mean-zero normal random variable

Llower(p) whose variance is

ν2lower =
∞∑

h=−∞

Cov
(
hlower(X0), hlower(Xh)

)
.

That is, when n→∞, we have

√
n

(∫ p

0

F−1n,ts(u)du−
∫ p

0

F−1(u)du

)
d→ N

(
0, ν2lower

)
.

(3) If the quantile function F−1 is continuous at the points p1 and p2, then statement (8.13)

and, therefore, statement (6.11) hold with a limiting mean-zero normal random variable

Lmiddle(p) whose variance is

ν2middle =
∞∑

h=−∞

Cov
(
hmiddle(X0), hmiddle(Xh)

)
.

That is, when n→∞, we have

√
n

(∫ p2

p1

F−1n,ts(u)du−
∫ p2

p1

F−1(u)du

)
d→ N

(
0, ν2middle

)
.
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In the three statements of Corollary 8.4, the asymptotic variances are complex to estimate

empirically, and so practically useful assessments of the variances should probably be done

using resampling techniques (e.g. Lahiri, 2003; Kreiss and Paparoditis, 2011).

9 L-functionals

Given what we have established in the previous sections, we may now wish to see if those

results could be extended to the class of so-called L-functionals, whose definition we recall

next. Namely, the L-functional Lw : F → R := R ∪ {−∞,∞} is given by the equation

Lw(F ) =

∫ 1

0

F−1(u)w(u)du,

where w : (0, 1)→ R is a function. For illustrative “actuarial” examples where L-functionals

arise, we refer to Wang (1998), and Jones and Zitikis (2003), with the latter paper being

perhaps the first one to connect actuarial risk measures with L-functionals for the sake of

developing statistical inference for the risk measures. To see the role of L-functionals in

the theory of distorted expectations, which are of particular interest when assessing risks in

economics, finance and insurance, we refer to Dhaene et al. (2012). Next is a specimen of

additional examples that illustrate the w’s that arise in statistics, finance, and insurance.

Example 9.1. Let G ⊂ F be the family of normal (i.e., Gaussian) distributions. To assess

the scale parameter when location is known (e.g., Serfling, 1980, p. 269), the L-functional

Lw : G → R is used with the weight function

w(u) = Φ−1(u),

where Φ denotes the standard normal cdf.

Example 9.2. Let F ⊂ F be the family of logistic distributions. To assess the location

parameter when scale is known(e.g., Serfling, 1980, p. 269), the L-functional Lw : F → R is

used with the weight function

w(u) = 6u(1− u).

Example 9.3. The Gini Mean Difference (GMD) is the L-functional Lw : F → R with the

weight function

w(u) = 4u− 2.
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For properties and manifold applications of the GMD in economics and finance, we refer to

Yitzhaki and Schechtman (2013).

Example 9.4. The Tail Gini (Furman et al., 2017, p. 74) is the L-functional Lw : F → R
with the weight function

w(u) =
1{p ≤ u < 1}

(1− p)2
(
4u− 2(1 + p)

)
,

where p ∈ [0, 1) is a parameter.

Example 9.5. The Gini Shortfall (Furman et al., 2017, p. 75) is the L-functional Lw : F → R
with the weight function

w(u) =
1{p ≤ u < 1}

(1− p)2

(
1− p+ 4λ

(
u− 1 + p

2

))
,

where p ∈ [0, 1) and λ ∈ [0,∞) are parameters.

To give a flavour of the technical path that is often taken in the literature (e.g., Serfling,

1980, p. 265) when deriving large-sample statistical properties of L-integrals, we write the

equations

Lw(G)− Lw(F ) =

∫ 1

0

(
G−1(u)− F−1(u)

)
w(u)du

=

∫
R

(
Kw

(
F (x)

)
−Kw

(
G(x)

))
dx (9.1)

(see Appendix A.6.4 for technical details), where

Kw(t) =

∫ t

0

w(u)du,

assuming that w is integrable on (0, 1). Note that equation (9.1) collapses into equation (1.6)

when w(u) ≡ 1. With an estimator Fn instead of G, we can now establish asymptotic

properties of the empirical L-estimator Lw(Fn) when n → ∞, but this path requires some

form of the Taylor expansion applied on the function Kw, which, in turn, imposes smoothness

conditions on the weight function w. Although in some applications such conditions are

satisfied, in many other applications they are not.

As a way out of the difficulty, we can successfully use our developed theory for inte-

grated quantiles, and the path toward achieving this goal is analogous to that given by
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equation (9.1), although instead of integrating the weight function w as in the definition of

Kw, we integrate the quantile function F−1. The following example offers an idea how this

goal can be achieved.

Example 9.6 (a proof of concept). For simplicity, let F ∈ F+
1 , which means that integrals∫ 1

p
F−1(u)du are finite for every p ∈ (0, 1), and let the weight function w be the difference

w1−w2 of two non-decreasing, right-continuous, and non-negative functions w1 and w2. An

example of such a weight function w would be w(u) = 6u(1−u) that appears in Example 9.2.

Hence,

Lw(F ) =

∫ 1

0

F−1(u)w1(u)du−
∫ 1

0

F−1(u)w2(u)du

=

∫ ∞
0

(∫ 1

w−1
1 (x)

F−1(u)du

)
dx−

∫ ∞
0

(∫ 1

w−1
2 (x)

F−1(u)du

)
dx, (9.2)

with the technical details justifying the right-most equation given in Appendix A.6.5. Equa-

tion (9.2) paves a path that connects the results of Section 3 with asymptotic properties of

the difference Lw(Fn) − Lw(F ), where Fn, n ∈ N, is a sequence of cdf’s that approximate

F when n increases. Furthermore, via the results of Dhaene et al. (2012), the equation also

facilitates the development of statistical inference for distorted expectations.

The following theorem, whose proof is given in Appendix A.4, implements the idea of

Example 9.6 under minimal assumptions on F and w, thus enabling to tackle L-functionals

that arise from a whole spectrum of applications. To formulate the theorem, we use the

notation

Lw,a,b(F ) =

∫ b

a

F−1(u)w(u)du.

Note that Lw(F ) = Lw,a,b(F ) when a = 0 and b = 1.

Theorem 9.1. Let the weight function w be non-decreasing and right-continuous on the

interval (a, b) ⊆ (0, 1). Then, for every cdf F for which Lw,a,b(F ) is finite, we have the

representation

Lw,a,b(F ) = −
∫ 0

−∞
1{w(a) < x}

(∫ b∧w−1(x)

a

F−1(u)du

)
dx

+

∫ ∞
0

1{x ≤ w(b)}

(∫ b

a∨w−1(x)

F−1(u)du

)
dx, (9.3)
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where w−1 is the left-continuous inverse of w.

We see from the right-hand side of equation (9.3) that when a = 0 and b = 1, the L-

integral Lw,a,b(F ), which is equal to Lw(F ), can be expressed in terms of integrated quantiles

under the assumption that the weight function w is non-decreasing on the entire unit interval

(0, 1), but this is a rather restrictive assumption in many applications. For this reason,

we shall show next that all w’s of practical relevance can be expressed in terms of linear

combinations of non-decreasing functions on various subintervals of (0, 1). This reduces

Lw(F ) to a linear combinations of L-integrals Lw,a,b(F ) with various non-decreasing weight

functions w over various intervals (a, b) ⊂ (0, 1). To develop statistical inference for the

L-integrals Lw,a,b(F ), we use the equation

Lw,a,b(G)− Lw,a,b(F ) = −
∫ 0

−∞
1{w(a) < x}

(∫ b∧w−1(x)

a

(
G−1(u)− F−1(u)

)
du

)
dx

+

∫ ∞
0

1{x ≤ w(b)}

(∫ b

a∨w−1(x)

(
G−1(u)− F−1(u)

)
du

)
dx

that follows from Theorem 9.1. Using appropriate results from Sections 3, 5, and 6, we can

now convert integrals of G−1 − F−1 into integrals of F − G for which asymptotics with Fn

instead of G becomes straightforward.

Example 9.7. Consider the weight function

w(u) = 6u(1− u),

which we have encountered in Example 9.2. Obviously, we can decompose this weight func-

tion as the difference of 6u and 6u2 on the entire interval (0, 1). Alternatively, we can decom-

pose it as the difference of −6(1− u)2 and −6(1− u) on the entire interval (0, 1). However,

if we adopt the first decomposition, then we need to assume the finiteness of the moment

E(X+), and if we adopt the second decomposition, then we need to assume the finiteness of

the moment E(X−). Either way, superfluous conditions arise, which are not required for the

finiteness of the L-integral Lw(F ) because the original weight function w(u) converges to 0

when u ↓ 0 and u ↑ 1. For this reason, to reduce the problem to non-decreasing functions,

we split the interval [0, 1) into two parts: [0, 1/2) where the function w is increasing, and

[1/2, 1) where the function w is decreasing and thus −w is increasing. Hence, we can express

w as the sum of two differences of non-decreasing functions, and this can be done in several
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ways. One way is to use the equation

w(u) = 1{0 ≤ u < 1/2}
(
w11(u)− w12(u)

)
+ 1{1/2 ≤ u < 1}

(
w21(u)− w22(u)

)
(9.4)

with the functions

w11(u) = w(u) and w12(u) = 0,

w21(u) = 0 and w22(u) = −w(u).

Another way is to use equation (9.4) with the functions

w11(u) = 6u and w12(u) = 6u2,

w21(u) = −6(1− u)2 and w22(u) = −6(1− u).

Note that irrespective of the way we use, we always have the bounds

|w11(u)| ∨ |w12(u)| ≤ c|w(u)| for all u ∈ [0, 1/2),

|w21(u)| ∨ |w22(u)| ≤ c|w(u)| for all u ∈ [1/2, 1),

with some positive constant c < ∞. Therefore, no superfluous moment conditions arise

when developing statistical inference for the L-integrals based on the four functions wij.

This concludes Example 9.7.

Example 9.7 naturally leads to the following condition, which plays a fundamental role in

connecting statistical inference for the L-integral Lw(F ) with that for integrated quantiles.

(Cw) Let the weight function w : (0, 1) → R be such that, for some integer K ≥ 1, there

is a partition 0 = a0 < a1 < · · · < aK = 1 of the unit interval (0, 1) and also pairs

(w11, w12), . . . , (wK1, wK2) of non-decreasing and right-continuous on (0, 1) functions

such that, for a constant c <∞,

|w11(u)| ∨ |w12(u)| ≤ c|w(u)| in a neighbourhood of 0, (9.5)

|wK1(u)| ∨ |wK2(u)| ≤ c|w(u)| in a neighbourhood of 1, (9.6)
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and

w(u) =
K∑
k=1

1{ak−1 ≤ u < ak}
(
wk1(u)− wk2(u)

)
. (9.7)

To appreciate condition (Cw), which may look somewhat complex at first sight, we observe

that if the function w : (0, 1)→ R is piecewise monotonic, then the assumption is satisfied.

All the weight functions that we have encountered in the literature are piecewise monotonic.

In the very special case when w is monotonic (i.e., either non-decreasing or non-increasing)

on the entire domain (0, 1) of its definition, condition (Cw) is satisfied with K = 1. The

following example illustrates the case K = 2. Interestingly, we shall see from following

Theorem 9.2, whose proof is constructive and given in Appendix A.5, that if condition (Cw)

holds with K ≥ 3, then the condition can be reduced to the case K = 2.

Example 9.8. Consider the weight function

w(u) = (1− u)β

defined for all u ∈ [0, 1) and parameterized by β ∈ R. The function can be expressed as the

difference of two non-decreasing functions as follows:

w(u) = 1{β ≤ 0}(1− u)β︸ ︷︷ ︸
w1(u)

− (−1)1{β > 0}(1− u)β︸ ︷︷ ︸
w2(u)

.

The two functions w1 and w2 are continuous and non-decreasing, and satisfy the bound

|w1(u)| ∨ |w2(u)| ≤ |w(u)|

for all u ∈ (0, 1). That is, for the weight function w we do not need to split the interval

(0, 1) into parts, and we can therefore set K = 1. This concludes Example 9.8.

Theorem 9.2. If condition (Cw) is satisfied with K ≥ 3, then it is also satisfied with K = 2.

Theorem 9.2, whose proof is given in Appendix A.5, says that there is a constant a ∈ [0, 1]

and two pairs (w11, w12) and (w21, w22) of non-decreasing and right-continuous functions such

that bounds (9.5) and (9.6) are satisfied and the representation

w(u) = 1{0 ≤ u < a}
(
w11(u)− w12(u)

)
+ 1{a ≤ u < 1}

(
w21(u)− w22(u)

)
(9.8)
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holds. Earlier in Example 9.7, we showed that the case K = 2 cannot be generally reduced

to K = 1. In other words, from the theoretical point of view, it is sufficient to consider only

the cases K = 1 and K = 2. From the practical point of view, this minimality property

could sometimes be time consuming to realize, but this is not important: we can always

work with any K ≥ 1 that we can easily obtain.

10 Conclusion

We have developed a general statistical inference theory for integrals of quantiles. The re-

quired conditions are formulated in terms of general approximating sequences of cdf’s Fn,

which are not attached to any specific sampling design or dependence structure. To maxi-

mally illuminate the developed theory, we have illustrated the obtained results using simple

random sampling, due to everyone’s familiarity with this sampling design and basic statis-

tical results. In particular, we have discussed consistency, bias, and asymptotic normality

of various integrals of quantiles and their combinations that arise in risk and economic-

inequality measurements: the upside and downside tail-values-at-risk (TVaR and TV@R,

respectively), and the Lorenz and Gini curves. Furthermore, we have illustrated how our

general results can be used in the case of time series data. To facilitate the appreciation of

theoretical results, we have illustrated some of them numerically. Finally, we have linked the

herein developed theory for integrated quantiles with topics such as L-integrals.
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Berkes, I., Hörmann, S. and Schauer, J. (2011). Split invariance principles for stationary pro-

cesses. Annals of Probability, 39, 2441–2473. http://www.jstor.org/stable/23078763

Billingsley, P. (1999). Convergence of Probability Measures. (Second Edition.) Wiley, New

York. https://doi.org/10.1002/9780470316962

Brazauskas, V., Jones, B.L., Puri, M.L. and Zitikis, R. (2008). Estimating conditional tail

expectation with actuarial applications in view. Journal of Statistical Planning and In-

ference, 138, 3590–3604. https://www.sciencedirect.com/science/article/abs/pii/

S0378375808001018

Chen, S.X. (2008). Nonparametric estimation of Expected Shortfall. Journal of Financial

Econometrics, 6, 87–107. https://doi.org/10.1093/jjfinec/nbm019
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A Technicalities

We have subdivided this appendix into several major parts: Appendix A.1 contains auxiliary

lemmas that we shall need in Appendix A.2 for proving Theorems 3.1, 5.1, and 6.1. In
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Appendix A.3 we shall derive asymptotic expansions for the empirical Lorenz and Gini

curves that are needed for establishing their asymptotic normality stated in Examples 7.3

and 7.4. Appendices A.4 and A.5 contain proofs of Theorems 9.1 and 9.2, respectively. In

Appendix A.6 we prove several cursory notes made earlier in the paper when introducing

and discussing the main results.

A.1 Auxiliary lemmas

In this appendix we shall derive formulas for, and establish finiteness of, the first and second

moments of the random variables Yupper(p) and Ylower(p). We shall need these results in

Appendix A.2. The use of Fubini’s theorem and distributional equations X
d
= F−1(U) and

Y
d
= G−1(U) will permeate our considerations, where U is a uniform on [0, 1] random variable

and
d
= denotes equality in distribution.

Lemma A.1. If F ∈ F+
1 , then the random variable Yupper(p) has a finite first moment, and

the following equations hold:

E
(
Yupper(p)

)
=

∫ ∞
F−1(p)

(
1− F (x)

)
dx (A.1)

=

∫ 1

p

F−1(u)du− (1− p)F−1(p). (A.2)

If F ∈ F+
2 , then Yupper(p) has a finite second moment, and formula (3.25) holds for the

variance of Yupper(p).

Proof. We start with the equations

Yupper(p) =
(
X − F−1(p)

)+
(A.3)

d
=
(
F−1(U)− F−1(p)

)+
. (A.4)

The first moment of the random variable on the right-hand side of equation (A.4) is finite

whenever F ∈ F+
1 . We can now use Fubini’s theorem to interchange the expectation and

integration operations on the right-hand side of the equation

E
(
Yupper(p)

)
= E

(∫ ∞
F−1(p)

1{X > x}dx
)

and in this way arrive at equation (A.1) because E
(
1{X > x}

)
= 1 − F (x). To prove
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equation (A.2), we write∫ ∞
F−1(p)

(
1− F (x))dx = E

(∫ ∞
F−1(p)

1{X > x}dx
)

= E
((
F−1(U)− F−1(p)

)+)
=

∫ 1

0

(
F−1(s)− F−1(p)

)+
ds

=

∫ 1

p

(
F−1(s)− F−1(p)

)
ds

=

∫ 1

p

F−1(s)ds− (1− p)F−1(p).

To prove the second half of the lemma, we first note that in view of equation (A.4),

the random variable Yupper(p) has a finite second moment whenever F ∈ F+
2 . To prove

equation (3.25), we use Fubini’s theorem and have

Var
(
Yupper(p)

)
= Var

(∫ ∞
F−1(p)

1{X > x}dx

)

= E

((∫ ∞
F−1(p)

(
1{X > x} − (1− F (x))

)
dx

)2
)

=

∫ ∞
F−1(p)

∫ ∞
F−1(p)

E
((
1{X ≤ x} − F (x)

)(
1{X ≤ y} − F (y)

))
dxdy

=

∫ ∞
F−1(p)

∫ ∞
F−1(p)

(
F (x ∧ y)− F (x)F (y)

)
dxdy.

This completes the proof of Lemma A.1.

Lemma A.2. If F ∈ F−1 , then the random variable Ylower(p) has a finite first moment, and

the following equations hold:

E
(
Ylower(p)

)
=

∫ F−1(p)

−∞
F (x)dx (A.5)

= pF−1(p)−
∫ p

0

F−1(u)du. (A.6)

If F ∈ F−2 , then Ylower(p) has a finite second moment, and formula (5.15) holds for the

variance of Ylower(p).
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Proof. We start with the equations

Ylower(p) =
(
F−1(p)−X

)+
(A.7)

d
=
(
F−1(p)− F−1(U)

)+
. (A.8)

The first moment of the random variable on the right-hand side of equation (A.8) is finite

whenever F ∈ F−1 . We can now use Fubini’s theorem to interchange the expectation and

integration operations on the right-hand side of the equation

E
(
Ylower(p)

)
= E

(∫ F−1(p)

−∞
1{X ≤ x}dx

)

and in this way arrive at equation (A.5) because E
(
1{X ≤ x}

)
= F (x). To prove equa-

tion (A.6), we write

∫ F−1(p)

−∞
F (x)dx = E

(∫ F−1(p)

−∞
1{X ≤ x}dx

)
= E

((
F−1(p)− F−1(U)

)+)
=

∫ 1

0

(
F−1(p)− F−1(u)

)+
du

=

∫ p

0

(
F−1(p)− F−1(u)

)
du

= pF−1(p)−
∫ p

0

F−1(u)du.

To prove the second half of the lemma, we first note that in view of equation (A.8),

the random variable Ylower(p) has a finite second moment whenever F ∈ F−2 . To prove

equation (5.15), we use Fubini’s theorem and have

Var
(
Ylower(p)

)
= Var

(∫ F−1(p)

−∞
1{X ≤ x}dx

)

= E

((∫ F−1(p)

−∞

(
1{X ≤ x} − F (x)

)
dx

)2
)

=

∫ F−1(p)

−∞

∫ F−1(p)

−∞
E
((
1{X ≤ x} − F (x)

)(
1{X ≤ y} − F (y)

))
dxdy

=

∫ F−1(p)

−∞

∫ F−1(p)

−∞

(
F (x ∧ y)− F (x)F (y)

)
dxdy.
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This completes the proof of Lemma A.2.

Note A.1. The asymptotic variance σ2
middle(p1, p2) in statement (6.13) is the variance of the

random variable Ymiddle(p1, p2) defined by equation (6.7). Since both F−1(p1) and F−1(p2)

are finite, the random variable Ymiddle(p1, p2) is bounded and thus has finite moments of all

degrees irrespective of the cdf F . Note the equations

Ymiddle(p1, p2) =

∫ F−1(p2)

−∞
1{X ≤ x}dx−

∫ F−1(p1)

−∞
1{X ≤ x}dx

=
(
F−1(p2)−X

)+ − (F−1(p1)−X)+.
This difference of the two positive parts, which may not have finite variances individually,

always has a finite variance (as well as all the moments of higher degrees) irrespective of the

cdf F , because 0 < p1 < p2 < 1. Equation (6.14) follows immediately from

(
Ymiddle(p1, p2)− E

(
Ymiddle(p1, p2)

))2
=

∫ F−1(p2)

F−1(p1)

∫ F−1(p2)

F−1(p1)

(
1{X ≤ x} − F (x)

)(
1{X ≤ y} − F (y)

)
dxdy

and Fubini’s theorem. This concludes Note A.1.

A.2 Proofs of Theorems 3.1, 5.1, and 6.1

The three theorems deal with arbitrary cdf’s F and G that, at most, are allowed to satisfy

only moment conditions, with no further assumptions. It should be noted at the outset

that we may find some portions of the following proofs look like simple consequences of

integration-by-parts and change-of-variable formulas of calculus, but this would be mathe-

matically inaccurate because, strictly speaking, the quantile function F−1 is not an ordinary

inverse of the cdf F , unless the latter is strictly increasing and continuous, which is not

necessarily the case in the context of the present paper. Indeed, keeping in mind that our

general results need to include, as a special case, the empirical cdf Fn,srs, which is a step-

wise function and thus has flat regions as well as jumps, good care (recall Wacker (2023))

needs to be taken to maintain the largest possible class of cdf’s. Hence, only moment-type

assumptions are required, as specified in the formulation of theorems.
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Proof of Theorem 3.1. By Lemma A.1, we have∫ 1

p

F−1(u)du = (1− p)F−1(p) +

∫ ∞
F−1(p)

(
1− F (x)

)
dx. (A.9)

Since the same equation also holds with G instead of F , taking the difference between the

two equations gives

∫ 1

p

(
G−1(u)− F−1(u)

)
du = (1− p)

(
G−1(p)− F−1(p)

)
+

∫ ∞
G−1(p)

(
1−G(x)

)
dx−

∫ ∞
F−1(p)

(
1− F (x)

)
dx. (A.10)

Next we express the penultimate integral on the right-hand side of equation (A.10) as follows:

∫ ∞
G−1(p)

(
1−G(x)

)
dx =

∫ F−1(p)

G−1(p)

(
1−G(x)

)
dx+

∫ ∞
F−1(p)

(
1−G(x)

)
dx, (A.11)

where the first integral on the right-hand side is equal to −
∫ G−1(p)

F−1(p)

(
1 − G(x)

)
dx when

F−1(p) < G−1(p). Combining equations (A.10) and (A.11), we arrive at equation (3.2) with

the remainder term

Rem(p;F,G) = (1− p)
(
F−1(p)−G−1(p)

)
−
∫ F−1(p)

G−1(p)

(
1−G(x)

)
dx

that can be concisely written as the integral on the right-hand side of equation (3.3).

To show that Rem(p;F,G) is non-negative, we proceed as follows. If F−1(p) ≥ G−1(p),

then x ≥ G−1(p), which is equivalent to G(x) ≥ p, and so

Rem(p;F,G) =

∫ F−1(p)

G−1(p)

(
G(x)− p

)
dx ≥ 0.

If F−1(p) < G−1(p), then x < G−1(p), which is equivalent to G(x) < p, and so

Rem(p;F,G) = −
∫ G−1(p)

F−1(p)

(
G(x)− p

)
dx ≥ 0.

Hence, we always have Rem(p;F,G) ≥ 0.
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Furthermore,

Rem(p;F,G) =

∫ F−1(p)

G−1(p)

(
G(x)− F (x)

)
dx+

∫ F−1(p)

G−1(p)

(
F (x)− p

)
dx

=

∫ F−1(p)

G−1(p)

(
G(x)− F (x)

)
dx− Rem(p;G,F )

≤
∫ F−1(p)

G−1(p)

(
G(x)− F (x)

)
dx,

with the last inequality holding because Rem(p;G,F ) ≥ 0. This establishes upper bound (3.4).

Bound (3.5) follows immediately.

Proof of Theorem 5.1. By Lemma A.2, we have the equation

∫ p

0

F−1(u)du = pF−1(p)−
∫ F−1(p)

−∞
F (x)dx. (A.12)

Since the same equation also holds with G instead of F , taking the difference between the

two equations gives

∫ 1

p

(
G−1(u)−F−1(u)

)
du = p

(
G−1(p)−F−1(p)

)
−
∫ G−1(p)

−∞
G(x)dx+

∫ F−1(p)

−∞
F (x)dx. (A.13)

Next we express the penultimate integral on the right-hand side of equation (A.13) as follows:

∫ G−1(p)

−∞
G(x)dx =

∫ F−1(p)

−∞
G(x)dx+

∫ G−1(p)

F−1(p)

G(x)dx, (A.14)

where the second integral on the right-hand side is equal to −
∫ F−1(p)

G−1(p)
G(x)dx when F−1(p) >

G−1(p). Combining equations (A.13) and (A.14), we arrive at equation (5.2) with the re-

mainder term

Rem(p;F,G) = p
(
G−1(p)− F−1(p)

)
−
∫ G−1(p)

F−1(p)

G(x)dx

= −p
(
F−1(p)−G−1(p)

)
+

∫ F−1(p)

G−1(p)

G(x)dx,

that can be concisely written as the integral on the right-hand side of equation (3.3). This

completes the proof of Theorem 5.1.
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Proof of Theorem 6.1. We start with the equation

∫ p2

p1

F−1(u)du = p2F
−1(p2)− p1F−1(p1)−

∫ F−1(p2)

F−1(p1)

F (x)dx, (A.15)

which can be verified in many different ways, and whose validity does not require any con-

dition on the cdf F . For example, we can prove equation (A.15) as follows.

Since F−1(p1) and F−1(p2) are finite, the integral
∫ F−1(p2)

F−1(p1)
F (x)dx is finite. With X

denoting a random variable whose cdf is F , and also noting that X is equal in distribution

to F−1(U), where U is a uniform on the interval [0, 1] random variable, we have the equations

∫ F−1(p2)

F−1(p1)

F (x)dx = E
(∫ F−1(p2)

F−1(p1)

1{X ≤ x}dx
)

= E
((
F−1(p2)− F−1(p1) ∨X

)+)
= E

((
F−1(p2)− F−1(p1) ∨ F−1(U)

)+)
=

∫ 1

0

(
F−1(p2)− F−1(p1 ∨ u)

)+
du.

Splitting the integral
∫ 1

0
on the right-hand side into the sum of

∫ p1
0

,
∫ p2
p1

and
∫ 1

p2
, we obtain

∫ F−1(p2)

F−1(p1)

F (x)dx =

∫ p1

0

(
F−1(p2)− F−1(p1)

)
du+

∫ p2

p1

(
F−1(p2)− F−1(u)

)
du

= p1
(
F−1(p2)− F−1(p1)

)
+ (p2 − p1)F−1(p2)−

∫ p2

p1

F−1(u)du

= p2F
−1(p2)− p1F−1(p1)−

∫ p2

p1

F−1(u)du.

Equation (A.15) follows. Of course, the same equation also holds with G instead of F .

Hence,

∫ p2

p1

(
G−1(u)− F−1(u)

)
du = p2

(
G−1(p2)− F−1(p2)

)
− p1

(
G−1(p1)− F−1(p1)

)
−
(∫ G−1(p2)

G−1(p1)

G(x)dx−
∫ F−1(p2)

F−1(p1)

F (x)dx

)
,
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which can be rewritten as∫ p2

p1

(
G−1(u)− F−1(u)

)
du = p2

(
G−1(p2)− F−1(p2)

)
− p1

(
G−1(p1)− F−1(p1)

)
−
∫ F−1(p2)

F−1(p1)

(
G(x)− F (x)

)
dx

−
(∫ G−1(p2)

G−1(p1)

G(x)dx−
∫ F−1(p2)

F−1(p1)

G(x)dx

)
.

Since ∫ G−1(p2)

G−1(p1)

G(x)dx−
∫ F−1(p2)

F−1(p1)

G(x)dx =

∫ F−1(p1)

G−1(p1)

G(x)dx−
∫ F−1(p2)

G−1(p2)

G(x)dx,

we have∫ p2

p1

(
G−1(u)− F−1(u)

)
du = p2

(
G−1(p2)− F−1(p2)

)
− p1

(
G−1(p1)− F−1(p1)

)
−
∫ F−1(p2)

F−1(p1)

(
G(x)− F (x)

)
dx

−
∫ F−1(p1)

G−1(p1)

G(x)dx+

∫ F−1(p2)

G−1(p2)

G(x)dx.

Combining the terms on the right-hand side of the latter equation, we obtain

∫ p2

p1

(
G−1(u)− F−1(u)

)
du = −

∫ F−1(p2)

F−1(p1)

(
G(x)− F (x)

)
dx

+

∫ F−1(p1)

G−1(p1)

(
p1 −G(x)

)
dx−

∫ F−1(p2)

G−1(p2)

(
p2 −G(x)

)
dx.

This establishes equation (6.2) and completes the proof of Theorem 6.1.

A.3 Asymptotic results

Lemma A.3. Let F ∈ Fµ6=0
2 , and let the quantile function F−1 be continuous at the point

p ∈ (0, 1). Then

√
n
(
LCn,srs(p)− LC(p)

)
= − 1√

n

n∑
i=1

Yi,LC(p) + oP(1), (A.16)
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where

Yi,LC(p) =
1

µ

∫ F−1(p)

−∞

(
1{Xi ≤ x} − F (x)

)
dx+

LC(p)

µ

(
Xi − µ

)
.

Proof. We start with the generic equation

θn
µn
− θ

µ
=

1

µ
(θn − θ)−

θ

µ2
(µn − µ)︸ ︷︷ ︸

main term

+
θ

µ2µn
(µn − µ)2 − 1

µµn
(θn − θ)(µn − µ)︸ ︷︷ ︸

remainder term

, (A.17)

which we next use with the following quantities:

• µ is the mean of F ,

• θ is the lower-layer integral defined by equation (2.3),

• µn is the arithmetic mean µn,srs given by equation (5.8),

• θn is the estimator θn,srs =
∫ p
0
F−1n,srs(u)du of θ.

By the classical central limit theorem, we have

√
n(µn,srs − µ) = OP(1).

Statement (7.7) implies
√
n(θn,srs − θ) = OP(1).

Consequently, the remainder term on the right-hand side of equation (A.17) is of the order

oP(1/
√
n). Hence,

√
n
(
LCn,srs(p)− LC(p)

)
=
√
n

(
θn,srs
µn,srs

− θ

µ

)
=

1

µ

√
n(θn,srs − θ)−

θ

µ2

√
n(µn,srs − µ) + oP(1). (A.18)

By equation (5.11) with Fn,srs instead of Fn, we have

√
n(θn,srs − θ) =

√
n

∫ F−1(p)

−∞

(
F (x)− Fn,srs(x)

)
dx+ oP(1). (A.19)
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Combining equations (A.18) and (A.19), we obtain

√
n
(
LCn,srs(p)− LC(p)

)
= − 1

µ

√
n

∫ F−1(p)

−∞

(
Fn,srs(x)−F (x)

)
dx− θ

µ2

√
n(µn,srs−µ)+oP(1),

which implies statement (A.16) and concludes the proof of Lemma A.3.

Lemma A.4. Let F ∈ Fµ6=0
2 , and let the quantile function F−1 be continuous at the points

p ∈ (0, 1) and 1− p. Then

√
n
(
GCn,srs(p)−GC(p)

)
=

1√
n

n∑
i=1

(
Yi,LC(1− p) + Yi,LC(p)

)
+ oP(1),

where

Yi,LC(u) =
1

µ

∫ F−1(u)

−∞

(
1{Xi ≤ x} − F (x)

)
dx+

LC(u)

µ

(
Xi − µ

)
.

Proof. Note that

GC(p) = 1− 1

µ

(∫ 1−p

0

F−1(u)du+

∫ p

0

F−1(u)du

)
.

= 1− LC(1− p)− LC(p).

Hence,

√
n
(
GCn,srs(p)−GC(p)

)
= −
√
n
(
LCn,srs(1− p)− LC(1− p)

)
−
√
n
(
LCn,srs(p)− LC(p)

)
,

and with the help of Lemma A.3, we obtain

√
n
(
GCn,srs(p)−GC(p)

)
=

1√
n

n∑
i=1

(
Yi,LC(1− p) + Yi,LC(p)

)
+ oP(1),

which concludes the proof of Lemma A.4.
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A.4 Proof of Theorem 9.1

We begin the proof by splitting the integral Lw,a,b(F ) into two parts according to whether

w(u) < 0 or w(u) ≥ 0. This gives us the equation

∫ b

a

F−1(u)w(u)du =

∫ b

a

F−1(u)1{w(u) < 0}w(u)du+

∫ b

a

F−1(u)1{w(u) ≥ 0}w(u)du.

(A.20)

We shall next analyze the two integrals on the right-hand side separately, showing that they

are equal to the respective integrals on the right-hand side of equation (9.3).

Pertaining to the first integral on the right-hand side of equation (A.20), since w is

non-decreasing and right-continuous, we have w(u) < 0 if and only if u < w−1(0), and so

∫ b

a

F−1(u)1{w(u) < 0}w(u)du =

∫ b

a

F−1(u)1{u < w−1(0)}w(u)du.

Furthermore, since w(u) < 0, we have

w(u) = −
∫ 0

w(u)

dx

= −
∫ 0

−∞
1{u < w−1(x)}dx,

where the last equation holds because we have w(u) < x if and only if u < w−1(x), due to

our assumption that w is non-decreasing and right-continuous. Consequently,

∫ b

a

F−1(u)1{w(u) < 0}w(u)du = −
∫ 0

−∞

(∫ b

a

F−1(u)1{u < w−1(0) ∧ w−1(x)}du

)
dx

= −
∫ 0

−∞

(∫ b

a

F−1(u)1{u < w−1(x)}du

)
dx, (A.21)

where right-most equation holds because w−1 is non-decreasing. The double integral on

the right-hand side of equation (A.21) is zero when w−1(x) ≤ a. Hence, continuing with
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equation (A.21) for only those x that satisfy a < w−1(x), we have

∫ b

a

F−1(u)1{w(u) < 0}w(u)du = −
∫ 0

−∞
1{a < w−1(x)}

(∫ b

a

F−1(u)1{u < w−1(x)}du

)
dx

= −
∫ 0

−∞
1{a < w−1(x)}

(∫ b∧w−1(x)

a

F−1(u)du

)
dx. (A.22)

Since w is non-decreasing and right-continuous, we have that a < w−1(x) is equivalent to

w(a) < x, and so equation (A.22) gives the first integral on the right-hand side of equa-

tion (9.3).

Analogously we tackle the second integral on the right-hand side of equation (A.20).

First, since w(u) ≥ 0 if and only if u ≥ w−1(0), we have

∫ b

a

F−1(u)1{w(u) ≥ 0}w(u)du =

∫ b

a

F−1(u)1{u ≥ w−1(0)}w(u)du.

Furthermore, since w(u) ≥ 0, we have

w(u) =

∫ w(u)

0

dx

=

∫ ∞
0

1{u ≥ w−1(x)}dx,

where the last equation holds because w(u) ≥ x if and only if u ≥ w−1(x). Consequently,

∫ b

a

F−1(u)1{w(u) ≥ 0}w(u)du =

∫ ∞
0

(∫ b

a

F−1(u)1{u ≥ w−1(0) ∨ w−1(x)}du

)
dx

=

∫ ∞
0

(∫ b

a

F−1(u)1{u ≥ w−1(x)}du

)
dx, (A.23)

where right-most equation holds because w−1 is non-decreasing. The double integral on

the right-hand side of equation (A.23) is zero when w−1(x) > b. Hence, continuing with
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equation (A.23) for only those x that satisfy w−1(x) ≤ b, we have

∫ b

a

F−1(u)1{w(u) ≥ 0}w(u)du =

∫ ∞
0

1{w−1(x) ≤ b}

(∫ b

a

F−1(u)1{u ≥ w−1(x)}du

)
dx

=

∫ ∞
0

1{w−1(x) ≤ b}

(∫ b

a∨w−1(x)

F−1(u)du

)
dx. (A.24)

Since w is non-decreasing and right-continuous, we have that w−1(x) ≤ b is equivalent

to x ≤ w(b), and so equation (A.24) gives the second integral on the right-hand side of

equation (9.3). This concludes the proof of Theorem 9.1.

A.5 Proof of Theorem 9.2.

Let condition (Cw) be satisfied with some K ≥ 3. Equation (9.7) is equivalent to

w(u) = 1{0 ≤ t < a1}
(
w11(u)− w12(u)

)
+

K−1∑
k=2

1{ak−1 ≤ t < ak}

({
wk1(u) +

k∑
i=2

ci

}
−
{
wk2(u) +

k∑
i=2

ci

})
+ 1{aK−1 ≤ t < 1}

(
wK1(u)− wK2(u)

)
,

where the constants c2, . . . , cK−1 can be any real numbers, but we choose them so that the

inequalities

wk1(ak−1) +
k∑
i=2

ci ≥ w(k−1)1(ak−1−) +
k−1∑
i=2

ci

(
⇐⇒ wk1(ak−1) + ck ≥ w(k−1)1(ak−1−)

)
and

wk2(ak−1) +
k∑
i=2

ci ≥ w(k−1)2(ak−1−) +
k−1∑
i=2

ci

(
⇐⇒ wk2(ak−1) + ck ≥ w(k−1)2(ak−1−)

)
would hold for every k = 2, . . . , K − 1. The functions

w∗11(u) = 1{0 ≤ u < a1}w11(u) +
K−1∑
k=2

1{ak−1 ≤ u < ak}
{
wk1(u) +

k∑
i=2

ci

}
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and

w∗12(u) = 1{0 ≤ u < a1}w12(u) +
K−1∑
k=2

1{ak−1 ≤ u < ak}
{
wk2(u) +

k∑
i=2

ci

}
are non-decreasing and right-continuous on the interval [0, aK−1). Furthermore, the functions

w∗21(u) = wK1(u) and w∗22(u) = wK2(u)

are non-decreasing and right-continuous on the interval [aK−1, 1). We obviously have the

equation

w(u) = 1{0 ≤ u < aK−1}
(
w∗11(u)− w∗12(u)

)
+ 1{aK−1 ≤ u < 1}

(
w∗21(u)− w∗22(u)

)
,

which establishes representation (9.8) and completes the proof of Theorem 9.2.

A.6 Proofs of cursory notes

In this appendix we present proofs of some of the cursory notes that we have made while

discussing main results.

A.6.1 Proof of equation (1.6)

Let U denote a uniform on [0, 1] random variable. Since X and Y have the same distributions

as F−1(U) and G−1(U), respectively, we therefore have∫ 1

0

(
G−1(u)− F−1(u)

)
du = E

(
G−1(U)

)
− E

(
F−1(U)

)
= E(Y )− E(X). (A.25)

Furthermore, using Fubini’s theorem, we have

∫ ∞
−∞

(
F (x)−G(x)

)
dx = E

(∫ ∞
−∞

(
1{X ≤ x} − 1{Y ≤ x}

)
dx

)

= E

(∫ ∞
−∞

(
1{Y > x} − 1{X > x}

)
dx

)
= E(Y −X), (A.26)
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where the right-most equation holds because the integral inside the expectation is equal

to Y − X. Since the right-hand sides of equations (A.25) and (A.26) are equal, we have

equation (1.6).

A.6.2 On the validity of statements (4.4) and (4.7)-(4.8)

Using the definition of the empirical quantile function H−1n,SRS, statement (4.4) is equivalent

to

Zdn/2e:n
P9

1

2
.

To prove it, we want to find ε > 0 such that

lim
n→∞

P

(∣∣∣∣Zdn/2e:n − 1

2

∣∣∣∣ > ε

)
> 0. (A.27)

We set ε = 1/2 and note that statement (A.27) follows if we establish at least one of

statements (4.7) and (4.8), but for completeness of the argument, we shall next establish

both of them. Using a well-known formula (e.g., David and Nagaraja, 2003, eq. (2.1.3)) for

the cdf of order statistics, we have

P
(
Zdn/2e:n >

3

2

)
= 1−

n∑
j=dn/2e

P
(
Zj:n ≤

3

2

)

= 1−
n∑

j=dn/2e

(
n

j

)(
FZ

(
3

2

))j (
1− FZ

(
3

2

))n−j

= 1−
n∑

j=dn/2e

(
n

j

)(
1

2

)j (
1

2

)n−j
= 1−

(
1

2

)n n∑
j=dn/2e

(
n

j

)
. (A.28)
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Similarly,

P
(
Zdn/2e:n <

1

2

)
=

n∑
j=dn/2e

P
(
Zj:n <

1

2

)

=
n∑

j=dn/2e

(
n

j

)(
FZ

(
1

2

))j (
1− FZ

(
1

2

))n−j

=
n∑

j=dn/2e

(
n

j

)(
1

2

)j (
1

2

)n−j
=

(
1

2

)n n∑
j=dn/2e

(
n

j

)
. (A.29)

We next rearrange the sums of binomials on the right-hand sides of equations (A.28) and (A.29).

When n is even, dn/2e = n/2 and 2n can be expressed in n+ 1 (which is odd) terms

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n
2
− 1

)
+

(
n
n
2

)
+

(
n

n
2

+ 1

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
=

(
n
n
2

)
+ 2

((
n

n
2

+ 1

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

))
.

Hence, we have

n∑
j=dn/2e

(
n

j

)
=

(
n

dn
2
e

)
+

(
n

dn
2
e+ 1

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)

=

(
n
n
2

)
+

(
n

n
2

+ 1

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
=

1

2

(
2n +

(
n
n
2

))

= 2n−1 +
1

2

(
n
n
2

)
.

When n is odd, 2n can be expressed in n+ 1 (which is even) terms as follows:

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

dn
2
e − 1

)
+

(
n

dn
2
e

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
= 2

((
n

dn
2
e

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

))
.
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Hence, we have

n∑
j=dn/2e

(
n

j

)
=

(
n

dn
2
e

)
+

(
n

dn
2
e+ 1

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
=

1

2
2n

= 2n−1.

Going back to the original expressions (A.28) and (A.29) of probabilities, we have

P
(
Zdn/2e:n >

3

2

)
= 1−

(
1

2

)n n∑
j=dn/2e

(
n

j

)

=


1
2
− 1

2n+1

(
n
n/2

)
when n is even;

1
2

when n is odd;

and

P
(
Zdn/2e:n <

1

2

)
=

(
1

2

)n n∑
j=dn/2e

(
n

j

)

=


1
2

+ 1
2n+1

(
n
n/2

)
when n is even;

1
2

when n is odd.

As n → ∞, the term 1
2n+1

(
n
n/2

)
vanishes. This establishes statements (4.7) and (4.8), and

concludes the proof of statement (4.4).

A.6.3 Derivation of expression (4.11)

Starting with equation (4.10), we need to calculate the first two moments of the random

variable
(
H−1(U)− (1− a)

)+
. From Figure 4.2 we see that the random variable H−1(U)−

(1−a) is (strictly) positive if and only if U > 1/2, and under this condition, H−1(U) is equal

to 2(1− a)U + 2a. Hence,

(
H−1(U)− (1− a)

)+
=
(
2(1− a)U + 2a

)
1{U > 1/2}. (A.30)
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By calculating the first two moments of the random variable on the right-hand side of

equation (A.30), we arrive at expression (4.11).

A.6.4 Proof of equation (9.1)

We start with the equations

Kw(F (x)) =

∫ F (x)

0

w(u)du

=

∫ 1

0

1{u ≤ F (x)}w(u)du

=

∫ 1

0

1{F−1(u) ≤ x}w(u)du.

Analogous equations hold for Kw(G(x)). Hence,∫
R

(
Kw

(
F (x)

)
−Kw

(
G(x)

))
dx =

∫
R

(∫ 1

0

(
1{F−1(u) ≤ x} − 1{G−1(u) ≤ x}

)
w(u)du

)
dx

=

∫ 1

0

(∫
R

(
1{F−1(u) ≤ x} − 1{G−1(u) ≤ x}

)
dx

)
w(u)du

=

∫ 1

0

(
G−1(u)− F−1(u)

)
w(u)du,

where the right-most equation holds because the inner integral is equal to G−1(u)−F−1(u).

This completes the proof of equation (9.1).

A.6.5 Proof of equation (9.2)

Since w1 is non-decreasing and right-continuous, and such that w1(0) ≥ 0, we have∫ 1

0

F−1(u)w1(u)du =

∫ 1

0

F−1(u)

(∫ ∞
0

1{x ≤ w1(u)}dx
)

du

=

∫ 1

0

F−1(u)

(∫ ∞
0

1{w−11 (x) ≤ u}dx
)

du

=

∫ ∞
0

(∫ 1

0

F−1(u)1{w−11 (x) ≤ u}du
)

dx

=

∫ ∞
0

(∫ 1

w−1
1 (x)

F−1(u)du

)
dx.

Analogous equations hold for w2. This establishes equation (9.2).
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